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Let H be the class of functions analytic in A := {z : z € Cand |z| < 1}
and H[a,n] be the subclass of H consisting of functions of the form f(z) =
a+ap2" +an412" T+ -+, Let A, denote the class of all analytic functions f(z)
of the form

fle)=2"4+ > ad (z€4) (1.1)
k=p+1

and A := A;. If f is subordinate to I, then F' is superordinate to f. Recently
Miller and Mocanu [14] considered certain first and second order differential
superordinations. Using the results of Miller and Mocanu [14], Bulboaca have
considered certain classes of first order differential superordinations [4] as well
as superordination-preserving integral operators [3]. The authors [1] have used
the results of Bulboaca [4] to obtain some sufficient conditions for functions to
satisfy

a1 (2) < 2f'(2)/ f(2) < q2(2)
where ¢1, g2 are given univalent functions in A.

Recently, several authors [10, 15, 16, 19, 20, 21, 22, 28] have obtained sufficient
conditions associated with starlikeness in terms of the expression

() 2
) TR

In this paper, we give some applications of first order differential superordina-
tions to obtain sufficient conditions for functions defined through Dziok-Srivastava
linear operator and the multiplier transformation on the space of multivalent
functions A,.

2. Preliminaries

For two analytic functions f(z) given by (1.1) and g(z) given by

g(z) = 2P + Z br2",

k=p+1

their Hadamard product (or convolution) is the function (f * ¢)(z) defined by

(f*g)(z) :=2"+ Z arbi2”.
k=p+1
Fora; e C (j=1,2,...,0) and B; € C\ {0,—1,-2,...}(j = 1,2,...m), the
generalized hypergeometric function Fp,(aq,...,q1;01,-..,0m; 2) is defined by
the infinite series

Yo ov(Q)n 2

Fm(ay, .. a5 61, B 2) ::Z((;?).-.(ﬁ)”!

n=0
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(<m+1l,meNy:={0,1,2,...}),

where (a),, is the Pochhammer symbol defined by

1, (n=0);

(@), == ala+1)(a+2)...(a+n—1), (neN:={1,2,3...}).

Corresponding to the function
hp(alw~';al;ﬁla-~'7ﬂm;z) =2 lFm(ala"'7al;ﬂla"'7ﬂm;z)a

the Dziok-Srivastava operator [8] (see also [26]) H,(,l’m)(al, ce B,y B i
defined by the Hadamard product

H]()l’m)(alr "aal;ﬁlw"aﬂM)f(z) = h’p(alw "7al;617"' 7ﬂmvz) * f(Z)

— P 0 (Oél)n—p C (al)n—p A 2"
SR Z (B )n—p - Bm)n—p (n —p)’ (2.1)

To make the notation simple, we write

Hzl;m[al]f(z) = Hzgl’m)(al, ceny o Bry e Bm) (2).

It is well known [8] that
arHy ™oy + 1] f(2) = 2(HY ™ [01] f(2)) + (a1 — p)HL ™ [an] f(2).  (2:2)

Special cases of the Dziok-Srivastava linear operator includes the Hohlov lin-
ear operator [9], the Carlson-Shaffer linear operator [5], the Ruscheweyh deriv-
ative operator [23], the generalized Bernardi-Libera-Livingston linear integral
operator (cf. [2], [11], [12]) and the Srivastava-Owa fractional derivative opera-
tors (cf. [17], [18]).

Motivated by the multiplier transformation on A, we define the operator
I,(n,A) on A, by the following infinite series

— [(k+A\"
A = 2P —= o
LN =+ 30 (5) et 0zo. e
A straightforward calculation shows that
(P + Mp(n+ LA f(2) = 2[1p(n, ) f (2)]" + Mp(n, A) f(2). (2.4)

The operator I,,(n,\) is closely related to the Salagean derivative operators
[24]. The operator I} := I;(n,\) was studied recently by Cho-Srivastava [6]
and Cho-Kim [7]. The operator I, := Ij(n,1) was studied by Uralegaddi-
Somanatha [27].

In our present investigation, we need the following:
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Definition 2.1. [14, Definition 2, p. 81ﬂ Denote by Q, the set of all functions
f(2) that are analytic and injective on A — E(f), where

B(f) = (¢ € 97+ lim f(z) = o0},

and are such that f'({) # 0 for ( € 0A — E(f).

Lemma 2.2. [1] Let q(z) be convexr univalent in A and «, (3,7 € C. Further

assume that )
R {a + ﬂq(z)} > 0.
Y Y

If ¥(2) € H[q(0),1] N Q, ap(z) + By3(2) + vz’ (2) is univalent in A, then
aq(2) + Ba*(2) + 724 (2) < ap(z) + BY®(2) + vz (2)

implies q(z) < ¢¥(z) and q(z) is the best subordinant.

Lemma 2.3. [1] Let q(z) # 0 be convex univalent in A and o, 3 € C. Further
assume that R [afBq(z)] > 0 and 2¢'(2)/q(z) is starlike univalent in A. If(z) €

H[q(0),1]NQ, ¥(z) #0, ay(z) + ﬁzw,(z) is univalent in A, then

¥(2)
2q'(2) 2’ (2)
b(z)

aq(z) + 4 < aip(z) + B

q
q(2)

implies q(z) < Y¥(z) and q(z) is the best subordinant.
We also need the following result:

Lemma 2.4. Let q(z) # 0 be univalent in A and o, 3 € C. Further assume that
R[@Bq(z)] > 0 and z¢'(2)/q(z) is starlike univalent in A. If ¥ (z) € H[g(0),1] N

Q, ¥(z) #0, ﬁ — ﬁZ:fES) is univalent in A, then

o o2q(z) o 2Y(z)
O I R CR

implies q(z) < Y¥(z) and q(z) is the best subordinant.

The proof of Lemma 2.4 is similar to the proof of Lemma 2.3 and therefore
we omit the proof.

3. Sufficient Conditions Involving Dziok-Srivastava Linear Operator
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By making use of Lemma 2.2, we first prove the following:

Theorem 3.1. Let q(z) be convexr univalent, o # 0. Further assume that

R {Ho‘la(l_o‘) 4 2a1q(z)} >0,

If f(2) € Ay, Hy™[on +1]f(2)/Hp™ o] f(2) € H[L, 1] N Q,

HE™ oy + 1]f(2) { H™[or +2)f(2) }
Hy™[oa]f(2) ’

is univalent in A, then

1+ a1(1 — a)
14+ o aq 14+ o
Hymon + 1) f(z H™an +2]f(2)

_|_
lm {1 —ata l,m }
Hy"ea]f(2) Hy™en +1]1(2)

q(z) + 2q'(2)

implies
Hym™an +1]f(2)
Hy™on] f(2)

q(z) <
and q(z) is the best subordinant.
Proof. Define the function 1(z) by

_ HY o + 1f(2)
Y )

By a simple computation from (3.3), we get

2 (z) Z[Hll;m[al +1]f(2)) B z[Hzl;m[ozl]f(z)]’

U(2) H5™on + 1]f(2) Hy" ] f(z)

By making use of (2.2) in the equation (3.4), we obtain

2z’ (2) Hzl;m[al +2]f(2) H;’m[al +1]f(2)

¥(2)

Using (3.3) in (3.5), we get

H g+ 1f(z)  HE™aa] f(2)

Hy™loa +21f(z) 1 [z0/(2)
H™ay +1)f(z) 14+a [ 9(z)

+a1p(z) + 1.

:(a1+1) — — 1.

803

(3.1)

(3.5)

(3.6)
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Therefore we have, from (3.3) and (3.6),

H™ o + 1]£(2) {1_a +aH§;m[a1+2]f(Z)}

HE™ a1 (2) HE [on + 17(2)
Lt ma) oy 9% ey @ ). 3)
o 14+ oy 1+ oy 1+ oy ' ’

In view of the equation (3.7), the subordination (3.1) becomes
[1+ai1(1—a)lgz) + aai1¢*(2) + azd (2)
<[4+ a1 (1 — a))p(z) + acyp?(2) + azy/(2)

and the result now follows by an application of Lemma 2.2. [

By making use of Lemma 2.3, we now prove the following:

Theorem 3.2. Let q(z) # 0 be convex univalent in A, q(0) = 1. Let z¢'(2)/q(z)

. . . 2P D Lm0 11]f(2)
be starlike univalent in A. If f(z) € A,, 0 # (Hl’"LIE TFoye € H[1,1]NQ
p (0% z

and
l,m I,m
(a1 + I)H;lom[al +2f(2) oy Hy, 1[731 +1]/(2)
Hy"[an +1]f(2) Hy™[oa]f(2)
is univalent in A, then
zq'(2) N
) +(1-a)a; +1
l,m l,m
< (on + 1)H;l;m[041 +2]f(2) _ aaal z[jl + 1]f(z)7 (3.8)
Hy™ [ar +1]f(2) Hp"[a1] f(2)
implies
Py (a—1) ggl,m o Py
oy < 2 o+ 1172 59

(Hp™ ] f(2))°
and q(z) is the best subordinant.

Proof. Define the function 1(z) by

zi"(afl)HIl;m[oq +1]f(2)
z) = . 3.10
V) (Hy™ o] f(2))* (310

By a simple computation from (3.10), we get

z¢'(2)
¥(2)

Al WY AES G
S e v 1) el O
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By making use of (2.2) in the equation (3.11), we obtain
HL™ o + 2] f(2 HL™ o + 1) f(2 !
(a1 +1) Il)m[l ]f()—ozal plgnl }f()zzw(z)+(l—a)a1+1.
Hy™ [on +1]f(2) Hp" [on] f(z) ¥(2)
(3.12)
In view of the equation (3.12), the subordination (3.8) becomes
() ()
a(z)  ¥(z)
and the result now follows by an application of Lemma 2.3. ]

By applying Lemma 2.4, we now prove the following;:

Theorem 3.3. Let q(z) be univalent, R(ai1q(2z)) > 0 and zq'(2)/q(z) be starlike
univalent in A. If f(z) € Ay, 0 # Hy™[on]f(2)/HE™ [on +1]f(2) € H[1,1]NQ,

and .
H)™[on +2]f(2)

Hy™[on + 1) (2)

is univalent in A, then

1 o1 zq'(2) H)™ g + 2] f(2)
14+ o Lt q(z)  q(2) B Hy™ o +1]f(2)

implies
Hy™aa]f(2)

) < ey 107)

and q(z) is the best subordinant.
Proof. Define the function ¢ (z) by

HY™ o] (2)

YO = e+ 07)

Then a computation shows that

Hll;m[al +2]f(2) 1 aq 2" (2)

H oy +1)f(z) L1+ai | o) 9()

and the superordination (3.13) becomes

o () e =)

q(z)  alz)  P(z)  W(z)

The result now follows from Lemma 2.4.

(3.13)

(3.14)

(3.15)
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4. Sufficient Conditions Involving Multiplier Transformation

By making use of Lemma 2.2, we prove the following:

Theorem 4.1. Let q(z) be convexr univalent, o # 0. Further assume that

%{1;a+2ﬂ@}>&

If £(2) € Ay, TSI e i1, 1) Q,

Lin+ LN [, Ln+20f()
Iy(n, A f(2) {1 ! Ip(nJrl,)\)f(Z)}

is univalent in A, then

(1= @)a(z) +ad’(2) + -2 (2)
I,(n+1,N)f(2) W aIp(n+2,/\)f(z)
2wy LRLRE s e 71 S
implies
I(n+1,M)/f(2)
1 1) -
and q(z) is the best subordinant.
Proof. Define the function 1(z) by
 L(n+1,N)f(2)
Ve = T ) (43)
By a simple computation from (4.3), we get
2’ (2) _ Z[Lp(n+ LN f(2)]  2[lp(n, A f(2)] (4.4)
¥(2) I(n+1,2)f(2) I(n, A f(z) '
By making use of (2.4) in the equation (4.4), we obtain
2'(2) _ L(n+2,Nf(z)  Ln+1,A)f(z)
S e e e ) 69
Using (4.3) in (4.5), we get
L2 NIE) 1 [2() ;
LI " 7 e ) o)
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Therefore we have from (4.

)

6)
Lt LN (), B4 2001

1, N/ (2) {1 - B0 +u>f<z>}
).

= (1 - a)v(z) + ay®(2) + ¥'(z

(4.7)

In view of the equation (4.7), the subordination (4.1) becomes

(1 - a)a(z) + ag®(2) + 2¢'(2)

< (1= a)e(2) + a(2) + ——2'(2)

and the result now follows by an application of Lemma 2.2. [
By using Lemma 2.3, we now prove the following theorem.

Theorem 4.2. Let q(z) # 0 be convex univalent in A, q(0) = 1. Let zq'(2)/q(z)

. . . zpm*l)lp(n—i-l)\ )f(2)
be starlike univalent in A. If f(z) € A,, 0 # AR i) HILINQ,

Ln+2,0f()  L(n+1,2)f(z)

@
Ip(n+1,A)f(z) Ip(n, A) f(z)
is univalent in A, then

L) L B2 e+ 1)
P 4(2) L+ 1N L NIE)

implies
zp(o‘_l)lp(n +1L,N)f(2)
(Ip(n, A) f(2))*

q(2) <
and q(z) is the best subordinant.
Proof. Define the function ¢(z) b,

o Zp(a_l)lp(n +1,A)f(2)
L VA (I VY 169 I (4.10)

By a simple computation from (4.10), we get

2y’ (2) [ p(+ LN 2L (0, M) f(2))
(2) L(n,\)f(z)

=pla—1)+ (4.11)

¥(2) I(n+1,A)f
By making use of (2.4) in the equation (4.11), we obtain
Lt 200() _ Lot L) L)
L+ NG LN xR
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In view of the equation (4.12), the subordination (4.8) becomes

w(2) | 2 (2)
az) " 00)

and the result now follows by an application of Lemma 2.3. [

We now prove the following theorem by using Lemma 2.4.

Theorem 4.3. Let q(z) be univalent, R(q
ungvalent in A. If f(z) € Ay, 0 # L,(n, A

and

z)) > 0 and 2¢'(2)/q(z) be starlike
)/ Tp(n+1,0)f(2) € H[L1INQ,

(
)
M
I,(n+1,0)f(2)
is univalent in A, then
ot z2q'(z)  Ip(n+2,X)f(2)
@ pira) LT LNG) (4.13)

implies
and q(z) is the best subordinant.

Proof. Define the function 1 (z) b,

Then a computation shows that

I,(n+2,))f(2) 1 1 2¢/(2)

Ln+1,Nf(z) () p+A ¥(z)

and the superordination (4.13) becomes

1 1 z¢'(2) - 1 1 z¢/(2)
q(z) P+ alz) W(z) p+AY(R)
The result now follows from Lemma 2.4. [
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