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Abstract. Let f be a normalized analytic function defined on the unit disk and fλ(z) :=
(1− λ)z + λf(z) for 0 < λ ≤ 1. For α > 0, a function f ∈ SP(α, λ) if zf ′(z)/fλ(z) lies in
the parabolic region Ω := {w : |w − α| < Re w + α}. Let CP(α, λ) be the corresponding
class consisting of functions f such that (zf ′(z))′/f ′

λ(z) lies in the region Ω. For an
appropriate δ > 0, the δ-neighbourhood of a function f ∈ CP(α, λ) is shown to consist of
functions in the class SP(α, λ).

1. Introduction

Let A denote the class of all analytic functions f(z) defined on the open unit disk
∆ := {z : |z| < 1} and normalized by f(0) = 0 and f ′(0) = 1, and let S be the subclass
of A consisting of univalent functions. Let ST and CV be the well-known subclasses of
S respectively consisting of starlike and convex functions. Given δ ≥ 0, Ruscheweyh [24]
defined the δ-neighbourhood Nδ(f) of a function

f(z) = z +
∞∑
n=2

anz
n ∈ A

to be the set

Nδ(f) :=

{
g(z) : g(z) = z +

∞∑
k=2

bkz
k and

∞∑
k=2

k|ak − bk| ≤ δ

}
.

Ruscheweyh [24] proved among other results that N1/4(f) ⊂ ST for f ∈ CV . Sheil-
Small and Silvia [28] introduced more general notions of neighbourhood of an analytic
function. These included non-coefficient neighbourhoods as well. Problems related to the
neighbourhoods of analytic functions were considered by many others, for example, see
[1, 2, 3, 4, 10, 11, 12, 17, 18, 31].

An analytic function f(z) ∈ S is uniformly convex [8] if for every circular arc γ contained
in 4 with center ζ ∈ 4, the image arc f(γ) is convex. Denote the class of all uniformly
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convex functions by UCV . In [13, 20], it was shown that a function f(z) is uniformly
convex if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ ∆).

The class Sp of functions zf ′(z) with f(z) in UCV was introduced in [20] and clearly f(z)
is in Sp if and only if

Re

{
zf ′(z)

f(z)

}
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ ∆).

The class UCV of uniformly convex functions and the class Sp of parabolic starlike functions
were investigated in [7, 19, 22, 26, 27]. A survey of these functions can be found in [21].

Let α > 0 and 0 < λ ≤ 1. The class SP(α, λ) consists of functions f ∈ S satisfying

Re

{
zf ′(z)

(1− λ)z + λf(z)

}
+ α >

∣∣∣∣∣ zf ′(z)

(1− λ)z + λf(z)
− α

∣∣∣∣∣ (z ∈ ∆). (1.1)

By writing fλ(z) := (1− λ)z + λf(z), the inequality in (1.1) can be written as

Re

{
zf ′(z)

fλ(z)

}
+ α >

∣∣∣∣∣zf ′(z)

fλ(z)
− α

∣∣∣∣∣.
Observe that (1.1) defines a parabolic region. More explicitly, f ∈ SP(α, λ) if and only

if the values of the functional zf ′(z)/fλ(z) lie in the parabolic region Ω where

Ω := {w : |w − α| < Re w + α} = {w = u+ iv : v2 < 4αu}.

The geometric properties of the function fλ when f belongs to certain classes of starlike
and convex functions were investigated by several authors [5, 6, 9, 16, 23, 30]; in particular,
we recall the following result:

Theorem 1.1. [16] Let f ∈ CV. Then

(1) fλ(z) := (1− λ)z + λf(z) ∈ ST if and only if λ ∈ C and |λ− 1| ≤ 1/3;
(2) if f ′′(0) = 0, then fλ ∈ ST for λ ∈ [0, 1].

For α > 0 and 0 < λ ≤ 1, the class CP(α, λ) consists of functions f ∈ S satisfying

Re

{
(zf ′(z))′

f ′λ(z)

}
+ α >

∣∣∣∣∣(zf ′(z))′

f ′λ(z)
− α

∣∣∣∣∣ (z ∈ ∆).

When λ = 1, the classes SP(α, λ) and CP(α, λ) reduce respectively to the classes in-
troduced in [29] and [33]. Besides several other properties, the authors in [29] and [33]
also gave geometric interpretations, respectively, of the classes SP(α) := SP(α, 1) and
CP(α) := CP(α, 1).

In this paper, the neighbourhood Nδ(f) for functions f ∈ CP(α, λ) is investigated. It
is shown that all functions g ∈ Nδ(f) are in the class SP(α, λ) for a certain δ > 0. It is
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of interest to note that the conditions on δ obtained here coincide with those in [32] for
corresponding results in the classes CP(α) and SP(α).

2. Main Results

In order to obtain the main results, a characterization of the class SP(α, λ) in terms
of the functions in another class SP ′(α, λ) is needed. For a fixed α > 0, 0 < λ ≤ 1, and
t ≥ 0, a function Ht, λ is said to be in the class SP ′(α, λ) if the function Ht, λ is of the
form

Ht, λ(z) :=
1

1− (t± 2
√
αt i)

[
z

(1− z)2
− [z − (1− λ)z2]

1− z
(t± 2

√
αt i)

]
, (z ∈ ∆). (2.1)

Recall that for any two functions f(z) and g(z) given by

f(z) = z +
∞∑
n=2

anz
n, g(z) = z +

∞∑
n=2

bnz
n,

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) := z +
∞∑
n=2

anbnz
n =: (g ∗ f)(z).

Lemma 2.1. Let α > 0 and 0 < λ ≤ 1. A function f is in the class SP(α, λ) if and only
if

1

z
(f ∗Ht, λ)(z) 6= 0 (z ∈ ∆)

for all Ht, λ ∈ SP ′(α, λ).

Proof. Let f ∈ SP(α, λ). Then the image of ∆ under w = zf ′(z)/fλ(z) lies in the parabolic
region Ω(α, λ) = {w : |w − α| < Re w + α} so that

zf ′(z)

fλ(z)
6= t± 2

√
αt i, (z ∈ ∆, t ≥ 0).

Thus f ∈ SP(α, λ) if and only if

zf ′(z)− [t± 2
√
αt i]fλ(z)

z(1− [t± 2
√
αt i])

6= 0, (z ∈ ∆, t ≥ 0), (2.2)

or equivalently
1

z
(f ∗Ht, λ)(z) 6= 0, (z ∈ ∆, t ≥ 0)

for all Ht, λ ∈ SP ′(α, λ). �

Lemma 2.2. Let α > 0 and 0 < λ ≤ 1. If

Ht, λ(z) := z +
∞∑
k=2

hk, λ(t)z
k ∈ SP ′(α, λ),
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then

|hk,λ(t)| ≤

{
k

2
√
α(1−α)

, 0 < α < 1/2,

k, α ≥ 1/2

for all t ≥ 0.

Proof. Writing Ht, λ(z) = z+
∑∞

k=2 hk, λ(t)z
k, and on comparing coefficients of zk in (2.1),

one obtains

hk, λ(t) =
k − λ(t± 2

√
αt i)

1− (t± 2
√
αt i)

.

Thus, for t ≥ 0 and 0 < λ ≤ 1,

|hk, λ(t)|2 =

∣∣∣∣∣k − λ(t± 2
√
αt i)

1− (t± 2
√
αt i)

∣∣∣∣∣
2

=
(k − λt)2 + 4λ2αt

(1− t)2 + 4αt

= λ2 +
(k − λ)(k + λ− 2λt)

(1− t)2 + 4αt

≤ λ2 +
(k2 − λ2)

(1− t)2 + 4αt
.

It is easy to see that

(1− t)2 + 4αt ≥

{
4α(1− α), 0 < α < 1/2,
1, α ≥ 1/2 .

Hence, for 0 < α < 1/2, and 0 < λ ≤ 1, we have

|hk, λ(t)|2 ≤ λ2 +
(k2 − λ2)

4α(1− α)
≤ k2

4α(1− α)
,

and, for α ≥ 1/2,

|hk, λ(t)|2 ≤ λ2 + k2 − λ2 = k2. �

Lemma 2.3. For each complex number ε and f ∈ A, define the function Fε by

Fε(z) :=
f(z) + εz

1 + ε
. (2.3)

Let α > 0, 0 < λ ≤ 1, and Fε ∈ SP(α, λ) for |ε| < δ for some δ > 0. Then∣∣∣∣∣1z (f ∗Ht, λ)(z)

∣∣∣∣∣ ≥ δ, (z ∈ ∆)

for every Ht, λ ∈ SP ′(α, λ).

Proof. If Fε ∈ SP(α, λ) for |ε| < δ, where δ > 0 is fixed, then by Lemma 2.1, for all
Ht, λ ∈ SP ′(α, λ), it follows that

1

z
(Fε ∗Ht, λ)(z) 6= 0, (z ∈ ∆)
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or equivalently
(f ∗Ht, λ)(z) + εz

(1 + ε)z
6= 0.

Since |ε| < δ, it easily follows that∣∣∣∣∣1z (f ∗Ht, λ)(z)

∣∣∣∣∣ ≥ δ. �

Theorem 2.1. Let α > 0 and 0 < λ ≤ 1. Let f ∈ A and δ > 0. For a complex number ε
with |ε| < δ, let the function Fε, defined by (2.3), be in SP(α, λ). Then Nδ′(f) ⊂ SP(α, λ),
for

δ′ :=

{
2δ
√
α(1− α), 0 < α < 1/2,

δ, α ≥ 1/2.

Proof. Let g(z) = z +
∑∞

k=2 bkz
k ∈ Nδ′(f). For any Ht, λ ∈ SP ′(α, λ),∣∣∣∣∣1z (g ∗Ht, λ)(z)

∣∣∣∣∣ =

∣∣∣∣∣1z (f ∗Ht, λ)(z) +
1

z
((g − f) ∗Ht, λ)(z)

∣∣∣∣∣
≥

∣∣∣∣∣1z (f ∗Ht, λ)(z)

∣∣∣∣∣−
∣∣∣∣∣1z ((g − f) ∗Ht, λ)(z)

∣∣∣∣∣.
Using Lemma 2.3, it follows that∣∣∣∣∣1z (g ∗Ht, λ)(z)

∣∣∣∣∣ ≥ δ −

∣∣∣∣∣
∞∑
k=2

(bk − ak)hk, λ(t)zk

z

∣∣∣∣∣
≥ δ −

∞∑
k=2

|bk − ak||hk, λ(t)|.

Using Lemma 2.2 and noting that g ∈ Nδ′(f), and whence
∑∞

k=2 k|bk − ak| < δ′, thus∣∣∣∣∣1z (g ∗Ht, λ)(z)

∣∣∣∣∣ ≥
{
δ − δ′

2
√
α(1−α)

, 0 < α < 1/2,

δ − δ′, α ≥ 1/2.

Therefore |1
z
(g ∗Ht, λ)(z)| 6= 0 in ∆ for all Ht, λ ∈ SP(α, λ) if

δ′ =

{
2δ
√
α(1− α), 0 < α < 1/2,

δ, α ≥ 1/2.

By Lemma 2.1, this means that g ∈ SP(α, λ). This proves that Nδ′(f) ⊂ SP(α, λ). �

We need the following well-known result in [25] concerning convolution of functions.

Lemma 2.4. [25] Let f ∈ CV, g ∈ ST . Then for any analytic function F defined on ∆,
we have

f(z) ∗ g(z)F (z)

f(z) ∗ g(z)
⊂ coF (∆), (z ∈ ∆)

where co stands for the closed convex hull.
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Lemma 2.5. If f ∈ CV, g ∈ SP(α, λ) and gλ ∈ ST , then f ∗ g ∈ SP(α, λ).

Proof. The conclusion f ∗ g ∈ SP(α, λ) is a consequence of Lemma 2.4 on noting that

z(f(z) ∗ g(z))′

(f(z) ∗ g(z))λ
=
f(z) ∗ zg′(z)

f(z) ∗ gλ(z)
=
f(z) ∗ gλ(z) zg

′(z)
gλ(z)

f(z) ∗ gλ(z)
⊂ co

{
zg′(z)

gλ(z)
: z ∈ ∆

}
. �

Theorem 2.2. Let α > 0 and 0 ≤ λ ≤ 1. If f ∈ CP(α, λ) and fλ ∈ CV, then the function
Fε defined by (2.3) belongs to SP(α, λ) for |ε| < 1/4.

Proof. Let f(z) = z +
∑∞

k=2 akz
k ∈ CP(α, λ). Then

Fε(z) =
f(z) + εz

1 + ε
= (f ∗ h)(z)

where

h(z) :=
z − ε

1+ε
z2

1− z
=
z − ρz2

1− z
(z ∈ ∆)

and ρ := ε/(1 + ε). Note that

Re
zh′(z)

h(z)
≥ 1

2
− |ρ|

1− |ρ|
> 0 (z ∈ ∆)

if |ρ| ≤ 1/3. This clearly holds for |ε| < 1/4. Thus the function h(z) is starlike for |ε| < 1/4
and whence the function ∫ z

0

h(t)

t
dt = h(z) ∗ log

1

1− z
(z ∈ ∆)

is in CV . Since f(z) ∈ CP(α, λ), the function zf ′(z) ∈ SP(α, λ). Also fλ(z) ∈ CV implies
that (zf ′(z))λ ∈ ST . By Lemma 2.5,

Fε(z) = (f ∗ h)(z) = zf ′(z) ∗

(
h(z) ∗ log

1

1− z

)
∈ SP(α, λ)

for |ε| < 1/4. �

Theorem 2.3. Let α > 0 and 0 ≤ λ ≤ 1. If f ∈ CP(α, λ) and fλ ∈ CV, then Nδ′(f) ⊂
SP(α, λ, ) where

δ′ :=

{
1
2

√
α(1− α), 0 < α < 1/2,

1/4, α ≥ 1/2.

Proof. The result follows from Theorem 2.1 and Theorem 2.2 on taking δ = 1/4 in Theorem
2.1. �

Remark 2.1. It is interesting to note that the values of δ′ in Theorem 2.1 and Theorem 2.3
are independent of λ. In fact, the conclusion of Theorem 2.1, Theorem 2.2, and Theorem
2.3 are the same as found in [33] for the subclasses SP(α) and CP(α).

To prove our next result, we need the following results.
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Lemma 2.6. [15] Let Ω be a set in the complex plane C and suppose that the mapping
Φ : C2 × ∆ → C satisfies Φ(iρ, σ; z) 6∈ Ω for z ∈ ∆, and for all real ρ, σ such that σ ≤
−n(1+ρ2)/2. If the function p(z) = 1+cnz

n+· · · is analytic in ∆ and Φ(p(z), zp′(z); z) ∈ Ω
for all z ∈ ∆, then Re p(z) > 0.

Lemma 2.7. Let 0 ≤ λ ≤ 1
3
. If p(z) = 1 + cz + · · · is analytic in ∆ and

Re

{
p(z) + zp′(z)

(1− λ) + λp(z)

}
> 0, (2.4)

then Re p(z) > 0.

Proof. Let Ω := {w : Re w > 0} and

ψ(r, s) :=
r + s

(1− λ) + λr
.

Then the given inequality (2.4) can be written as ψ(p(z), zp′(z); z) ∈ Ω. Since

Re ψ(iρ, σ; z) =
λρ2 + σ(1− λ)

(1− λ)2 + λ2ρ2
≤ (3λ− 1)ρ2 − (1− λ)

2[(1− λ)2 + λ2ρ2]
≤ 0

when ρ ∈ < and σ ≤ −1+ρ2

2
, the condition of Lemma 2.6 is satisfied. Thus Re p(z) > 0.

�

Theorem 2.4. Let 0 ≤ λ ≤ 1
3
. If f ∈ SP(α, λ), then fλ ∈ ST .

Proof. If f ∈ SP(α, λ), then

Re

{
zf ′(z)

fλ(z)

}
+ α >

∣∣∣∣∣zf ′(z)

fλ(z)
− α

∣∣∣∣∣
and hence

Re
zf ′(z)

fλ(z)
> 0. (2.5)

Let the analytic function p(z) be defined by

p(z) =
f(z)

z
(z ∈ U).

Computations show that

Re
p(z) + zp′(z)

(1− λ) + λp(z)
= Re

zf ′(z)

fλ(z)
> 0.

By Lemma 2.7, we see that Re p(z) > 0 or Re f(z)
z
> 0 in U .

In view of (2.5), it follows from Re f(z)
z
> 0 and

zf ′λ(z)

fλ(z)
=

1− λ
1− λ+ λf(z)

z

+ λ
zf ′(z)

fλ(z)
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that

Re
zf ′λ(z)

fλ(z)
> 0,

or equivalently fλ ∈ ST . �

As an immediate consequence, we have

Corollary 2.1. Let 0 ≤ λ ≤ 1
3
. If f ∈ CP(α, λ), then fλ ∈ CV.

In view of this corollary, the statement that fλ ∈ CV can be omitted from Theorem 2.2
and Theorem 2.3 if 0 ≤ λ ≤ 1/3. Also clearly that f ∈ CP(α, 1) implies f1 = f ∈ CV .
Thus Theorem 2.3 reduces to the corresponding result in [32] for λ = 1.
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