International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 6 No. V (September, 2012), pp. 11-21

ON CERTAIN SUBCLASS OF ANALYTIC AND UNIVALENT FUNCTIONS BASED ON RUSCHEWEYH DERIVATIVES AND HADAMARD PRODUCT

R. THIRUMALAISAMY, T. V. SUDHARSAN, K. G. SUBRAMANIAN AND S. M. KHAIRNAR

Abstract

Let S denote the class of functions f(z) analytic and univalent in the unit disc $\Delta = \{z : |z| < 1\}$ and normalized by f(0) = 0 and f'(0) = 1. In this paper we introduce a new subclass of S based on Ruscheweyh derivative and Hadamard product. Coefficient estimates, extreme points, distortion theorem, closure theorem, radius of starlikeness and convexity, radii of close-to-convexity, inclusion property and integral operators are determined for functions in this subclass.

1. Introduction

Let S denote the class of function f(z) analytic and univalent in the unit disc $\Delta = \{z/|z| < 1\}$ and normalized by f(0) = 0 and f'(0) = 1. The Hadamard product of two functions $f(z) = z + \sum_{m=2}^{\infty} a_m z^m$ and $g(z) = z + \sum_{m=2}^{\infty} b_m z^m$ in S is given by $(f * g)(z) = z + \sum_{m=2}^{\infty} a_m b_m z^m.$ (1)

Key Words : Ruscheweyh, Derivatives, Hadamard product.

2000 AMS Subject Classification : 30C45.

© http://www.ascent-journals.com

Let $D^{\alpha}f(z) = \frac{z}{(1-z)^{\alpha+1}} * f(z), \alpha \ge -1$. Ruscheweyh [5] observed that $D^n f(z) = \frac{z(z^{n-1}f(z))^n}{n!}$ when $n \in N_0 = \{0, 1, 2, ...\}$. This symbol $D^n f(z), n \in N_0$, was called the n^{th} Ruscheweyh derivative of f(z).

Several subclasses of S have been introduced and studied by using either the Hadamard product or Ruscheweyh derivatives by many authors [1, 2, 3, 4, 6, 9].

Definition 1.1 : A function f of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m \tag{2}$$

is said to be in $S_n(\phi, \psi, \alpha, \lambda), 0 \leq \alpha < 1, 0 \leq \lambda < 1$ if

$$\Re\left\{\frac{\frac{D^{n+1}(f*\phi)(z)}{D^n(f*\psi)(z)}}{\lambda\frac{D^{n+1}(f*\phi)(z)}{D^n(f*\psi)(z)} + (1-\lambda)}\right\} > \alpha$$

$$(3)$$

where $\phi(z) = z + \sum_{m=2}^{\infty} \lambda_m z^m$; $\psi(z) = z + \sum_{m=2}^{\infty} \mu_m z^m$; $\lambda_m \ge 0, \mu_m \ge 0, \lambda_m \ge \mu_m$; $m = 2, 3, \dots$ and $(f * \psi)(z) \ne 0$.

Let T denote the subclass of S consisting of functions of the form $f(z) = z - \sum_{m=2}^{\infty} a_m z^m$, $a_m \geq 0$ and let $TS_n(\phi, \psi, \alpha, \lambda) = S_n(\phi, \psi, \alpha, \lambda) \cap T$. The family $TS_n(\phi, \psi, \alpha, \lambda)$ is of special interest for it contain many well-known as well as new classes of T for suitable choices of $\phi(z), \psi(z), \alpha$ and λ . We provide necessary and sufficient coefficient condition, extreme points, distortion theorem, closure theorem, radius of starlikeness and convexity, radii of close-to-convexity, inclusion property and integral operators for functions in $TS_n(\phi, \psi, \alpha, \lambda)$.

2. Coefficient Inequalities

In this section, we find a necessary and sufficient condition for a functions to be in $TS_n(\phi, \psi, \alpha, \lambda)$ and consequently calculate coefficient estimates for functions in $TS_n(\phi, \psi, \alpha, \lambda)$.

Theorem 2.1 : A function $f(z) = z - \sum_{m=2}^{\infty} a_m z^m \in TS_n(\phi, \psi, \alpha, \lambda)$ if and only if

$$\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_m |a_m| \le 1 - \alpha, \ n \in N_0$$
(4)

where $K_m = (1 - \alpha \lambda)(m + n)\lambda_m - \alpha(1 - \lambda)(n + 1)\mu_m$, ϕ and ψ are as given in Definition 1.1, and $0 \le \alpha < 1$, $0 \le \lambda < 1$.

Proof : Assume that $f(z) \in TS_n(\phi, \psi, \alpha, \lambda)$. Then

$$\Re\left\{\frac{\frac{D^{n+1}(f*\phi)(z)}{D^{n}(f*\psi)(z)}}{\lambda\frac{D^{n+1}(f*\phi)(z)}{D^{n}(f*\psi)(z)} + (1-\lambda)}\right\}$$

$$= \Re\left\{\frac{D^{n+1}(f*\phi)(z)}{\lambda D^{n+1}(f*\phi)(z) + (1-\lambda)D^{n}(f*\psi)(z)}\right\}$$

$$= \Re\left\{\frac{1 - \sum_{m=2}^{\infty} \frac{(m+n)!}{(m-1)!(n+1)!}\lambda_{m}a_{m}z^{m-1}}{1 - \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!}\left[\lambda(m+n)\lambda_{m} + (1-\lambda)(n+1)\mu_{m}\right]a_{m}z^{m-1}}\right\}$$

$$> \alpha, \ z \in \Delta.$$
(5)

Let $z \to 1-$ through real values, from (5), we obtain

$$1 - \sum_{m=2}^{\infty} \frac{(m+n)!}{(m-1)!(n+1)!} \lambda_m a_m$$

> $\alpha - \alpha \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} [\lambda(m+n)\lambda_m + (1-\lambda)(n+1)\mu_m] a_m$
or $\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_m a_m \le 1 - \alpha,$

where $K_m = (1 - \alpha \lambda)(m + n)\lambda_m - \alpha(1 - \lambda)(n + 1)\mu_m$. Conversely, assume that (4) holds.

Then we have,

$$\begin{aligned} &\left| \frac{\frac{D^{n+1}(f*\phi)(z)}{D^{n}(f*\psi)(z)}}{\lambda \frac{D^{n+1}(f*\phi)(z)}{D^{n}(f*\psi)(z)} + (1-\lambda)} - 1 \right| \\ &= \left| \frac{D^{n+1}(f*\phi)(z)}{\lambda D^{n+1}(f*\phi)(z) + (1-\lambda)D^{n}(f*\psi)(z)} - 1 \right| \\ &= \left| \frac{(1-\lambda)D^{n+1}(f*\phi)(z) - (1-\lambda)D^{n}(f*\psi)(z)}{\lambda D^{n+1}(f*\phi)(z) + (1-\lambda)D^{n}(f*\psi)(z)} \right| \\ &\leq \frac{(1-\lambda)\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} \left[(m+n)\lambda_{m} - (n+1)\mu_{m} \right] |a_{m}|}{1 - \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} \left[\lambda(m+n)\lambda_{m} + (1-\lambda)(n+1)\mu_{m} \right] |a_{m}|}. \end{aligned}$$

This shows that the value of $\frac{\frac{D^{n+1}(f*\phi)(z)}{D^n(f*\psi)(z)}}{\lambda \frac{D^{n+1}(f*\phi)(z)}{D^n(f*\psi)(z)} + (1-\lambda)}$ lies in a circle centered at w = 1 whose radius is $1 - \alpha$. This implies that $f(z) \in TS_n(\phi, \psi, \alpha, \lambda)$. **Corollary 2.1**: If $f \in TS_n(\phi, \psi, \alpha, \lambda)$, then $a_m \leq \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m}$, $m = 2, 3, \ldots$ and $n \in N_0$. The equality holds, for each m, for functions of the form $f_m(z) = z - \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m} z^m$, $z \in \Delta$.

Remark 2.1 :

- 1. For $0 \le \alpha < 1$, $\lambda = 0$, $TS_n(\phi, \psi, \alpha, \lambda) = S_p^n(\phi, \psi, \alpha, \beta)$ with $\beta = 0$ [9].
- $\begin{array}{l} \text{2. For } 0\leq \alpha <1,\, \lambda=0,\, \phi(z)=\psi(z)=\frac{z}{1-z} \text{ and } n=0,\\ TS_n(\phi,\psi,\frac{\alpha+1}{2},\lambda)=TS_p\left(\alpha\right) \, [8]. \end{array}$
- 3. For $0 \leq \alpha < 1$, $\lambda = 0$, $\phi(z) = \psi(z) = \frac{z}{1-z}$ and n = 0, $TS_n(\phi, \psi, \frac{\alpha+1}{2}, \lambda) = TS_p^g(\alpha)$ [10].
- 4. For $0 \le \alpha < 1$, $\lambda = 0$, n = 0, $\phi(z) = \psi(z) = \frac{z}{1-z}$; $TS_n(\phi, \psi, \alpha, \lambda) = T^*(\alpha)$ [7].

3. Distortion Theorem

Theorem 3.1: Let $f \in TS_n(\phi, \psi, \alpha, \lambda)$ and $K_m = (\lambda + 1)(m + n)\lambda_m - (n + 1)(\alpha + \lambda)\mu_m$, m = 2, 3, ..., then

$$r - \frac{1 - \alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}r^2 \le |f(z)| \le r + \frac{1 - \alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}r^2,$$

|z| = r < 1. The result is sharp for $f(z) = z + \frac{1-\alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}r^2$.

Proof: Let |z| = r. For $f(z) = z - \sum_{m=2}^{\infty} a_m z^m$, we have

$$|f(z)| \leq |z| + \sum_{m=2}^{\infty} |a_m| |z|^m$$
$$\leq r + \sum_{m=2}^{\infty} a_m r^m$$

$$\leq r + \sum_{m=2}^{\infty} a_m r^2$$
$$\leq r + r^2 \sum_{m=2}^{\infty} a_m.$$

Since

$$\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\} \le \frac{(m+n-1)!}{(m-1)!(n+1)!}K_m$$

we have

$$\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}\sum_{m=2}^{\infty}a_m \le \sum_{m=2}^{\infty}\frac{(m+n-1)!}{(m-1)!(n+1)!} \le 1-\alpha$$

or

$$\sum_{m=2}^{\infty} a_m \le \frac{1-\alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}$$

This gives $|f(z)| \le r + \frac{1-\alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}r^2$. Similarly, we have $|f(z)| \ge r - \frac{1-\alpha}{\min\left\{\frac{(m+n-1)!}{(m-1)!(n+1)!}K_m\right\}}r^2$.

4. Closure Theorem

Theorem 4.1: The class $TS_n(\phi, \psi, \alpha, \lambda)$ is closed under convex linear combination. **Proof**: Let $f, g \in TS_n(\phi, \psi, \alpha, \lambda)$ and let $f(z) = z - \sum_{m=2}^{\infty} a_m z^m$,

 $g(z) = z - \sum_{m=2}^{\infty} b_m z^m, a_m \ge 0, b_m \ge 0$. For μ such that $0 \le \mu \le 1$, it is sufficient to show that the function h, defined by $h(z) = (1 - \mu)f(z) + \mu g(z), z \in \Delta$ belongs to $TS_n(\phi, \psi, \alpha, \lambda)$.

Since $h(z) = z - \sum_{m=2}^{\infty} [(1-\mu)a_m + \mu b_m]z^m$, applying Theorem 2.1, we obtain,

$$\sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} [(1-\mu)a_m + \mu b_m]$$

$$\leq (1-\mu) \sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} a_m + \mu \sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} b_m$$

$$\leq (1-\mu)(1-\alpha) + \mu(1-\alpha)$$

$$= 1-\alpha.$$

This implies that $h \in TS_n(\phi, \psi, \alpha, \lambda)$.

We now determine the extreme points of $TS_n(\phi, \psi, \alpha, \lambda)$. **Theorem 4.2**: Let $f_1(z) = z$, $f_m(z) = z - \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m} z^m$, $m = 2, 3, ..., z \in \Delta$

and $n \in N_0$. Then $f \in TS_n(\phi, \psi, \alpha, \lambda)$ if and only if it can be expressed as

$$f(z) = \sum_{m=1}^{\infty} \rho_m f_m(z), \ \rho_m \ge 0 \text{ and } \sum_{m=1}^{\infty} \rho_m = 1.$$
Proof: Suppose that

Proof : Suppose that

$$f(z) = \sum_{m=1}^{\infty} \rho_m f_m(z)$$

= $z - \sum_{m=1}^{\infty} \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m} \rho_m z^m$
= $z - \sum_{m=2}^{\infty} t_m z^m.$

Therefore $f \in TS_n(\phi, \psi, \alpha, \lambda)$, since $\sum_{m=2}^{\infty} \frac{(m+n-1)!K_m t_m}{(m-1)!(n+1)!(1-\alpha)} = \sum_{m=2}^{\infty} \rho_m = 1 - \rho_1 < 1.$ Conversely, If $f \in TS_n(\phi, \psi, \alpha, \lambda)$, by Corollary 2.1, we have $a_m \leq \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m}$, $m = 2, 3, \ldots$ We may set $\rho_m = \frac{(m+n-1)!K_m}{(m-1)!(n+1)!(1-\alpha)}a_m$, $m = 2, 3, \ldots$, $n \in N_0$ and $\rho_1 = 1 - \sum_{m=2}^{\infty} \rho_m.$ Then

$$f(z) = z - \sum_{m=2}^{\infty} a_m z^m$$

= $z - \sum_{m=2}^{\infty} \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m} \rho_m z^m$
= $z - \sum_{m=2}^{\infty} \rho_m [z - f_m(z)]$
= $\left(1 - \sum_{m=2}^{\infty} \rho_m\right)(z) + \sum_{m=2}^{\infty} \rho_m f_m(z)$
= $\sum_{m=1}^{\infty} \rho_m f_m(z).$

Corollary 4.1: The extreme points of $TS_n(\phi, \psi, \alpha, \lambda)$ are the functions $f_m(z)$, $m = 1, 2, \ldots$

5. Radius of Starlikeness and Convexity

Now, we determine the largest disc in which functions in $TS_n(\phi, \psi, \alpha, \lambda)$ are starlike and convex of order δ ($0 \le \delta < 1$) in Δ for all admissible choice of $\phi(z), \psi(z), \alpha, \lambda$ and n. **Theorem 5.1**: If $f \in TS_n(\phi, \psi, \alpha, \lambda)$, then f is starlike of order δ , $0 \le \delta < 1$ for $|z| < r_1$, where $r_1 = \inf_m \left\{ \frac{(m+n-1)!(1-\delta)K_m}{(m-1)!(n+1)!(m-\delta)(1-\alpha)} \right\}^{\frac{1}{m-1}}$, $m = 2, 3, \ldots$ and $n \in N_0$. **Proof**: For $0 \le \delta < 1$, it is sufficient to show that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < 1 - \delta.$$

We have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{m=2}^{\infty} (m-1)a_m |z|^{m-1}}{1 - \sum_{m=2}^{\infty} a_m |z|^{m-1}} < 1 - \delta$$

or
$$\sum_{m=2}^{\infty} \frac{m - \delta}{1 - \delta} a_m |z|^{m-1} < 1.$$
 (6)

It is easy to see that (6) holds if

$$|z|^{m-1} \le \frac{(m+n-1)!(1-\delta)K_m}{(m-1)!(n+1)!(m-\delta)(1-\alpha)}.$$

This completes the proof.

Upon noting the fact that f is convex if and only if zf' is starlike, we obtain

Theorem 5.2: If $f \in TS_n(\phi, \psi, \alpha, \lambda)$, then f is convex of order δ , $0 \leq \delta < 1$ for $|z| < r_2$,

$$r_2 = \inf_{m} \left\{ \frac{(m+n-1)!(1-\delta)K_m}{m!(n+1)!(m-\delta)(1-\alpha)} \right\}^{\frac{1}{m-1}}, m = 2, 3, \dots \text{ and } n \in N_0.$$

6. Radii of Close-to-convexity

Theorem 6.1: Let the function $f(z) = z - \sum_{m=2}^{\infty} a_m z^m$, $(a_m \ge 0)$ be in the class $TS_n(\phi, \psi, \alpha, \lambda)$. Then f(z) is close-to-convex of order δ $(0 \le \delta < 1)$ in $|z| < r_1(n, \lambda, \alpha, \delta)$, where

$$r_1(n,\lambda,\alpha,\delta) = Inf_m \left\{ \frac{(m+n-1)!(1-\delta)K_m}{(m-1)!(n+1)!(m-\delta)(1-\alpha)} \right\}^{\frac{1}{m-1}},$$

 $m = 2, 3, \ldots$ and $n \in N_0$.

The result is sharp with the extremal function f(z) given by

$$f(z) = z - \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_m} z^m, \ z \in \Delta.$$

Proof: It is sufficient to show that $|f'(z) - 1| \le 1 - \delta$ $(0 \le \delta < 1), |z| < r_1.$ We have $|f'(z) - 1| - \left| \sum_{m=2}^{\infty} m a_m z^{m-1} \right| \le \sum_{m=2}^{\infty} m a_m |z|^{m-1}.$ Thus

$$|f'(z) - 1| \le 1 - \delta \text{ if } \sum_{m=2}^{\infty} \left(\frac{m}{1 - \delta}\right) a_m |z|^{m-1} \le 1.$$
 (7)

But Theorem 2.1 confirms that

$$\sum_{m=2}^{\infty} \frac{(m+n-1)! K_m}{(m-1)! (n+1)! (1-\alpha)} a_m \le 1.$$
(8)

Hence (7) will be true if $\frac{m|z|^{m-1}}{1-\delta} \le \frac{(m+n-1)!K_m}{(m-1)!(n+1)!(1-\alpha)}$ or if

$$|z| \le \left[\frac{(m+n-1)!K_m}{m!(n+1)!(1-\alpha)}\right]^{1/m-1} \quad (m \ge 2).$$
(9)

The theorem now follows easily from (9).

7. Inclusion Property of the Class $TS_n(\phi, \psi, \alpha, \lambda)$

Theorem 7.1 : Let $0 \le \alpha < 1$, $0 \le \lambda_1 \le \lambda_2$ and $n \in N_0$. Then $TS_n(\phi, \psi, \alpha, \lambda_1) \subseteq TS_n(\phi, \psi, \alpha, \lambda_2).$ **Proof** : Let $f(z) \in TS_n(\phi, \psi, \alpha, \lambda_1)$. Then by Theorem 2.1, we have,

$$\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_m |a_m| \le 1-\alpha$$

where $K_m = (1-\alpha\lambda_1)(m+n)\lambda_m - \alpha(1-\lambda_1)(n+1)\mu_m$
 $\ge (1-\alpha\lambda_2)(m+n)\lambda_m - \alpha(1-\lambda_2)(n+1)\mu_m$
 $= K'_m.$

Therefore

$$\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K'_m |a_m| \le \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_m |a_m| \le 1 - \alpha.$$

This shows that $f(z) \in TS_n(\phi, \psi, \alpha, \lambda_2)$ and hence $TS_n(\phi, \psi, \alpha, \lambda_1) \subseteq S_n(\phi, \psi, \alpha, \lambda_2)$.

8. Integral Operators

Theorem 8.1: Let the function $f(z) = z - \sum_{m=2}^{\infty} a_m z^m \in TS_n(\phi, \psi, \alpha, \lambda)$ and let c be a real number such that c > -1. Then the function F(z) defined by

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
(10)

also belongs to the class $TS_n(\phi, \psi, \alpha, \lambda)$.

Proof: From the representation of F(z), it follows that

$$F(z) = z - \sum_{m=2}^{\infty} b_m z^m,$$
(11)

where
$$b_m = \left(\frac{c+1}{c+m}\right) a_m.$$
 (12)

Therefore,

$$\sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} b_m = \sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} \left(\frac{c+1}{c+m}\right) a_m$$

$$\leq \sum_{m=2}^{\infty} \frac{(m+n-1)!K_m}{(m-1)!(n+1)!} a_m$$

$$\leq 1-\alpha, \text{ since } f(z) \in TS_n(\phi, \psi, \alpha, \lambda).$$

Hence by theorem 2.1, $F(z) \in TS_n(\phi, \psi, \alpha, \lambda)$.

Theorem 8.2: Let c be a real number such that c > -1. If $F(z) \in TS_n(\phi, \psi, \alpha, \lambda)$, then the function f(z) defined by (10) is univalent in $|z| < R^*$, where

$$R^* = \inf_{m} \left\{ \frac{(c+1)(m+n-1)!K_m}{(c+k)(1-\alpha)(m-1)!(n+1)!} \right\}^{\frac{1}{m-1}}, \ (m \ge 2).$$
(13)

The result is sharp.

Proof: Let $F(z) = z - \sum_{m=2}^{\infty} a_m z^m \ (a_m \ge 0).$ It follows from (10) that

$$f(z) = \frac{z^{1-c} [z^c F(z)]'}{c+1} = z - \sum_{m=2}^{\infty} \left(\frac{c+k}{c+1}\right) a_m z^m \ (c > -1).$$
(14)

In order to obtain the required result, it suffices to show that |f'(z) - 1| < 1 in $|z| < R^*$. Now

$$|f'(z) - 1| \le \sum_{m=2}^{\infty} \frac{m(c+m)}{c+1} a_m |z|^{m-1}.$$

Thus |f'(z) - 1| < 1 if

$$\sum_{m=2}^{\infty} \frac{m(c+m)}{c+1} a_m |z|^{m-1} < 1.$$
(15)

Hence by using (8), (15) will be satisfied if

$$\frac{m(c+m)}{c+1}|z|^{m-1} \le \frac{(m+n-1)!K_m}{(m-1)!(n+1)!(1-\alpha)}, \quad m \ge 2$$

or if

$$|z| \le \left[\frac{(c+1)(m+n-1)!K_m}{m!(n+1)!(1-\alpha)(c+m)}\right]^{1/m-1} \ (m \ge 2).$$

Therefore f(z) is univalent in $|z| < R^*$. Sharpness follows if we take $f(z) = z - \frac{(1-\alpha)(c+m)m!(n+1)!}{(c+1)(m+n-1)!K_m} z^m, m \ge 2.$

References

- Ahuja, O. P. and Silverman, H., Convolutions of prestarlike functions, Internat. J. Math. Math. Sci., 6(1) (1983), 59-68.
- [2] Khairnar, S. M. and More, M., Properties of a class of analytic and univalent functions using Ruscheweyh derivative, Int. J. Contemp. Math. Sciences, 3(20) (2008), 967-976.
- [3] Mogra, M. L., Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, Internat. J. Math. Math. Sci., 22(4) (1999), 795-805.
- [4] Owa, S. and Ahuja, O. P., A class of functions defined by using Hadamard product, Hokkaido Math. J., 15(2) (1986), 217-232.
- [5] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [6] Shams, S., Kulkarni, S. R. and Jahangiri, J. M., On a class of univalent functions defined by Ruscheweyh derivative, Kyungpook Math. J., 43 (2003), 579-585.
- [7] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
- [8] Subramanian, K. G., Sudharsan, T. V., Balasubrahmanyam, P. and Silverman, H., Classes of uniformly starlike functions, Publ. Math, Debrecen, 53(3-4) (1998), 309-315.

- [9] Sudharsan, T. V., Thirumalaisamy, R., Subramanian, K. G. and Adolf Stephen, B., A class of analytic functions based on Ruscheweyh derivative, International J. of Math. Sci. & Engg. Appls. (IJMSEA), 3(II) (2009), 103-108.
- [10] Thirumalaisamy, R., Sudharsan, T. V., Subramanian, K. G. and Silverman, H., On functions with negative coefficients based on convolution, Surveys in Mathematics and its Applications, 5 (2010), 285-295.

R. Thirumalaisamy,

Department of Mathematics, Govt. Arts College, Nandanam, Chennai - 600 035, India E-mail: rthirumalai64@gmail.com

T. V. Sudharsan,

Department of Mathematics, SIVET College, Gowrivakkam, Chennai - 601 302, India E-mail: tvsudharsan@rediffmail.com

K. G. Subramanian,

School of Computer Sciences, Universitie Sains, Malaysia 11800 Penang, Malaysia E-mail: kgsmani1948@gmail.com

S. M. Khairnar,

Department of Engineering Sciences, Maharastra Academy of Engineering Alandi - 412 105, Pune (M.S.), India E-mail: smhairnar2007@gmail.com