International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 6 No. V (September, 2012), pp. 11-21

ON CERTAIN SUBCLASS OF ANALYTIC AND UNIVALENT FUNCTIONS BASED ON RUSCHEWEYH DERIVATIVES AND HADAMARD PRODUCT

R. THIRUMALAISAMY, T. V. SUDHARSAN, K. G. SUBRAMANIAN AND S. M. KHAIRNAR

Abstract

Let S denote the class of functions $f(z)$ analytic and univalent in the unit disc $\Delta=\{z:|z|<1\}$ and normalized by $f(0)=0$ and $f^{\prime}(0)=1$. In this paper we introduce a new subclass of S based on Ruscheweyh derivative and Hadamard product. Coefficient estimates, extreme points, distortion theorem, closure theorem, radius of starlikeness and convexity, radii of close-to-convexity, inclusion property and integral operators are determined for functions in this subclass.

1. Introduction

Let S denote the class of function $f(z)$ analytic and univalent in the unit disc $\Delta=\{z /|z|<1\}$ and normalized by $f(0)=0$ and $f^{\prime}(0)=1$. The Hadamard product of two functions $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$ and $g(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}$ in S is given by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{m=2}^{\infty} a_{m} b_{m} z^{m} \tag{1}
\end{equation*}
$$

Key Words : Ruscheweyh, Derivatives, Hadamard product.
2000 AMS Subject Classification : 30C45.
(c) http: //www.ascent-journals.com

Let $D^{\alpha} f(z)=\frac{z}{(1-z)^{\alpha+1}} * f(z), \alpha \geq-1$. Ruscheweyh [5] observed that $D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{n}}{n!}$ when $n \in N_{0}=\{0,1,2, \ldots\}$. This symbol $D^{n} f(z), n \in N_{0}$, was called the $n^{\text {th }}$ Ruscheweyh derivative of $f(z)$.
Several subclasses of S have been introduced and studied by using either the Hadamard product or Ruscheweyh derivatives by many authors $[1,2,3,4,6,9]$.
Definition 1.1: A function f of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{2}
\end{equation*}
$$

is said to be in $S_{n}(\phi, \psi, \alpha, \lambda), 0 \leq \alpha<1,0 \leq \lambda<1$ if

$$
\begin{equation*}
\Re\left\{\frac{\frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}}{\lambda \frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}+(1-\lambda)}\right\}>\alpha \tag{3}
\end{equation*}
$$

where $\phi(z)=z+\sum_{m=2}^{\infty} \lambda_{m} z^{m} ; \psi(z)=z+\sum_{m=2}^{\infty} \mu_{m} z^{m} ; \lambda_{m} \geq 0, \mu_{m} \geq 0, \lambda_{m} \geq \mu_{m} ;$ $m=2,3, \ldots$ and $(f * \psi)(z) \neq 0$.
Let T denote the subclass of S consisting of functions of the form $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m}$, $a_{m} \geq 0$ and let $T S_{n}(\phi, \psi, \alpha, \lambda)=S_{n}(\phi, \psi, \alpha, \lambda) \cap T$. The family $T S_{n}(\phi, \psi, \alpha, \lambda)$ is of special interest for it contain many well-known as well as new classes of T for suitable choices of $\phi(z), \psi(z), \alpha$ and λ. We provide necessary and sufficient coefficient condition, extreme points, distortion theorem, closure theorem, radius of starlikeness and convexity, radii of close-to-convexity, inclusion property and integral operators for functions in $T S_{n}(\phi, \psi, \alpha, \lambda)$.

2. Coefficient Inequalities

In this section, we find a necessary and sufficient condition for a functions to be in $T S_{n}(\phi, \psi, \alpha, \lambda)$ and consequently calculate coefficient estimates for functions in $T S_{n}(\phi, \psi, \alpha, \lambda)$.
Theorem 2.1 : A function $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m} \in T S_{n}(\phi, \psi, \alpha, \lambda)$ if and only if

$$
\begin{equation*}
\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\left|a_{m}\right| \leq 1-\alpha, n \in N_{0} \tag{4}
\end{equation*}
$$

where $K_{m}=(1-\alpha \lambda)(m+n) \lambda_{m}-\alpha(1-\lambda)(n+1) \mu_{m}, \phi$ and ψ are as given in Definition 1.1, and $0 \leq \alpha<1,0 \leq \lambda<1$.

Proof : Assume that $f(z) \in T S_{n}(\phi, \psi, \alpha, \lambda)$. Then

$$
\begin{align*}
& \Re\left\{\frac{\frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}}{\lambda \frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}+(1-\lambda)}\right\} \\
& =\Re\left\{\frac{D^{n+1}(f * \phi)(z)}{\lambda D^{n+1}(f * \phi)(z)+(1-\lambda) D^{n}(f * \psi)(z)}\right\} \\
& =\Re\left\{\frac{1-\sum_{m=2}^{\infty} \frac{(m+n)!}{(m-1)!(n+1)!} \lambda_{m} a_{m} z^{m-1}}{1-\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!}\left[\lambda(m+n) \lambda_{m}+(1-\lambda)(n+1) \mu_{m}\right] a_{m} z^{m-1}}\right\} \\
& >\alpha, z \in \Delta . \tag{5}
\end{align*}
$$

Let $z \rightarrow 1-$ through real values, from (5), we obtain

$$
\begin{aligned}
& 1-\sum_{m=2}^{\infty} \frac{(m+n)!}{(m-1)!(n+1)!} \lambda_{m} a_{m} \\
& \quad>\alpha-\alpha \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!}\left[\lambda(m+n) \lambda_{m}+(1-\lambda)(n+1) \mu_{m}\right] a_{m} \\
& \quad \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m} a_{m} \leq 1-\alpha
\end{aligned}
$$

where $K_{m}=(1-\alpha \lambda)(m+n) \lambda_{m}-\alpha(1-\lambda)(n+1) \mu_{m}$.
Conversely, assume that (4) holds.
Then we have,

$$
\begin{aligned}
& \left|\frac{\frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}}{\lambda \frac{D^{n+1}(f * \phi)(z)}{D^{n}(f * \psi)(z)}+(1-\lambda)}-1\right| \\
& =\left|\frac{D^{n+1}(f * \phi)(z)}{\lambda D^{n+1}(f * \phi)(z)+(1-\lambda) D^{n}(f * \psi)(z)}-1\right| \\
& =\left|\frac{(1-\lambda) D^{n+1}(f * \phi)(z)-(1-\lambda) D^{n}(f * \psi)(z)}{\lambda D^{n+1}(f * \phi)(z)+(1-\lambda) D^{n}(f * \psi)(z)}\right| \\
& \leq \frac{(1-\lambda) \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!}\left[(m+n) \lambda_{m}-(n+1) \mu_{m}\right]\left|a_{m}\right|}{1-\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!}\left[\lambda(m+n) \lambda_{m}+(1-\lambda)(n+1) \mu_{m}\right]\left|a_{m}\right|}
\end{aligned}
$$

This shows that the value of $\frac{\frac{D^{n+1}(f * \phi)(z)}{D^{n}(f+\psi)(z)}}{\lambda \frac{D^{n+1}(f \neq)(z)}{\left.D^{n}(f * f \psi)(z)\right)}+(1-\lambda)}$ lies in a circle centered at $w=1$ whose radius is $1-\alpha$. This implies that $f(z) \in T S_{n}(\phi, \psi, \alpha, \lambda)$.
Corollary 2.1: If $f \in T S_{n}(\phi, \psi, \alpha, \lambda), \quad$ then $\quad a_{m} \leq \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}}$, $m=2,3, \ldots$ and $n \in N_{0}$. The equality holds, for each m, for functions of the form $f_{m}(z)=z-\frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}} z^{m}, z \in \Delta$.

Remark 2.1 :

1. For $0 \leq \alpha<1, \lambda=0$,

$$
T S_{n}(\phi, \psi, \alpha, \lambda)=S_{p}^{n}(\phi, \psi, \alpha, \beta) \text { with } \beta=0[9] .
$$

2. For $0 \leq \alpha<1, \lambda=0, \phi(z)=\psi(z)=\frac{z}{1-z}$ and $n=0$,

$$
T S_{n}\left(\phi, \psi, \frac{\alpha+1}{2}, \lambda\right)=T S_{p}(\alpha)[8] .
$$

3. For $0 \leq \alpha<1, \lambda=0, \phi(z)=\psi(z)=\frac{z}{1-z}$ and $n=0$,

$$
T S_{n}\left(\phi, \psi, \frac{\alpha+1}{2}, \lambda\right)=T S_{p}^{g}(\alpha)[10] .
$$

4. For $0 \leq \alpha<1, \lambda=0, n=0, \phi(z)=\psi(z)=\frac{z}{1-z}$;

$$
T S_{n}(\phi, \psi, \alpha, \lambda)=T^{*}(\alpha)[7] .
$$

3. Distortion Theorem

Theorem 3.1: Let $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$
and $K_{m}=(\lambda+1)(m+n) \lambda_{m}-(n+1)(\alpha+\lambda) \mu_{m}, m=2,3, \ldots$, then

$$
r-\frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}} r^{2} \leq|f(z)| \leq r+\frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}} r^{2}
$$

$|z|=r<1$. The result is sharp for $f(z)=z+\frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}} r^{2}$.
Proof : Let $|z|=r$. For $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m}$, we have

$$
\begin{aligned}
|f(z)| & \leq|z|+\sum_{m=2}^{\infty}\left|a_{m} \| z\right|^{m} \\
& \leq r+\sum_{m=2}^{\infty} a_{m} r^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \leq r+\sum_{m=2}^{\infty} a_{m} r^{2} \\
& \leq r+r^{2} \sum_{m=2}^{\infty} a_{m} .
\end{aligned}
$$

Since

$$
\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\} \leq \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}
$$

we have

$$
\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\} \sum_{m=2}^{\infty} a_{m} \leq \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} \leq 1-\alpha
$$

or

$$
\sum_{m=2}^{\infty} a_{m} \leq \frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}}
$$

This gives $|f(z)| \leq r+\frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}} r^{2}$.
Similarly, we have $|f(z)| \geq r-\frac{1-\alpha}{\min \left\{\frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\right\}} r^{2}$.

4. Closure Theorem

Theorem 4.1: The class $T S_{n}(\phi, \psi, \alpha, \lambda)$ is closed under convex linear combination.
Proof: Let $f, g \in T S_{n}(\phi, \psi, \alpha, \lambda)$ and let $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m}$,
$g(z)=z-\sum_{m=2}^{\infty} b_{m} z^{m}, a_{m} \geq 0, b_{m} \geq 0$. For μ such that $0 \leq \mu \leq 1$, it is sufficient to show that the function h, defined by $h(z)=(1-\mu) f(z)+\mu g(z), z \in \Delta$ belongs to $T S_{n}(\phi, \psi, \alpha, \lambda)$.
Since $h(z)=z-\sum_{m=2}^{\infty}\left[(1-\mu) a_{m}+\mu b_{m}\right] z^{m}$, applying Theorem 2.1, we obtain,

$$
\begin{aligned}
& \sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!}\left[(1-\mu) a_{m}+\mu b_{m}\right] \\
& \quad \leq(1-\mu) \sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!} a_{m}+\mu \sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!} b_{m} \\
& \quad \leq(1-\mu)(1-\alpha)+\mu(1-\alpha) \\
& \quad=1-\alpha
\end{aligned}
$$

This implies that $h \in T S_{n}(\phi, \psi, \alpha, \lambda)$.
We now determine the extreme points of $T S_{n}(\phi, \psi, \alpha, \lambda)$.
Theorem 4.2: Let $f_{1}(z)=z, f_{m}(z)=z-\frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}} z^{m}, m=2,3, \ldots, z \in \Delta$ and $n \in N_{0}$. Then $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$ if and only if it can be expressed as $f(z)=\sum_{m=1}^{\infty} \rho_{m} f_{m}(z), \rho_{m} \geq 0$ and $\sum_{m=1}^{\infty} \rho_{m}=1$.
Proof: Suppose that

$$
\begin{aligned}
f(z) & =\sum_{m=1}^{\infty} \rho_{m} f_{m}(z) \\
& =z-\sum \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}} \rho_{m} z^{m} \\
& =z-\sum_{m=2}^{\infty} t_{m} z^{m} .
\end{aligned}
$$

Therefore $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$, since
$\sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m} t_{m}}{(m-1)!(n+1)!(1-\alpha)}=\sum_{m=2}^{\infty} \rho_{m}=1-\rho_{1}<1$.
Conversely, If $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$, by Corollary 2.1, we have $a_{m} \leq \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}}$, $m=2,3, \ldots$ We may set $\rho_{m}=\frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!(1-\alpha)} a_{m}, m=2,3, \ldots, n \in N_{0}$ and $\rho_{1}=1-\sum_{m=2}^{\infty} \rho_{m}$.
Then

$$
\begin{aligned}
f(z) & =z-\sum_{m=2}^{\infty} a_{m} z^{m} \\
& =z-\sum_{m=2}^{\infty} \frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}} \rho_{m} z^{m} \\
& =z-\sum_{m=2}^{\infty} \rho_{m}\left[z-f_{m}(z)\right] \\
& =\left(1-\sum_{m=2}^{\infty} \rho_{m}\right)(z)+\sum_{m=2}^{\infty} \rho_{m} f_{m}(z) \\
& =\sum_{m=1}^{\infty} \rho_{m} f_{m}(z) .
\end{aligned}
$$

Corollary 4.1: The extreme points of $T S_{n}(\phi, \psi, \alpha, \lambda)$ are the functions $f_{m}(z)$, $m=1,2, \ldots$.

ON CERTAIN SUBCLASS OF ANALYTIC AND UNIVALENT...

5. Radius of Starlikeness and Convexity

Now, we determine the largest disc in which functions in $T S_{n}(\phi, \psi, \alpha, \lambda)$ are starlike and convex of order $\delta(0 \leq \delta<1)$ in Δ for all admissible choice of $\phi(z), \psi(z), \alpha, \lambda$ and n.
Theorem 5.1: If $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$, then f is starlike of order $\delta, 0 \leq \delta<1$ for $|z|<r_{1}$, where $r_{1}=\inf _{m}\left\{\frac{(m+n-1)!(1-\delta) K_{m}}{(m-1)!(n+1)!(m-\delta)(1-\alpha)}\right\}^{\frac{1}{m-1}}, m=2,3, \ldots$ and $n \in N_{0}$.
Proof : For $0 \leq \delta<1_{1}^{m}$, it is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\delta .
$$

We have

$$
\begin{align*}
& \left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \\
& \frac{\sum_{m=2}^{\infty}(m-1) a_{m}|z|^{m-1}}{1-\sum_{m=2}^{\infty} a_{m}|z|^{m-1}}<1-\delta \tag{6}\\
\quad \text { or } \quad & \sum_{m=2}^{\infty} \frac{m-\delta}{1-\delta} a_{m}|z|^{m-1}<1 .
\end{align*}
$$

It is easy to see that (6) holds if

$$
|z|^{m-1} \leq \frac{(m+n-1)!(1-\delta) K_{m}}{(m-1)!(n+1)!(m-\delta)(1-\alpha)}
$$

This completes the proof.
Upon noting the fact that f is convex if and only if $z f^{\prime}$ is starlike, we obtain
Theorem 5.2: If $f \in T S_{n}(\phi, \psi, \alpha, \lambda)$, then f is convex of order $\delta, 0 \leq \delta<1$ for $|z|<r_{2}$,
$r_{2}=\inf _{m}\left\{\frac{(m+n-1)!(1-\delta) K_{m}}{m!(n+1)!(m-\delta)(1-\alpha)}\right\}^{\frac{1}{m-1}}, m=2,3, \ldots$ and $n \in N_{0}$.

6. Radii of Close-to-convexity

Theorem 6.1: Let the function $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m},\left(a_{m} \geq 0\right)$ be in the class $T S_{n}(\phi, \psi, \alpha, \lambda)$. Then $f(z)$ is close-to-convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{1}(n, \lambda, \alpha, \delta)$, where

$$
r_{1}(n, \lambda, \alpha, \delta)=\underset{m}{\operatorname{Inf}}\left\{\frac{(m+n-1)!(1-\delta) K_{m}}{(m-1)!(n+1)!(m-\delta)(1-\alpha)}\right\}^{\frac{1}{m-1}},
$$

$m=2,3, \ldots$ and $n \in N_{0}$.
The result is sharp with the extremal function $f(z)$ given by

$$
f(z)=z-\frac{(m-1)!(n+1)!(1-\alpha)}{(m+n-1)!K_{m}} z^{m}, z \in \Delta .
$$

Proof : It is sufficient to show that $\left|f^{\prime}(z)-1\right| \leq 1-\delta(0 \leq \delta<1),|z|<r_{1}$.
We have $\left|f^{\prime}(z)-1\right|-\left|\sum_{m=2}^{\infty} m a_{m} z^{m-1}\right| \leq \sum_{m=2}^{\infty} m a_{m}|z|^{m-1}$.
Thus

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right| \leq 1-\delta \text { if } \sum_{m=2}^{\infty}\left(\frac{m}{1-\delta}\right) a_{m}|z|^{m-1} \leq 1 \tag{7}
\end{equation*}
$$

But Theorem 2.1 confirms that

$$
\begin{equation*}
\sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!(1-\alpha)} a_{m} \leq 1 \tag{8}
\end{equation*}
$$

Hence (7) will be true if $\frac{m|z|^{m-1}}{1-\delta} \leq \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!(1-\alpha)}$
or if

$$
\begin{equation*}
|z| \leq\left[\frac{(m+n-1)!K_{m}}{m!(n+1)!(1-\alpha)}\right]^{1 / m-1} \quad(m \geq 2) \tag{9}
\end{equation*}
$$

The theorem now follows easily from (9).

7. Inclusion Property of the Class $T S_{n}(\phi, \psi, \alpha, \lambda)$

Theorem 7.1: Let $0 \leq \alpha<1,0 \leq \lambda_{1} \leq \lambda_{2}$ and $n \in N_{0}$.
Then $T S_{n}\left(\phi, \psi, \alpha, \lambda_{1}\right) \subseteq T S_{n}\left(\phi, \psi, \alpha, \lambda_{2}\right)$.
Proof: Let $f(z) \in T S_{n}\left(\phi, \psi, \alpha, \lambda_{1}\right)$.
Then by Theorem 2.1, we have,

$$
\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\left|a_{m}\right| \leq 1-\alpha
$$

$$
\text { where } \begin{aligned}
K_{m} & =\left(1-\alpha \lambda_{1}\right)(m+n) \lambda_{m}-\alpha\left(1-\lambda_{1}\right)(n+1) \mu_{m} \\
& \geq\left(1-\alpha \lambda_{2}\right)(m+n) \lambda_{m}-\alpha\left(1-\lambda_{2}\right)(n+1) \mu_{m} \\
& =K_{m}^{\prime} .
\end{aligned}
$$

Therefore

$$
\sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}^{\prime}\left|a_{m}\right| \leq \sum_{m=2}^{\infty} \frac{(m+n-1)!}{(m-1)!(n+1)!} K_{m}\left|a_{m}\right| \leq 1-\alpha
$$

This shows that $f(z) \in T S_{n}\left(\phi, \psi, \alpha, \lambda_{2}\right)$ and hence $T S_{n}\left(\phi, \psi, \alpha, \lambda_{1}\right) \subseteq S_{n}\left(\phi, \psi, \alpha, \lambda_{2}\right)$.

8. Integral Operators

Theorem 8.1: Let the function $f(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m} \in T S_{n}(\phi, \psi, \alpha, \lambda)$ and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{10}
\end{equation*}
$$

also belongs to the class $T S_{n}(\phi, \psi, \alpha, \lambda)$.
Proof: From the representation of $F(z)$, it follows that

$$
\begin{gather*}
\qquad F(z)=z-\sum_{m=2}^{\infty} b_{m} z^{m} \tag{11}\\
\text { where } b_{m}=\left(\frac{c+1}{c+m}\right) a_{m} \tag{12}
\end{gather*}
$$

Therefore,

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!} b_{m} & =\sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!}\left(\frac{c+1}{c+m}\right) a_{m} \\
& \leq \sum_{m=2}^{\infty} \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!} a_{m} \\
& \leq 1-\alpha, \text { since } f(z) \in T S_{n}(\phi, \psi, \alpha, \lambda)
\end{aligned}
$$

Hence by theorem 2.1, $F(z) \in T S_{n}(\phi, \psi, \alpha, \lambda)$.
Theorem 8.2: Let c be a real number such that $c>-1$. If $F(z) \in T S_{n}(\phi, \psi, \alpha, \lambda)$, then the function $f(z)$ defined by (10) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{m}\left\{\frac{(c+1)(m+n-1)!K_{m}}{(c+k)(1-\alpha)(m-1)!(n+1)!}\right\}^{\frac{1}{m-1}},(m \geq 2) \tag{13}
\end{equation*}
$$

The result is sharp.
Proof : Let $F(z)=z-\sum_{m=2}^{\infty} a_{m} z^{m}\left(a_{m} \geq 0\right)$.
It follows from (10) that

$$
\begin{align*}
f(z) & =\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{c+1} \\
& =z-\sum_{m=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{m} z^{m}(c>-1) \tag{14}
\end{align*}
$$

In order to obtain the required result, it suffices to show that $\left|f^{\prime}(z)-1\right|<1$ in $|z|<R^{*}$.
Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{m=2}^{\infty} \frac{m(c+m)}{c+1} a_{m}|z|^{m-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{m=2}^{\infty} \frac{m(c+m)}{c+1} a_{m}|z|^{m-1}<1 \tag{15}
\end{equation*}
$$

Hence by using (8), (15) will be satisfied if

$$
\frac{m(c+m)}{c+1}|z|^{m-1} \leq \frac{(m+n-1)!K_{m}}{(m-1)!(n+1)!(1-\alpha)}, \quad m \geq 2
$$

or if

$$
|z| \leq\left[\frac{(c+1)(m+n-1)!K_{m}}{m!(n+1)!(1-\alpha)(c+m)}\right]^{1 / m-1} \quad(m \geq 2)
$$

Therefore $f(z)$ is univalent in $|z|<R^{*}$. Sharpness follows if we take
$f(z)=z-\frac{(1-\alpha)(c+m) m!(n+1)!}{(c+1)(m+n-1)!K_{m}} z^{m}, \quad m \geq 2$.

References

[1] Ahuja, O. P. and Silverman, H., Convolutions of prestarlike functions, Internat. J. Math. Math. Sci., 6(1) (1983), 59-68.
[2] Khairnar, S. M. and More, M., Properties of a class of analytic and univalent functions using Ruscheweyh derivative, Int. J. Contemp. Math. Sciences, 3(20) (2008), 967-976.
[3] Mogra, M. L., Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, Internat. J. Math. Math. Sci., 22(4) (1999), 795-805.
[4] Owa, S. and Ahuja, O. P., A class of functions defined by using Hadamard product, Hokkaido Math. J., 15(2) (1986), 217-232.
[5] Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[6] Shams, S., Kulkarni, S. R. and Jahangiri, J. M., On a class of univalent functions defined by Ruscheweyh derivative, Kyungpook Math. J., 43 (2003), 579-585.
[7] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[8] Subramanian, K. G., Sudharsan, T. V., Balasubrahmanyam, P. and Silverman, H., Classes of uniformly starlike functions, Publ. Math, Debrecen, 53(3-4) (1998), 309-315.
[9] Sudharsan, T. V., Thirumalaisamy, R., Subramanian, K. G. and Adolf Stephen, B., A class of analytic functions based on Ruscheweyh derivative, International J. of Math. Sci. \& Engg. Appls. (IJMSEA), 3(II) (2009), 103-108.
[10] Thirumalaisamy, R., Sudharsan, T. V., Subramanian, K. G. and Silverman, H., On functions with negative coefficients based on convolution, Surveys in Mathematics and its Applications, 5 (2010), 285-295.

R. Thirumalaisamy,

Department of Mathematics, Govt. Arts College, Nandanam, Chennai - 600 035, India
E-mail: rthirumalai64@gmail.com

T. V. Sudharsan,

Department of Mathematics, SIVET College, Gowrivakkam, Chennai - 601 302, India
E-mail: tvsudharsan@rediffmail.com

K. G. Subramanian,

School of Computer Sciences, Universitie Sains, Malaysia
11800 Penang, Malaysia
E-mail: kgsmani1948@gmail.com

S. M. Khairnar,

Department of Engineering Sciences, Maharastra Academy of Engineering
Alandi - 412 105, Pune (M.S.), India
E-mail: smhairnar2007@gmail.com

