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Bohr’s inequality for the class of analytic functions mapping the unit disk into the exterior
of a compact convex body is established. In this general case, the radius obtained is |z| <

3 − 2
√

2. When the compact convex body is the closed unit disk, a sharp radius of 1/3 is
obtained.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Bohr’s inequality states that if

f (z) =
∞∑

n=0

anzn

is analytic in the unit disk U and | f (z)| < 1 for all z ∈ U , then

∞∑
n=0

∣∣anzn
∣∣ � 1 (1.1)

for all z ∈ U with |z| � 1/3. This inequality was discovered by Bohr [7] in 1914. Bohr actually obtained the inequality for
|z| � 1/6. Wiener, Riesz and Schur, independently established the inequality for |z| � 1/3 and showed that the bound 1/3
was sharp [10,15,16]. Other proofs were also given in [11–13]. Boas and Khavinson [6], and more recently Aizenberg [3–5]
extended the inequality to several complex variables.

Bohr’s inequality drew the attention of operator algebraists after Dixon [8] showed a connection between the inequality
and the characterization of Banach algebras that satisfy von Neumann’s inequality. Specifically, by using Bohr’s inequality,
Dixon constructed an example of a Banach algebra that satisfies von Neumann’s inequality but is not isomorphic to the
algebra of bounded operators on a Hilbert space. Paulsen and Singh [11] extended Bohr’s inequality to Banach algebras.

A class of analytic (harmonic) functions in the unit disk U is said to satisfy Bohr’s phenomenon if an inequality of type
(1.1) holds uniformly in |z| < ρ0, for some 0 < ρ0 � 1, and for all functions in the class.
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In this article, we shall consider the space of functions subordinated to a given analytic function. For definition and
details of subordination classes, see for example [9, Chapter 6] or [14, p. 35].

Let f and g be two analytic functions in the unit disk U . A function g is subordinate to f if there exists a Schwarz
function ϕ , analytic in U with ϕ(0) = 0 and |ϕ(z)| < 1, satisfying g = f ◦ ϕ . In particular, when f is univalent, g is
subordinate to f when g(U ) ⊂ f (U ) and g(0) = f (0) ([9, p. 190], [14, p. 35]). Consequently, when g is subordinate to f ,
then |g′(0)| � | f ′(0)|.

In this sequel the class of all functions g subordinate to a fixed function f is denoted by S( f ) and f (U ) = Ω . The
class S( f ) is said to satisfy Bohr’s phenomenon if for any g(z) = ∑∞

n=0 bnzn ∈ S( f ) and f (z) = ∑∞
n=0 anzn , there is a ρ0,

0 < ρ0 � 1, so that

∞∑
n=1

∣∣bnzn
∣∣ � d

(
f (0), ∂Ω

)
(1.2)

for |z| < ρ0. Here d( f (0), ∂Ω) denotes the Euclidean distance between f (0) and the boundary of a domain Ω . Obviously,
when Ω = U , d( f (0), ∂Ω) = 1 − | f (0)| and in this case (1.2) reduces to (1.1).

It is known that S( f ) has Bohr’s phenomenon when f is univalent. Abu-Muhanna [2] recently showed that every g(z) =∑∞
n=0 bnzn ∈ S( f ) satisfies (1.2) for |z| � ρ0 = 3 − 2

√
2 ∼= 0.17157. The radius ρ0 is sharp for the Koebe function f (z) =

z/(1 − z)2.
In particular, when f is convex, it was shown in [5] that (1.2) remains valid for ρ0 = 1/3, a result which includes (1.1)

when Ω = U .
In this article, we shall consider the case when Ω is the exterior of a compact convex body, and �Ω is the class of all

analytic functions mapping U into Ω . The measure that will be used in this instance is the spherical chordal measure given
by

λ(z1, z2) = |z1 − z2|√
1 + |z1|2

√
1 + |z2|2

.

When Ω is the exterior of the closed unit disk U , it is shown in Theorem 2.1 that (1.2) remains valid with d( f (0), ∂Ω)

replaced by λ( f (0), ∂Ω) and ρ0 = 1/3. This radius ρ0 obtained is sharp. In the general situation when Ω is the exterior
of a compact convex body, it is shown in Theorem 2.2 that (1.2) holds with d( f (0), ∂Ω) replaced by λ( f (0), ∂Ω) and
ρ0 = 3 − 2

√
2. However, the ρ0 obtained may not be sharp.

We shall require the following results.

Proposition 1.1. (See [1].) If F is an analytic univalent function mapping the unit disk U onto Ω , where the complement of Ω is
convex, and F (z) 
= 0, then any analytic function f ∈ S(F n), n = 1,2, . . . , can be expressed as

f (z) =
∫

|x|=1

F n(xz)dμ(x),

for some probability measure μ on the unit circle |x| = 1. Consequently,

f (z) =
∫

|x|=1

exp
(

F (xz)
)

dμ(x), (1.3)

for every f ∈ S(exp(F )).

We shall also require the Koebe one-quarter distortion inequalities

1 � d(0, ∂Ω) � 1

4
(1.4)

when f is univalent and normalized by f (0) = 0 and f ′(0) = 1, see for example [9, pp. 32, 45] or [14, pp. 21–22].

2. Subordination to the complement of a compact convex body

First we consider the case when Ω = cU , where cU denotes the complement of U . Then any universal covering map is
given by

exp

(
1 + ϕ(z)

1 − ϕ(z)

)
,

where ϕ(z) = (z + a)/(1 − az) is a Möbius transformation.
In this case �Ω consists of all analytic functions mapping the unit disk U into |w| > 1. Here is the main result, which

generalizes Bohr’s theorem from the interior of the disk U to its exterior.
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Theorem 2.1. If Ω = cU = {w: |w| > 1} and f (z) = a0 + ∑∞
n=1 anzn ∈ �Ω , then

λ

( ∞∑
n=0

|an||z|n, |a0|
)

� λ(a0, ∂Ω)

for |z| � 1/3. Moreover, the bound 1/3 is sharp.

As a preliminary to the proof, the class �cU is shown to be the union of subordination classes.

Proposition 2.1. Any f ∈ �cU is subordinate to some universal covering map G : U → cU , with f (0) = G(0) = a0 . In other words,
f = G ◦ ϕ , where ϕ is analytic in U , |ϕ(z)| < 1 and ϕ(0) = 0.

Proof. Since Re log f (z) > 0 in U , it is clear that log f maps U into the right-half plane. Let

b = log a0 − 1

log a0 + 1

and

ψ(z) = z + b

1 + bz
.

Then the function

W (z) = 1 + ψ(z)

1 − ψ(z)
(2.1)

maps |z| < 1 univalently into the right-half plane with W (0) = log a0. Thus

log f = W ◦ ϕ

for some analytic ϕ in U , |ϕ(z)| < 1 and ϕ(0) = 0. The result now follows by letting

G(z) = exp
(
W (z)

)
. � (2.2)

Here now is the proof of Theorem 2.1.

Proof of Theorem 2.1. Let G be as given in (2.1) and (2.2), and f be subordinate to G . Write

G(z) = a0

(
1 +

∞∑
n=1

Bnzn

)
,

f (z) = a0 +
∞∑

n=1

anzn.

Then

W (z) = 1 + ψ(z)

1 − ψ(z)
= (Re log a0)

(
1 + z

1 − z

)
+ i Im log a0 = log a0 + log |a0|2z

1 − z
,

and

G(z) = a0

(
1 +

∞∑
n=1

Bnzn

)
= a0 exp

(
log |a0|2z

1 − z

)
. (2.3)

It follows from (2.2) and (1.3) that

|an| � |a0 Bn|, for all n � 1,

and

∞∑
n=1

|an||z|n � |a0|
∞∑

n=1

|Bn||z|n. (2.4)
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Now

|a0 B1| =
∣∣G ′(0)

∣∣ = |a0|
∣∣W ′(0)

∣∣ = 2|a0|1 − |b|2
|1 − b|2 = 2|a0|(Re log a0) = |a0| log |a0|2.

Next, we show that the sequence Bn is positive and increasing. It follows from (2.3) that

B1 = log |a0|2 > 0,

B2 = log |a0|2
2

(B1 + 2) = log |a0|2
(

1

2
B1 + 1

)
= 1

2
B2

1 + B1 > B1. (2.5)

Differentiating G in (2.3) yields

G ′(z) = log |a0|2
(1 − z)2

G(z).

Hence(
1 − 2z + z2)G ′(z) = log |a0|2G(z).

This gives the recurrence relation

Bn+1 = log |a0|2 + 2n

n + 1
Bn − n − 1

n + 1
Bn−1 =

(
2 + log |a0|2 − 2

n + 1

)
Bn − n − 1

n + 1
Bn−1. (2.6)

Clearly (2.5) shows that B2 > B1. Assuming that Bn > Bn−1, it follows now from (2.6) that

Bn+1 − Bn =
(

1 + log |a0|2 − 2

n + 1

)
Bn − n − 1

n + 1
Bn−1 = log |a0|2

n + 1
Bn + n − 1

n + 1
(Bn − Bn−1) > 0.

Hence the sequence Bn is increasing. Consequently, (2.4) implies that, for |z| � ρ ,

∞∑
n=0

|an||z|n � |a0|
∞∑

n=0

Bnρ
n = |a0|exp

[
log |a0|2ρ

1 − ρ

]
= |a0||a0|

2ρ
1−ρ . (2.7)

When ρ = 1/3, then

∞∑
n=0

|an||z|n � |a0|2. (2.8)

Simple calculation shows that

λ(|a0|, |a2
0|)

λ(|a0|,1)
=

√
2|a0|√

1 + |a4
0|

< 1, (2.9)

and consequently, it follows from (2.8) and (2.9) that

λ

( ∞∑
n=0

|an||z|n, |a0|
)

� λ
(|a0|,

∣∣a2
0

∣∣) � λ
(|a0|,1

) = λ(a0, ∂Ω).

For sharpness, assume that ρ > 1/3. Then by (2.3) and (2.7),

∣∣G(ρ)
∣∣ = |a0|

∞∑
n=0

Bnρ
n = |a0||a0|

2ρ
1−ρ = |a0|

1+ρ
1−ρ .

Note that 1+ρ
1−ρ = 2 + δ with δ > 0, and 1+ρ

1−ρ → 2 as ρ → 1
3 . Also note that |a0|

2ρ
1−ρ −1

|a0|−1 → 2ρ
1−ρ = 1 + δ as |a0| → 1. Hence

λ(|a0|, |a0|
1+ρ
1−ρ )

λ(|a0|,1)
=

√
2|a0| |a0|

2ρ
1−ρ −1

|a0|−1√
1 + |a0|4+2δ

→ (1 + δ)

as |a0| → 1. Consequently, for |a0| close to 1,

λ

(
|a0|

∞∑
n=0

Bn|z|n, |a0|
)

= λ
(|a0|, |a0|

1+ρ
1−ρ

)
> λ

(|a0|,1
) = λ(a0, ∂Ω). �
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The theorem below gives a result under a more general setting than Theorem 2.1.

Theorem 2.2. Let 	 be a compact convex body with 0 ∈ 	, 1 ∈ ∂	, and Ω = c	. Suppose the universal covering map from U into Ω

has a univalent logarithmic branch that maps U into the complement of a convex set. If f (z) = a0 +∑∞
n=1 anzn ∈ �Ω satisfies a0 > 1,

then for |z| < 3 − 2
√

2 ∼= 0.17157,

λ

( ∞∑
n=0

|an||z|n, |a0|
)

� λ(a0, ∂Ω).

Proof. Let F be the universal covering map from U onto Ω with F (0) = a0. Let G(z) = log F (z) be its univalent logarithmic
branch. Then

F (z) = exp G(z),

a0 +
∞∑

n=1

Anzn = exp

(
log a0 +

∞∑
n=1

cnzn

)
.

As G is univalent,

G(z) − log a0

c1
= g ∈ S,

where S is the class consisting of normalized analytic univalent functions in U . For |z| � ρ , it follows from comparing
coefficients that

|a0| +
∞∑

n=1

|An|ρn � |a0|exp

( ∞∑
n=1

|cn|ρn

)
.

Further, since g ∈ S , then |cn| � n|c1| for each n, and

∞∑
n=1

|cn|ρn � |c1| ρ

(1 − ρ)2
.

Hence for |z| � ρ , it follows that

|a0| +
∞∑

n=1

∣∣Anzn
∣∣ � |a0|exp

( ∞∑
n=1

|cn||z|n
)

� |a0|exp

(
|c1| ρ

(1 − ρ)2

)
. (2.10)

Since 0 /∈ G(U ), then − log a0/c1 /∈ g(U ). Thus the Koebe one-quarter distortion result (1.4) implies that

|c1| � 4| log a0|,
and (2.10) yields

|a0| +
∞∑

n=1

∣∣Anzn
∣∣ � |a0|exp

(
4| log a0| ρ

(1 − ρ)2

)
.

If a0 > 1, then

|a0| +
∞∑

n=1

∣∣Anzn
∣∣ � |a0|1+ 4ρ

(1−ρ)2 . (2.11)

Simple calculations show that when ρ � 3 − 2
√

2, then 4ρ/(1 − ρ)2 � 1. Hence (2.11) becomes

|a0| +
∞∑

n=1

∣∣Anzn
∣∣ � |a0|2,

and (1.3) yields

λ

( ∞∑
n=0

|an||z|n, |a0|
)

� λ
(|a0|,

∣∣a2
0

∣∣) � λ
(|a0|,1

) = λ(a0, ∂Ω). �
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