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HARMONIC UNIVALENT FUNCTIONS BASED ON A
FRACTIONAL DIFFERENTIAL OPERATOR

R. EZHILARASI, T. V. SUDHARSAN, K. G. SUBRAMANIAN

ABSTRACT. Harmonic functions have been of importance in the areas of ap-
plied mathematics, engineering, and many others. In this paper, a class of
harmonic functions f(z) = h(z) + g(z) that are harmonic univalent and sense-
preserving in the unit disc, is introduced. The defining property of the class
is based on a generalized fractional differential operator. Sufficient coefficient
conditions for this class are obtained, which are also found to be necessary
when the coefficients are negative. Properties such as extreme points, distor-
tion bounds, covering theorem for functions in this class are also investigated.

1. INTRODUCTION

Harmonic mappings have found several applications in many diverse fields such as
engineering, operations research and other allied branches of applied mathematics.
Harmonic mappings have drawn the attention of function theorists, following the
pioneering work of Clunie and Sheil-Small [3]. For more details related to this
theory, one may refer the compact and comprehensive article by Ahuja [1]. A
complex valued continuous function w = f(z) = u(z) + tv(z) defined in a simply
connected convex domain D C C' is harmonic in D if both u and v are real-valued
harmonic functions on D. In a simply connected domain, we can write f = h + g,
where h and g are analytic in D. The function h is called the analytic part of f and
g the co-analytic part of f. Clunie and Sheil-Small [3] observed that a necessary
and sufficient condition for the harmonic function f = h+ g to be locally univalent
and sense preserving in D is that |h/(2)| > |¢'(2)| (¢ € D).

Let Sy denote the family of functions f = h + g that are harmonic, orienta-
tion preserving, and univalent in the open unit disc U = {z : |z] < 1} with the
normalization

hz)=z+ Y axz®, g(z) =) bz" || <L (1)
k=2 k=1

An interesting class of harmonic functions f = h 4+ ¢ with negative coefficients
which are starlike or convex was investigated by Silverman [8]. Different subclasses
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of the class Sy of harmonic functions have been studied by several authors (see for
example [3, 5, 6, 7, 8,9, 10, 11, 12]).

Al-Oboudi and Al-Amoudi [2] defined a linear multiplier fractional differential
operator D" for f(z) € A, in terms of the Gamma function, where A is the class
of all analytic functions defined in the open unit disc U. The functions f(z) are of

the form f(z) =2z + Z axz® and the operator D} is defined as follows
k=2

D" f(z) =z + Zd)k,m(a,)\)akzk, 0<a<l;meNy=1{0,1,2,...}; (2)
k=2

where,

Pr,m(a, A) = [F({f(z 1)1;(3 ;)O‘) (14+AE-1)| .

Noor et al. [4] defined a generalized linear multiplier fractional differential operator

D" for the harmonic function f(z) = h(z) + g(z) as

DY f(2) =Y dram(, N (an2® +bezF), m € N, (3)
k=1
where -
Do (0 A) = [F(I’f x e a)a) Ark—1)]

If the co-analytic part g = 0, then we obtain the linear multiplier fractional differ-
ential operator D" (2).

In this paper, motivated by study in [4, 7], a new class RH.,(m, o, 8,\) (0 < a <
1,8>0,0 <5 <1,\ > 0) of harmonic univalent functions in U = {z : |2| < 1} is
introduced and studied.

2. Tue CrLAsS RH,(m,«, 3, )

Definition 2.1. Let f(z) = h(z) + g(2) be a harmonic function, where h(z) and
g(z) are given by (1). Then f(z) € RHy(m,a, B, \) if it satisfies

e [122, (23]

for0<a<1,8>0,0<y<1,A>0,z€eD.

+ Dy [h’(z) +W] - ﬁ} >, (4)

DY f(2) =Y dram(e, A)(arz® +bp2k), m e No
k=1
where
L(k+ 12— )
I'k+1-a)

Definition 2.2. Let f(z) = h(z) + g(z) be a harmonic function, where

Prm(a, A) = [ (14 Ak — 1))r.

h(z) =z =) lawlz*, g(z) == Ibul", ||l <1,2€D. ()
k=2 k=1
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Then f(z) € RFy(m,a, 8, ), if it satisfies

Re {mf);”’“ [h(j) + (g(j)>

for0<a<1,8>0,0<y<1,A>0,z€D.

+ Dy (W) + )] - ﬂ} >,

Remark 2.1. We note that RHy(m,a,0,\) = Hg(m, o, A) [4].

Theorem 2.1. Let f(z) = h(z) + g(z) where h(z) and g(z) are given by (1).
Furthermore let

> 0+ Bl V] + ul) <2457, Il < 1o 5<1 (O
k=1

wherea; =1, 2>20,0<a<1,0<y<1,A>0,z€D.
Then f(z) is harmonic univalent and sense preserving in U and
f e RH,(m,a,pB,N).

Proof. Based on the technique used in ([5], Theorem 2.1), we prove that f is har-
monic, sense preserving and univalent. For |z1] < |z2| < 1, we have by using (6),

1f(z1) = f(22)] = [h(z1) = h(z2)] = [g(21) — g(22)]

(21722)+Zak( — k) Zbk — 25
k=2

> |21 — 2z [1 =7 = (L+B)bi] = |z2] D[k + B)nm (v, A) (x| + [bi])

k=2

2|21 = 22l[1 =7 = (1+B)[b1]](1 — [22]) > 0
Consequently, f is univalent in U. We note that f is sense preserving in U, since
by using (6), |z| < 1,
W) = 1= klag] > 1—=5 =Y (k+ B)bkm(a, N)|al
k=2 k=2
> (k+ B)rm(a, N)b| > 1g'(2)].
k=1

Now, we show that f € RH,(m,a,(,)), using the fact Re w > « iff
14+w—9]>1—w+7|
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On substituting for h(z) and g(z) from (1) and on using (6), we obtain
1,0 h M, o DT%Y
1+ BDT [(j) + (g(;)> + D3 W)+ @) - -1
h
), (420)
z z

= 2=+ 1+ B+ > (k+ B)drm(e, ) [akzk_l n bkzk—l}
k_

— |1 - DYy

= Dy [W(2) + G| + B+

—|ly=(1+B)b Z k+ B)pk.m(a, \) [akzkfl + bkzkfl}
k=2

>2 -2y —2(1+ B)|bs| — 2Z(k+5>¢k,m<a,x>[|ak\ + [bg]] ]2

k=2
2024 8—v=> (k+ B)bk.mla, Nllax| + [bx]]
k=1
The harmonic mapping
f(z):2+i(177)mkzk+i(17’y)ykzk (7)
Pt k+p — k+ 53

where Z |k |+ Z lyx] =1, 8> 0 and 0 < < 1, shows that the coeflicient bound

given by (6) is sharp O

In the next theorem, we will prove a necessary and sufficient condition for func-
tions f to belong to RF,(m,a, 5, \).

Theorem 2.2. Let f(z) = h(z) + g(z), where h(z) and g(z) are given by (5) then
f € RF,(m,a, B, ) if and only if
Z(k + B)drm (e, N[la] + [brl]] <2+ 8 —~ (8)
k=1
wherea; =1, 0<a <1, >0,0<y<land A>0, z€ D.

Proof. Assume that f € RF.,(m,a, 3, ). Then we find from (4) with h(z) and g(z)
given by (5) that
Re[1= (14 B)lba] = 3k + B)rm(er Vlag] 2"

k=2

=Dk + B) o (e, A) by 25
k=2
0<y<1,0<a<1,8>0and || <1).
If we choose z to be real and let z — 17—, we get,
L= (14 )i = Sk + B)bkmc Mllaxl + 1bil] = 7

k=2
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which yield the assertion (8) of Theorem 2.2.
Conversely, assume that (8) holds true.
Then we find from (4) with h(z) and g(z) given by (5) that on using (8), for |z| < 1,

Re {Bf?T’“ [h(j) + (g(;)> + Dy [h’(z) +M} — 6}

o0

= Re[1 = (14 B)lba] = 32 (k + B)bp,m (0, Alax|2"*
k=2
= Dk B)bkm (N o[z
k=2
> 248 =Y (k+B)brmla Nllar| + [belll=]*" >~
This shows that f € RFWI(vrznl, a, B, N). O
Theorem 2.3. Let f € RF,(m,a, 5,\). Then for |z| =r < 1, we have
2—a)™

[F ()] < (L4 [ba])r +

2+ B)2m(1+ \)m (1= (1+B)[br| —y)r*

and
2-a)m

(24 p5)2m(1+ /\)m(

If(2) = (1= [bu])r =

These bounds are sharp.

Proof. Let f(z) = h(2) + g(z), where h(z) and g(z) are defined in (5). Then

L= (14 B)[bs| = )r?

7O = |2 = S lacl = 3 bl
k=2 k=1
(2—a)™ >
> (1= Il = o Sk B) 0N ] + bl
! 2+ B)2m(1+ A) kz::l F FE TR
9 _ m
> (1= Ir - ot =y (L4 Bl

The proof of upper bounds of |f(z)| is similar.
Hence, these bounds are sharp and equalities occur if

o) = (Lt Bl — )7

1) =2+ b+ G gma

and
£(2) = (1— [ba])z (2~ a)

ICEPATESY

(1—(1L+B)|b1] — )22, || < 1.

The following result is due to the left hand side inequality in Theorem 2.3.
Corollary 2.1. Let f € RF,(m,«,3,)). Then
(A=[0)2+8)2"A+ N = 2—-a)"(1 = (1 +B)[br| =) }
: < C f(U).
{w v @+ B2+ )" o)

Here we determine a representation theorem for functions in f € RF,(m,a, B, ).
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Theorem 2.4. Let f(z) = h(z) + g(z), where h(z) and g(z) are defined in (5).
Then f € RF,(m,a, B, ) if and only if

F(2) = S Owhi() + mge(=)), = €U
k=1
where
hi(z) =2z, hg(z)=2z— (1=1) 2P k=23,4,....
| (k4 Dorman” "= 705
gr(2) =z — (1-7) 7 k=1,2,3

&+ B)brm(a, N)

and Z()\k +uk) =1, A >0, pp > 0.
k=1
In particular, the extreme points of RF,(m,«, 3, ) are {hy}, {gx}

Proof. Let

[M]8

f(2) =D (Aehw(2) + prgr(2))
k=1
_ = o - (1* ) = —_k
f];()\k+ﬂk)2 kzzz(k"i‘ﬁ)d)kma)\ ; k+6¢kma)\>uz
—z—Zakzk—Zbkzk
k=2 k=1

where a; = 1 and
(1-9)

%= Tt Dol F =2
_ (1-7)
= T D@y 2L
Since
- ¢km « )‘) a - (k +ﬂ)¢k,m(aa )‘)
Zz ) | k|+; - b |

p“ﬂg

(k+ ﬁ)¢k,er(a7 A) ( (1-7) ) Ak

k=9 (1 - ’7) (k + B)(bk,m(av >‘)
>\ (k+ B) k(@ N) (1-7)
Ty <<k T ﬂ)ebk,m(a,») 8

Z/\k-‘r/ik -M=1-X <1
k=

—

we have Z(k + B)ppm(a, N)(Jar] +bk]) <1 —-7+14+8 =24+ —~ and so
k=1
f e RF,(m,a,f,\).
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Conversely, suppose that f € RF,(m, o, 3, \).
Let

\p = (k"‘ﬂ)(bk,m(aa)\)
=

lak], (k=2,3,...)

(1=7)
_ (k+ﬁ)¢k,m(aa)\) _
e = TS b, (k=12

/\1 :1_2/\16_2/“6'
k=2 k=1

Then note that by Theorem 2.2, 0 < Ay < 1 (k=2,3,...),0 < pup <1 (k=

1,2,3,...) and \; > 0. Consequently we obtain f(z) = Z()\khk(z) + prgr(z)) as
k=1
required.
Now we study the invariance property of the class RF,(m, o, 8, A) under convo-
lution and convex combination of its elements.

Let
oo oo
fl2)=2=) laxlz" =D [bel7*
k=2 k=1
and - -
F(z)=2z— Z |Ag|2* — Z |Bp|Z", z€U.
k=2 k=1

Then the convolution of f and F is given by
(f = F)(2) = f(2) * F(2).

This can be written as
o0 oo

(f*F)(z) =2=>_ laxl|Axl* = > [bxl| B[2*. 9)

k=2 k=1

Theorem 2.5. Let f € RF,(m,a,3,\) and F' € RFs(m,«, 3, \) for
0<d6<~y<1. Then

(f = F)(2) € RFy(m,a, B,\) € RFs(m, a, B, \).
Proof. The convolution of f x F' is defined by (9). We want to show that the
coefficients of f x F satisfy the condition given in (6).
For F' € RFs(m,a, B, \), we have |[A| <1, |Bg| <
Now for the convolution f * F', we obtain

1.

1) (k+ B)km(c, Nlar] [ Akl + Y (k + B)r.m (e, A)|be| | Byl

k=2 k=1

<1+ > (k+ B)drm(e Mlak| + > (k + B)dr.m (e, A)[bx|
k=2 k=1

<2+B-y<2+8-0.

Hence, we have the desired result. (I

Theorem 2.6. The family RF,(m,a, 3, ) is closed under convex combination.
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Proof. Let f;(z) € RF,(m,a, 3, \), where

o0 oo
)=2z— Z lag.i| 2~ — Z br.i|Z8, for i=1,2,...,n.
k=2 k=1

n
Then for Z 1 =1, 0 < p <1, the convex combination of f; may be written as:
i=1

n

Z/Mfz = Z Zﬂz‘ak2| Zk_z Zﬂi‘bk,” z~.

k=2 \i=1 k=1 \i=1

Using (6), we have

1+Zk+ﬂ¢kma>\ Zﬂz|akz +Zk+6¢kma)\ Zuz‘bkz
=1 k=1

= Z i Z (k + B)dk,m (v, Mlari| + Y (k + B)brm (@, )b
k=1

=1 k=1
§2+B—%
The proof of the theorem is completed. O

3. CONCLUSION

In this paper we have introduced a new class RH.(m, «, 8, A) of harmonic univa-
lent functions using a generalized fractional differential operator. Various properties
relating to the functions in this class have been obtained. Other properties such as
connections of the harmonic functions in the class RH.(m, c, 5, X) with hypergeo-
metric functions, can be explored.
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