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Abstract 
 

In this paper, we introduce a new subclass of harmonic univalent functions of 
complex order defined by convolution which includes several well known 
subclasses of harmonic univalent functions as well as various new ones. We 
also derive the coefficient inequality, extreme points, distortion theorem, 
convolution conditions and convex combination for this class. 
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1. Introduction 
Clunie and Sheil-Small [5] investigated the class SH, consisting of complex-valued 
harmonic sense-preserving univalent functions f in a simply connected domain D ⊆ C 
defined on the open unit disc Δ = {z : |z| < 1} and normalized by f(0) = fz(0) − 1 = 0. 
 Each function f ∈ SH can be expressed as ghf +=  where h and g are analytic in 
D and 

 1b,zbg(z),zazh(z) 1
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n
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=
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 The work initiated by Clunie and Sheil-Small on the class SH formed the basis for 
several related papers on SH and its subclasses (see for example Ahuja [1] and Duren 
[6]). 
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 In this note, we introduce a new subclass SH(φ, ψ, b, λ, β) of SH consisting of 
functions ghf +=  ∈ SH that satisfy the condition 

 .bβ1
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ψ(z)*g(z)(z)*h(z)Re −>
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⎬
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or equivalently,  
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where 0 < β ≤ 1, 0 ≤ λ ≤ 1, b, a non-zero complex number with |b| ≤ 1, 
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0, μn ≥ 0 and ),re(z
θ

z iθ=
∂
∂=′

 
0 ≤ r < 1, 0 ≤ θ ≤ 2π. The operator ‘*’ stands for the 

Hadamard product or convolution of two power series. 
 We further let β)λ,b,ψ,,(SH φ  denote the subclass of SH(φ, ψ, b, λ, β) consisting 

of functions ghf +=  ∈ SH such that h and g are of the form 
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Remark 1.1. 

β)ψ,1,1,,(SH φ  = TSH(φ, ψ, 1−β) [7]. 

 ⎟⎟
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 Different subclasses of harmonic univalent functions based on convolution have 
been studied by several authors (see [2, 3, 4, 9]). 
 In this paper, we obtain coefficient bounds, extreme points and distortion bounds 
for functions in β)λ,b,ψ,,(SH φ . 
 
 
2 Coefficient Bounds 
We now obtain a sufficient coefficient condition for harmonic functions in SH(φ, ψ, b, 
λ, β). 
 
Theorem 2.1.  
Let ghf += , where h and g are given by (1.1). If 
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where 0 < β ≤ 1, 0 ≤ λ ≤ 1, b, a non-zero complex number with |b| ≤ 1, 
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nzμzψ(z)  are analytic in Δ with the conditions λn ≥ 0, μn 
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|b|)] then f is harmonic univalent in Δ and f ∈ SH(φ, ψ, b, λ, β). 
 
Proof.  
We first note that f is locally univalent and sense preserving in Δ. This is because for 
|b| ≤ 1 and from the hypothesis of Theorem 2.1,  
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 To show that f is univalent in Δ, we show that f(z1) ≠ f(z2) whenever z1 ≠ z2. 
Suppose z1, z2 ∈ Δ so that z1 ≠ z2. Since the unit disc Δ is simply connected and 
convex, we have z(t) = (1−t)z1 + t z2 in Δ where 0 ≤ t ≤ 1. Then we write 

 .dt](z(t))g)z(z(z(t))h)z[(z)f(z)f(z
1

0
121212 ∫ ′−+′−=−  

 On dividing throughout by z2 − z1 ≠ 0 and taking only the real parts, we obtain 
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 On the other hand 
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 Therefore this together with inequality (2.2) implies the univalence of f. Next, we 
show that f ∈ SH(φ, ψ, b, λ, β). To do so, we need to show that when (2.1) holds then 
(1.2) also holds true. 
 Using the fact that Re ω > δ if and only if |1 − δ + ω| > |1 + δ − ω|, it suffices to 
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show that 
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 This last expression is non-negative by (2.1), which completes the proof of the 
theorem. 
 The harmonic univalent functions 
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 shows that the coefficient bound given by (2.1) is sharp. 

This is because 
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 We next show that the condition (2.1) is also necessary for functions of the form 
(1.4) to be in the class β)λ,b,ψ,,(SH φ . 
 
Theorem 2.2. 
Let ghf += , where h and g are given by (1.4), then f(z) ∈ β)λ,b,ψ,,(SH φ  if and 
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where 0 < β ≤ 1, 0 ≤ λ ≤ 1, b, a non-zero complex number with |b| ≤ 1, 
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|b|)] and |bn| > |an|, for every n ≥ 2. 
 
Proof. 
Since β)λ,b,ψ,,(Sβ)λ,b,ψ,,(S HH φφ ⊂ , we only need to prove the only if part. We 
show that if (2.5) does not hold then f is not in β)λ,b,ψ,,(SH φ . Let f ∈ 

β)λ,b,ψ,,(SH φ  then from (1.2), we have 
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 The above condition must hold for all values of z, |z| = r < 1 and any b such that 0 
< |b| < 1. Choose z to be in the positive real axis where z = r < 1. Thus the above 
condition becomes for |bn| > |an|, for every n ≥ 2 
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 If the condition (2.5) does not hold, then the numerator in (2.6) is negative for r → 
1. This contradicts (2.6). Hence the proof is complete.  □ 
 
 
3 Distortion Bounds 
In this section, distortion bounds for the class β)λ,b,ψ,,(SH φ  are obtained. 
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Theorem 3.1. 
Let the function f(z) of the form (1.4) be in the class β)λ,b,ψ,,(SH φ . Then for |z| = r 
< 1,  
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 The equalities in (3.1) and (3.2) are attained for the function f(z) is given by 
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Proof. 
Let f(z) ∈ β)λ,b,ψ,,(SH φ . Then, we have 
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 The lower bound can be similarly proved.   □ 
 
 
4 Extreme Points 
In this section, we determine the extreme points of the closed convex hull clco 

β)λ,b,ψ,,(SH φ  of β)λ,b,ψ,,(SH φ . 
 
Theorem 4.1. 
Let f(z) be given by (1.4). Then f ∈ β)λ,b,ψ,,(SH φ  if and only if 
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then f ∈ β)λ,b,ψ,,(SH φ . 
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 This completes the proof of Theorem 4.1.   □ 
 Now, we prove that the class β)λ,b,ψ,,(SH φ  is closed under convex 
combinations. 
 
Theorem 4.2. 
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 By Theorem 2.2, it follows that (z)ft i
1i

i∑
∞

=
 ∈ β)λ,b,ψ,,(SH φ . This proves that the 

class β)λ,b,ψ,,(SH φ  is closed under convex combinations.   □ 
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