Southeast Asian Bulletin of Mathematics © SEAMS. 2003

Applications of First Order Differential Superordinations to Certain Linear Operators*

Rosihan M. Ali

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

E-mail: rosihan@cs.usm.my

V. Ravichandran

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

E-mail: vravi@cs.usm.my

M. Hussain Khan

Department of Mathematics, Islamiah College, Vaniambadi 635 751, India E-mail: khanhussaff@yahoo.co.in

K. G. Subramanian

Department of Mathematics, Madras Christian College, Tambaram, Chennai- $600\ 059,$ India

E-mail: kgsmani@vsnl.net

AMS Mathematics Subject Classification (2000): 30C80, 30C45

Abstract. In the present paper, we give some applications of first order differential superordinations to obtain sufficient conditions for normalized analytic functions defined by certain linear operators to be superordinated to a given univalent function.

 $\textbf{Keywords:} \ \ \text{Differential subordinations;} \ \ \text{Differential superordinations;} \ \ \text{Subordinant.}$

1. Introduction

^{*}The research of R. M. A and V. R. are supported by a basic science research grant and a post-doctoral research fellowship respectively from Universiti sains Malaysia.

Let \mathcal{H} be the class of functions analytic in $\Delta := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let \mathcal{A}_p denote the class of all analytic functions f(z) of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k \quad (z \in \Delta)$$

$$\tag{1.1}$$

and $\mathcal{A} := \mathcal{A}_1$. If f is subordinate to F, then F is superordinate to f. Recently Miller and Mocanu [14] considered certain first and second order differential superordinations. Using the results of Miller and Mocanu [14], Bulboaca have considered certain classes of first order differential superordinations [4] as well as superordination-preserving integral operators [3]. The authors [1] have used the results of Bulboaca [4] to obtain some sufficient conditions for functions to satisfy

$$q_1(z) \prec z f'(z)/f(z) \prec q_2(z)$$

where q_1 , q_2 are given univalent functions in Δ .

Recently, several authors [10, 15, 16, 19, 20, 21, 22, 28] have obtained sufficient conditions associated with starlikeness in terms of the expression

$$\frac{zf'(z)}{f(z)} + \alpha \frac{z^2f''(z)}{f(z)}.$$

In this paper, we give some applications of first order differential superordinations to obtain sufficient conditions for functions defined through Dziok-Srivastava linear operator and the multiplier transformation on the space of multivalent functions \mathcal{A}_p .

2. Preliminaries

For two analytic functions f(z) given by (1.1) and g(z) given by

$$g(z) = z^p + \sum_{k=p+1}^{\infty} b_k z^k,$$

their Hadamard product (or convolution) is the function (f * g)(z) defined by

$$(f * g)(z) := z^p + \sum_{k=p+1}^{\infty} a_k b_k z^k.$$

For $\alpha_j \in \mathbb{C}$ (j = 1, 2, ..., l) and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\} (j = 1, 2, ..., m)$, the generalized hypergeometric function ${}_{l}F_{m}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z)$ is defined by the infinite series

$${}_{l}F_{m}(\alpha_{1},\ldots,\alpha_{l};\beta_{1},\ldots,\beta_{m};z):=\sum_{n=0}^{\infty}\frac{(\alpha_{1})_{n}\ldots(\alpha_{l})_{n}}{(\beta_{1})_{n}\ldots(\beta_{m})_{n}}\frac{z^{n}}{n!}$$

$$(l \le m+1; l, m \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}),$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)\dots(a+n-1), & (n\in\mathbb{N} := \{1,2,3\dots\}). \end{cases}$$

Corresponding to the function

$$h_p(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z) := z^p {}_l F_m(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z),$$

the Dziok-Srivastava operator [8] (see also [26]) $H_p^{(l,m)}(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m)$ is defined by the Hadamard product

$$H_p^{(l,m)}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m) f(z) := h_p(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z) * f(z)$$

$$= z^p + \sum_{n=p+1}^{\infty} \frac{(\alpha_1)_{n-p} \dots (\alpha_l)_{n-p}}{(\beta_1)_{n-p} \dots (\beta_m)_{n-p}} \frac{a_n z^n}{(n-p)!}.$$
(2.1)

To make the notation simple, we write

$$H_p^{l,m}[\alpha_1]f(z) := H_p^{(l,m)}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m)f(z).$$

It is well known [8] that

$$\alpha_1 H_p^{l,m}[\alpha_1 + 1] f(z) = z (H_p^{l,m}[\alpha_1] f(z))' + (\alpha_1 - p) H_p^{l,m}[\alpha_1] f(z).$$
 (2.2)

Special cases of the Dziok-Srivastava linear operator includes the Hohlov linear operator [9], the Carlson-Shaffer linear operator [5], the Ruscheweyh derivative operator [23], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [2], [11], [12]) and the Srivastava-Owa fractional derivative operators (cf. [17], [18]).

Motivated by the multiplier transformation on \mathcal{A} , we define the operator $I_p(n,\lambda)$ on \mathcal{A}_p by the following infinite series

$$I_p(n,\lambda)f(z) := z^p + \sum_{k=p+1}^{\infty} \left(\frac{k+\lambda}{p+\lambda}\right)^n a_k z^k \quad (\lambda \ge 0).$$
 (2.3)

A straightforward calculation shows that

$$(p+\lambda)I_p(n+1,\lambda)f(z) = z[I_p(n,\lambda)f(z)]' + \lambda I_p(n,\lambda)f(z). \tag{2.4}$$

The operator $I_p(n,\lambda)$ is closely related to the Sălăgean derivative operators [24]. The operator $I_{\lambda}^n := I_1(n,\lambda)$ was studied recently by Cho-Srivastava [6] and Cho-Kim [7]. The operator $I_n := I_1(n,1)$ was studied by Uralegaddi-Somanatha [27].

In our present investigation, we need the following:

Definition 2.1. [14, Definition 2, p. 817] Denote by Q, the set of all functions f(z) that are analytic and injective on $\overline{\Delta} - E(f)$, where

$$E(f) = \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \},$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 2.2. [1] Let q(z) be convex univalent in Δ and $\alpha, \beta, \gamma \in \mathbb{C}$. Further assume that

$$\Re\left[\frac{\alpha}{\gamma} + \frac{2\beta}{\gamma}q(z)\right] > 0.$$

If $\psi(z) \in \mathcal{H}[q(0), 1] \cap Q$, $\alpha \psi(z) + \beta \psi^2(z) + \gamma z \psi'(z)$ is univalent in Δ , then

$$\alpha q(z) + \beta q^2(z) + \gamma z q'(z) \prec \alpha \psi(z) + \beta \psi^2(z) + \gamma z \psi'(z)$$

implies $q(z) \prec \psi(z)$ and q(z) is the best subordinant.

Lemma 2.3. [1] Let $q(z) \neq 0$ be convex univalent in Δ and $\alpha, \beta \in \mathbb{C}$. Further assume that $\Re\left[\alpha\overline{\beta}q(z)\right] > 0$ and zq'(z)/q(z) is starlike univalent in Δ . If $\psi(z) \in \mathcal{H}[q(0),1] \cap Q$, $\psi(z) \neq 0$, $\alpha\psi(z) + \beta \frac{z\psi'(z)}{\psi(z)}$ is univalent in Δ , then

$$\alpha q(z) + \beta \frac{zq'(z)}{q(z)} \prec \alpha \psi(z) + \beta \frac{z\psi'(z)}{\psi(z)},$$

implies $q(z) \prec \psi(z)$ and q(z) is the best subordinant.

We also need the following result:

Lemma 2.4. Let $q(z) \neq 0$ be univalent in Δ and $\alpha, \beta \in \mathbb{C}$. Further assume that $\Re \left[\overline{\alpha} \beta q(z) \right] > 0$ and zq'(z)/q(z) is starlike univalent in Δ . If $\psi(z) \in \mathcal{H}[q(0),1] \cap Q$, $\psi(z) \neq 0$, $\frac{\alpha}{\psi(z)} - \beta \frac{z\psi'(z)}{\psi(z)}$ is univalent in Δ , then

$$\frac{\alpha}{q(z)} - \beta \frac{zq'(z)}{q(z)} \prec \frac{\alpha}{\psi(z)} - \beta \frac{z\psi'(z)}{\psi(z)},$$

implies $q(z) \prec \psi(z)$ and q(z) is the best subordinant.

The proof of Lemma 2.4 is similar to the proof of Lemma 2.3 and therefore we omit the proof.

3. Sufficient Conditions Involving Dziok-Srivastava Linear Operator

By making use of Lemma 2.2, we first prove the following:

Theorem 3.1. Let q(z) be convex univalent, $\alpha \neq 0$. Further assume that

$$\Re\left\{\frac{1+\alpha_1(1-\alpha)}{\alpha}+2\alpha_1q(z)\right\}>0.$$

If $f(z) \in \mathcal{A}_p$, $H_p^{l,m}[\alpha_1 + 1]f(z)/H_p^{l,m}[\alpha_1]f(z) \in \mathcal{H}[1,1] \cap Q$,

$$\frac{H_p^{l,m}[\alpha_1+1]f(z)}{H_p^{l,m}[\alpha_1]f(z)} \left\{ 1 - \alpha + \alpha \frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)} \right\}$$

is univalent in Δ , then

$$\frac{1 + \alpha_1(1 - \alpha)}{1 + \alpha_1}q(z) + \frac{\alpha\alpha_1}{1 + \alpha_1}q^2(z) + \frac{\alpha}{1 + \alpha_1}zq'(z)
\prec \frac{H_p^{l,m}[\alpha_1 + 1]f(z)}{H_p^{l,m}[\alpha_1]f(z)} \left\{ 1 - \alpha + \alpha \frac{H_p^{l,m}[\alpha_1 + 2]f(z)}{H_p^{l,m}[\alpha_1 + 1]f(z)} \right\}$$
(3.1)

implies

$$q(z) \prec \frac{H_p^{l,m}[\alpha_1 + 1]f(z)}{H_p^{l,m}[\alpha_1]f(z)}$$
 (3.2)

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{H_p^{l,m}[\alpha_1 + 1]f(z)}{H_n^{l,m}[\alpha_1]f(z)}.$$
(3.3)

By a simple computation from (3.3), we get

$$\frac{z\psi'(z)}{\psi(z)} = \frac{z[H_p^{l,m}[\alpha_1 + 1]f(z)]'}{H_p^{l,m}[\alpha_1 + 1]f(z)} - \frac{z[H_p^{l,m}[\alpha_1]f(z)]'}{H_p^{l,m}[\alpha_1]f(z)}.$$
 (3.4)

By making use of (2.2) in the equation (3.4), we obtain

$$\frac{z\psi'(z)}{\psi(z)} = (\alpha_1 + 1)\frac{H_p^{l,m}[\alpha_1 + 2]f(z)}{H_p^{l,m}[\alpha_1 + 1]f(z)} - \alpha_1\frac{H_p^{l,m}[\alpha_1 + 1]f(z)}{H_p^{l,m}[\alpha_1]f(z)} - 1.$$
(3.5)

Using (3.3) in (3.5), we get

$$\frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)} = \frac{1}{1+\alpha_1} \left[\frac{z\psi'(z)}{\psi(z)} + \alpha_1\psi(z) + 1 \right]. \tag{3.6}$$

Therefore we have, from (3.3) and (3.6),

$$\frac{H_p^{l,m}[\alpha_1+1]f(z)}{H_p^{l,m}[\alpha_1]f(z)} \left\{ 1 - \alpha + \alpha \frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)} \right\}
= \frac{1 + \alpha_1(1-\alpha)}{1 + \alpha_1} \psi(z) + \frac{\alpha\alpha_1}{1 + \alpha_1} \psi^2(z) + \frac{\alpha}{1 + \alpha_1} z \psi'(z).$$
(3.7)

In view of the equation (3.7), the subordination (3.1) becomes

$$[1 + \alpha_1(1 - \alpha)]q(z) + \alpha \alpha_1 q^2(z) + \alpha z q'(z)$$

$$\prec [1 + \alpha_1(1 - \alpha)]\psi(z) + \alpha \alpha_1 \psi^2(z) + \alpha z \psi'(z)$$

and the result now follows by an application of Lemma 2.2.

By making use of Lemma 2.3, we now prove the following:

Theorem 3.2. Let $q(z) \neq 0$ be convex univalent in Δ , q(0) = 1. Let zq'(z)/q(z) be starlike univalent in Δ . If $f(z) \in \mathcal{A}_p$, $0 \neq \frac{z^{p(\alpha-1)}H_p^{l,m}[\alpha_1+1]f(z)}{(H_p^{l,m}[\alpha_1]f(z))^{\alpha}} \in \mathcal{H}[1,1] \cap Q$ and

$$(\alpha_1+1)\frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)} - \alpha\alpha_1\frac{H_p^{l,m}[\alpha_1+1]f(z)}{H_p^{l,m}[\alpha_1]f(z)}$$

is univalent in Δ , then

implies

$$q(z) \prec \frac{z^{p(\alpha-1)} H_p^{l,m}[\alpha_1 + 1] f(z)}{(H_p^{l,m}[\alpha_1] f(z))^{\alpha}}$$
 (3.9)

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{z^{p(\alpha-1)} H_p^{l,m} [\alpha_1 + 1] f(z)}{(H_p^{l,m} [\alpha_1] f(z))^{\alpha}}.$$
(3.10)

By a simple computation from (3.10), we get

$$\frac{z\psi'(z)}{\psi(z)} = p(\alpha - 1) + \frac{z[H_p^{l,m}[\alpha_1 + 1]f(z)]'}{H_p^{l,m}[\alpha_1 + 1]f(z)} - \alpha \frac{z[H_p^{l,m}[\alpha_1]f(z)]'}{H_p^{l,m}[\alpha_1]f(z)}.$$
 (3.11)

By making use of (2.2) in the equation (3.11), we obtain

$$(\alpha_1+1)\frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)} - \alpha\alpha_1\frac{H_p^{l,m}[\alpha_1+1]f(z)}{H_p^{l,m}[\alpha_1]f(z)} = \frac{z\psi'(z)}{\psi(z)} + (1-\alpha)\alpha_1 + 1.$$
(3.12)

In view of the equation (3.12), the subordination (3.8) becomes

$$\frac{zq'(z)}{q(z)} \prec \frac{z\psi'(z)}{\psi(z)}$$

and the result now follows by an application of Lemma 2.3.

By applying Lemma 2.4, we now prove the following:

Theorem 3.3. Let q(z) be univalent, $\Re(\overline{\alpha}_1 q(z)) > 0$ and zq'(z)/q(z) be starlike univalent in Δ . If $f(z) \in \mathcal{A}_p$, $0 \neq H_p^{l,m}[\alpha_1]f(z)/H_p^{l,m}[\alpha_1+1]f(z) \in \mathcal{H}[1,1] \cap Q$, and

$$\frac{H_p^{l,m}[\alpha_1+2]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)}$$

is univalent in Δ , then

$$\frac{1}{1+\alpha_1} \left[1 + \frac{\alpha_1}{q(z)} - \frac{zq'(z)}{q(z)} \right] \prec \frac{H_p^{l,m}[\alpha_1 + 2]f(z)}{H_p^{l,m}[\alpha_1 + 1]f(z)}$$
(3.13)

implies

$$q(z) \prec \frac{H_p^{l,m}[\alpha_1]f(z)}{H_p^{l,m}[\alpha_1+1]f(z)}$$
 (3.14)

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{H_p^{l,m}[\alpha_1]f(z)}{H_p^{l,m}[\alpha_1 + 1]f(z)}.$$
(3.15)

Then a computation shows that

$$\frac{H_p^{l,m}[\alpha_1 + 2]f(z)}{H_p^{l,m}[\alpha_1 + 1]f(z)} = \frac{1}{1 + \alpha_1} \left[1 + \frac{\alpha_1}{\psi(z)} - \frac{z\psi'(z)}{\psi(z)} \right]$$

and the superordination (3.13) becomes

$$\frac{\alpha_1}{q(z)} - \frac{zq'(z)}{q(z)} \prec \frac{\alpha_1}{\psi(z)} - \frac{z\psi'(z)}{\psi(z)}.$$

The result now follows from Lemma 2.4.

4. Sufficient Conditions Involving Multiplier Transformation

By making use of Lemma 2.2, we prove the following:

Theorem 4.1. Let q(z) be convex univalent, $\alpha \neq 0$. Further assume that

$$\Re\left\{\frac{1-\alpha}{\alpha} + 2q(z)\right\} > 0.$$

If $f(z) \in \mathcal{A}_p$, $\frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} \in \mathcal{H}[1,1] \cap Q$,

$$\frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} \left\{ 1 - \alpha + \alpha \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} \right\}$$

is univalent in Δ , then

$$(1 - \alpha)q(z) + \alpha q^{2}(z) + \frac{\alpha}{p + \lambda} z q'(z)$$

$$\leq \frac{I_{p}(n+1,\lambda)f(z)}{I_{p}(n,\lambda)f(z)} \left\{ 1 - \alpha + \alpha \frac{I_{p}(n+2,\lambda)f(z)}{I_{p}(n+1,\lambda)f(z)} \right\}, \tag{4.1}$$

implies

$$q(z) \prec \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} \tag{4.2}$$

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}.$$
(4.3)

By a simple computation from (4.3), we get

$$\frac{z\psi'(z)}{\psi(z)} = \frac{z[I_p(n+1,\lambda)f(z)]'}{I_p(n+1,\lambda)f(z)} - \frac{z[I_p(n,\lambda)f(z)]'}{I_p(n,\lambda)f(z)}.$$
(4.4)

By making use of (2.4) in the equation (4.4), we obtain

$$\frac{z\psi'(z)}{\psi(z)} = (p+\lambda) \left[\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} \right]$$
(4.5)

Using (4.3) in (4.5), we get

$$\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} = \frac{1}{p+\lambda} \left[\frac{z\psi'(z)}{\psi(z)} + (p+\lambda)\psi(z) \right]. \tag{4.6}$$

Therefore we have from (4.6),

$$\frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} \left\{ 1 - \alpha + \alpha \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} \right\}
= (1-\alpha)\psi(z) + \alpha\psi^2(z) + \frac{\alpha}{p+\lambda}z\psi'(z).$$
(4.7)

In view of the equation (4.7), the subordination (4.1) becomes

$$(1 - \alpha)q(z) + \alpha q^{2}(z) + \frac{\alpha}{p + \lambda} z q'(z)$$
$$< (1 - \alpha)\psi(z) + \alpha \psi^{2}(z) + \frac{\alpha}{p + \lambda} z \psi'(z)$$

and the result now follows by an application of Lemma 2.2.

By using Lemma 2.3, we now prove the following theorem.

Theorem 4.2. Let $q(z) \neq 0$ be convex univalent in Δ , q(0) = 1. Let zq'(z)/q(z) be starlike univalent in Δ . If $f(z) \in \mathcal{A}_p$, $0 \neq \frac{z^{p(\alpha-1)}I_p(n+1,\lambda)f(z)}{(I_p(n,\lambda)f(z))^{\alpha}} \in \mathcal{H}[1,1] \cap Q$,

$$\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \alpha \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}$$

is univalent in Δ , then

$$\frac{1}{p+\lambda} \frac{zq'(z)}{q(z)} + 1 - \alpha \prec \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \alpha \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}$$
(4.8)

implies

$$q(z) \prec \frac{z^{p(\alpha-1)}I_p(n+1,\lambda)f(z)}{(I_p(n,\lambda)f(z))^{\alpha}}$$
(4.9)

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{z^{p(\alpha-1)}I_p(n+1,\lambda)f(z)}{(I_p(n,\lambda)f(z))^{\alpha}}.$$
(4.10)

By a simple computation from (4.10), we get

$$\frac{z\psi'(z)}{\psi(z)} = p(\alpha - 1) + \frac{z[I_p(n+1,\lambda)f(z)]'}{I_p(n+1,\lambda)f(z)} - \alpha \frac{z[I_p(n,\lambda)f(z)]'}{I_p(n,\lambda)f(z)}.$$
 (4.11)

By making use of (2.4) in the equation (4.11), we obtain

$$\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \alpha \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)} = \frac{1}{p+\lambda} \frac{z\psi'(z)}{\psi(z)} + 1 - \alpha. \tag{4.12}$$

In view of the equation (4.12), the subordination (4.8) becomes

$$\frac{zq'(z)}{q(z)} \prec \frac{z\psi'(z)}{\psi(z)}$$

and the result now follows by an application of Lemma 2.3.

We now prove the following theorem by using Lemma 2.4.

Theorem 4.3. Let q(z) be univalent, $\Re(q(z)) > 0$ and zq'(z)/q(z) be starlike univalent in Δ . If $f(z) \in \mathcal{A}_p$, $0 \neq I_p(n,\lambda)f(z)/I_p(n+1,\lambda)f(z) \in \mathcal{H}[1,1] \cap Q$, and

$$\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)}$$

is univalent in Δ , then

$$\frac{1}{q(z)} - \frac{1}{p+\lambda} \frac{zq'(z)}{q(z)} \prec \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)}$$

$$\tag{4.13}$$

implies

$$q(z) \prec \frac{I_p(n,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} \tag{4.14}$$

and q(z) is the best subordinant.

Proof. Define the function $\psi(z)$ by

$$\psi(z) := \frac{I_p(n,\lambda)f(z)}{I_p(n+1,\lambda)f(z)}.$$
(4.15)

Then a computation shows that

$$\frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} = \frac{1}{\psi(z)} - \frac{1}{p+\lambda} \frac{z\psi'(z)}{\psi(z)}$$

and the superordination (4.13) becomes

$$\frac{1}{q(z)} - \frac{1}{p+\lambda} \frac{zq'(z)}{q(z)} \prec \frac{1}{\psi(z)} - \frac{1}{p+\lambda} \frac{z\psi'(z)}{\psi(z)}.$$

The result now follows from Lemma 2.4.

References

[1] R.M. Ali, V. Ravichandran, M. Hussain Khan, and K.G. Subramanian: Differential sandwitch theorems for certain analytic functions, *Far East J. Math. Sci.* **15**(1), 87-94 (2004).

- [2] S.D. Bernardi: Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–446 (1969).
- [3] T. Bulboaca: A class of superordination-preserving integral operators, *Indag. Math. New Ser.* 13(3), 301-311 (2002).
- [4] T. Bulboaca: Classes of first-order differential superordinations, *Demonstr. Math.* 35(2), 287-292 (2002).
- [5] B.C. Carlson and S.B. Shaffer: Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15, 737-745 (1984).
- [6] N.E. Cho and H.M. Srivastava: Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Math. Comput. Modelling* 37, 39-49 (2003).
- [7] N.E. Cho and T.H. Kim: Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40, 399-410 (2003).
- [8] J. Dziok and H.M. Srivastava: Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Transform. Spec. Funct.* 14, 7-18 (2003).
- [9] Yu.E. Hohlov: Operators and operations in the class of univalent functions, *Izv. Vysš. Učebn. Zaved. Mat.* 10, 83-89 (1978).
- [10] J.L. Li and S. Owa: Sufficient conditions for starlikeness, *Indian J. Pure Appl. Math.* 33(3), 313-318 (2002).
- [11] R.J. Libera: Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16, 755-758 (1965).
- [12] A.E. Livingston: On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17, 352-357 (1966).
- [13] S.S. Miller and P.T. Mocanu: Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
- [14] S.S. Miller and P.T. Mocanu: Subordinants of differential superordinations, Complex Variables 48(10), 815-826 (2003).
- [15] M. Nunokawa, S. Owa, S.K. Lee, M. Obradovic, M.K. Aouf, H. Saitoh, A. Ikeda and N. Koike: Sufficient conditions for starlikeness, *Chinese J. Math.* 24, 265-271 (1996).
- [16] M. Obradovic, S.B. Joshi and I. Jovanovic: On certain sufficient conditions for starlikeness and convexity, *Indian J. Pure Appl. Math.* 29(3), 271-275 (1998).
- [17] S. Owa: On the distortion theorems I, Kyungpook Math. J. 18, 53-58 (1978).
- [18] S. Owa and H.M. Srivastava: Univalent and starlike generalized bypergeometric functions, Canad. J. Math. 39, 1057-1077 (1987).
- [19] K.S. Padmanabhan: On sufficient conditions for starlikeness, *Indian J. Pure Appl. Math.* 32, 543-550 (2001).
- [20] C. Ramesha, S. Kumar and K.S. Padmanabhan: A sufficient condition for starlikeness, Chinese J. Math. 23, 167-171 (1995).
- [21] V. Ravichandran, C. Selvaraj and R. Rajalakshmi: Sufficient conditions for functions of order alpha, J. Inequal. Pure Appl. Math. 3(5), Article No. 81. (2002) (http://jipam.vu.edu.au)
- [22] V. Ravichandran: Certain applications of first order differential subordination, Far East J. Math. Sci. 12, 41-51 (2004).
- [23] St. Ruscheweyh: New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109-115 (1975).
- [24] G.St. Sălăgean: Subclasses of univalent functions, in Complex Analysis: Fifth Romanian-Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Mathematics Vol. 1013, Springer-Verlag, Berlin and New York, 362-372, 1983.
- [25] H.M. Srivastava and S. Owa: Univalent Functions, Fractional Calculus and Their Applications, Halsted Press/John Wiley and Sons, Chichester/New York, (1989).

- [26] H.M. Srivastava: Some families of fractional derivative and other linear operators associated with analytic, univalent and multivalent functions, in: *Proc. International Conf. Analysis and its Applications*, K. S. Lakshmi, et. al (ed.), Allied Publishers Ltd, New Delhi, 209-243, (2001).
- [27] B.A. Uralegaddi and C. Somanatha: Certain classes of univalent functions, in *Current Topics in Analytic Function Theory*, H.M. Srivastava and S. Owa(ed.), World Scientific, Singapore, 371-374, (1992).
- [28] Z. Lewandowski, S.S. Miller and E. Złotkiewicz: Generating functions for some classes of univalent functions, *Proc. Amer. Math. Soc.* **56** , 111-117 (1976).