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SYMBOLS

Symbol Description

Ap Class of all p-valent analytic functions of the form

f(z) = zp +
∑∞

k=1+p akz
k (z ∈ U)

A := A1 Class of analytic functions of the form

f(z) = z +
∑∞

k=2 akz
k (z ∈ U)

S Class of all normalized univalent functions of the form

f(z) = z + a2z
2 + · · · z ∈ U

U Open unit disk {z ∈ C : |z| < 1}

U∗ Punctured unit disk U \ {0}

U(p) Class of meromorphic functions f(z) in unit disk

U with a simple pole at z = p, p > 0

P Class of functions P (z) which are meromorphic in U

K(p) Class of functions which belong to U(p)

and map |z| < r < ρ (for some p < ρ < 1)

onto the complement of a convex set

H(U) Class of analytic functions in U

C Complex plane

K Class of convex functions in U

K(α) Class of convex functions of order α in U

S∗ Class of starlike functions in U

S∗(α) Class of starlike functions of order α in U

C Class of close-to-convex functions in U

UCV Class of uniformly convex functions in U

Sp Class of parabolic starlike functions in U

f ∗ g Convolution or Hadamard product of functions f and g

≺ Subordinate to
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k(z) Koebe function

N Set of all positive integers

R Set of all real numbers

< Real part of a complex number

= Imaginary part of a complex number

Z Set of all integers
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KONVOLUSI DAN MASALAH PEKALI BAGI FUNGSI MULTIVALEN

DITAKRIF DENGAN SUBORDINASI

ABSTRAK

Andaikan C satah kompleks, U = {z ∈ C : |z| < 1} cakera unit terbuka dalam

C dan H(U) kelas fungsi analisis dalam U . Andaikan juga A kelas fungsi analisis

f dalam U yang ternormalkan dengan f(0) = 0 dan f ′(0) = 1. Fungsi f ∈ A

mempunyai siri Taylor berbentuk

f(z) = z +
∞∑
n=2

anz
n, (z ∈ U).

Andaikan Ap (p ∈ N ) kelas fungsi analisis f berbentuk

f(z) = zp +
∞∑

n=p+1

anz
n, (z ∈ U)

dengan A := A1.

Pertimbangkan dua fungsi

f(z) = zp + ap+1z
p+1 + · · · dan g(z) = zp + bp+1z

p+1 + · · ·

dalam Ap. Hasil darab Hadamard (atau konvolusi) untuk f dan g ialah fungsi f ∗ g

berbentuk

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnz
n.

Dalam Bab 1, kelas-kelas teritlak bak-bintang multivalen, cembung, hampir-cembung

dan kuasi-cembung diperkenalkan. Kelas-kelas tersebut memberi kaedah penyatuan

untuk pelbagai subkelas yang diketahui sebelum ini. Ciri-ciri konvolusi dan inklusi

diterbitkan dengan menggunakan kaedah hul cembung dan subordinasi pembeza.

Dalam Bab 2, batas untuk pekali fungsian Fekete-Szegö bersekutu dengan trans-

formasi punca ke-k [f(zk)]1/k fungsi-fungsi analisis ternormalkan f tertakrif dalam U

vi



diperoleh untuk kelas-kelas fungsi berikut:

Rb(ϕ) :=

{
f ∈ A : 1 +

1

b
(f ′(z)− 1) ≺ ϕ(z)

}
,

S∗(α, ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ ϕ(z)

}
,

L(α, ϕ) :=

{
f ∈ A :

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

≺ ϕ(z)

}
,

M(α, ϕ) :=

{
f ∈ A : (1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
,

dengan b ∈ C \ {0} dan α ≥ 0. Masalah yang serupa dikaji untuk fungsi z/f(z) bagi

f di dalam kelas-kelas fungsi tertentu.

Dalam Bab 3, beberapa subkelas fungsi univalen meromorfi dalam U diitlakkan.

Andaikan U(p) kelas fungsi-fungsi univalen meromorfi ternormalkan f dalam U den-

gan kutub ringkas pada z = p, p > 0. Andaikan φ suatu fungsi dengan bahagian

nyata positif dalam U , φ(0) = 1, φ′(0) > 0, yang memetakan U keseluruh rantau

bak-bintang terhadap 1 dan simetri terhadap paksi nyata. Kelas
∑∗(p, w0, φ) men-

gandungi fungsi f ∈ U(p), meromorfi bak-bintang terhadap w0 sedemikian hingga

−
(

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

)
≺ φ(z).

Kelas
∑

(p, φ) mengandungi fungsi f ∈ U(p), meromorfi cembung sedemikian hingga

−
(

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

)
≺ φ(z).

Batas untuk w0 dan beberapa pekali untuk f di dalam
∑∗(p, w0, φ) dan

∑
(p, φ)

diperoleh.
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CONVOLUTION AND COEFFICIENT PROBLEMS FOR MULTIVALENT

FUNCTIONS DEFINED BY SUBORDINATION

ABSTRACT

Let C be the complex plane and U := {z ∈ C : |z| < 1} be the open unit disk

in C and H(U) be the class of analytic functions defined in U . Also let A denote

the class of all functions f analytic in the open unit disk U := {z ∈ C : |z| < 1},

and normalized by f(0) = 0, and f ′(0) = 1. A function f ∈ A has the Taylor series

expansion of the form

f(z) = z +
∞∑
n=2

anz
n (z ∈ U).

Let Ap (p ∈ N ) be the class of all analytic functions of the form

f(z) = zp +
∞∑

n=p+1

anz
n

with A := A1.

Consider two functions

f(z) = zp + ap+1z
p+1 + · · · and g(z) = zp + bp+1z

p+1 + · · ·

in Ap. The Hadamard product (or convolution) of f and g is the function f ∗ g

defined by

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnz
n.

In Chapter 1, the general classes of multi-valent starlike, convex, close-to-convex and

quasi-convex functions are introduced. These classes provide a unified treatment to

various known subclasses. Inclusion and convolution properties are derived using the

methods of convex hull and differential subordination.

In Chapter 2, bounds for the Fekete-Szegö coefficient functional associated with

the k-th root transform [f(zk)]1/k of normalized analytic functions f defined on U

viii



are derived for the following classes of functions:

Rb(ϕ) :=

{
f ∈ A : 1 +

1

b
(f ′(z)− 1) ≺ ϕ(z)

}
,

S∗(α, ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ ϕ(z)

}
,

L(α, ϕ) :=

{
f ∈ A :

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

≺ ϕ(z)

}
,

M(α, ϕ) :=

{
f ∈ A : (1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
,

where b ∈ C \ {0} and α ≥ 0. A similar problem is investigated for functions z/f(z)

when f belongs to a certain class of functions.

In Chapter 3, some subclasses of meromorphic univalent functions in the unit

disk U are extended. Let U(p) denote the class of normalized univalent meromorphic

functions f in U with a simple pole at z = p, p > 0. Let φ be a function with

positive real part on U , φ(0) = 1, φ′(0) > 0, which maps U onto a region starlike

with respect to 1 and which is symmetric with respect to the real axis. The class∑∗(p, w0, φ) consists of functions f ∈ U(p) meromorphic starlike with respect to w0

and satisfying

−
(

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

)
≺ φ(z).

The class
∑

(p, φ) consists of functions f ∈ U(p) meromorphic convex and satisfying

−
(

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

)
≺ φ(z).

The bounds for w0 and some initial coefficients of f in
∑∗(p, w0, φ) and

∑
(p, φ) are

obtained.
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CHAPTER 1

INTRODUCTION

Let C be the complex plane and U := {z ∈ C : |z| < 1} be the open unit disk

in C and H(U) be the class of analytic functions defined on U . Also let A denote

the class of all functions f analytic in the open unit disk U := {z ∈ C : |z| < 1}, and

normalized by f(0) = 0, and f ′(0) = 1.

A function f is said to be univalent in a domain if it provides a one-to-one

mapping onto its image: f(z1) = f(z2) ⇒ z1 = z2. Geometrically, this means

that different points in the domain will be mapped into different points on the image

domain. Let S denote the subclass of A consisting of univalent functions. A function

f ∈ A has the Taylor series expansion of the form

f(z) = z +
∞∑
n=2

anz
n (z ∈ U).

The Koebe function k(z) = z/(1− z)2 maps U onto the complex plane except

for a slit along the half-line (−∞,−1/4] and is univalent. It plays a very important

role in the study of the class S. The Koebe function and its rotations e−iβk(eiβz), for

β ∈ R, are the extremal functions for various problems in the class S. For example,

the de Branges Theorem tells that if f(z) = z + a2z
2 + a3z

3 + . . . is analytic and

univalent in U , the coefficients satisfy |an| ≤ n, (n = 2, 3, . . .) with equality if and only

if f is a rotation of the Koebe function. This theorem was conjectured by Bieberbach

in 1916 and was only proved in 1985 by de Branges. Since the Bieberbach conjecture

was difficult to settle, several authors have considered classes defined by geometric

conditions. Notable among them are the classes of convex functions, starlike functions

and close-to-convex functions.
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A set D in the complex plane is called convex if for every pair of points w1

and w2 lying in the interior of D, the line segment joining w1 and w2 also lies in the

interior of D, i.e.

tw1 + (1− t)w2 ∈ D for 0 ≤ t ≤ 1.

If a function f ∈ A maps U onto a convex domain, then f(z) is called a convex

function. The class of all convex functions in A is denoted by K. An analytic

description of the class K is given by

K :=

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
.

Let w0 be an interior point of D. A set D in the complex plane is called starlike

with respect to w0 if the line segment joining w0 to every other point w ∈ D lies in

the interior of D, i.e.

(1− t)w + tw0 ∈ D for 0 ≤ t ≤ 1.

If a function f ∈ A maps U onto a domain starlike, then f(z) is called a starlike

function. The class of starlike functions with respect to origin is denoted by S∗.

Analytically,

S∗ :=

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> 0

}
.

These two classes K and S∗ and several other classes such as the classes of uni-

formly convex functions, starlike functions of order α, and strongly starlike functions

investigated in geometric function theory are characterized by either of the quantities

zf ′(z)/f(z) or 1 + zf ′′(z)/f ′(z) lying in a given region in the right half-plane.

Ma and Minda [28] showed that many of these properties can be obtained by

a unified method. For this purpose, they introduced the classes K(ϕ) and S∗(ϕ) of

functions f(z) ∈ A for some analytic function ϕ(z) with positive real part on U with

ϕ(0) = 1, ϕ′(0) > 0 and ϕ maps the unit disk U onto a region starlike with respect

to 1, symmetric with respect to the real axis, satisfying

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z)

2



and
zf ′(z)

f(z)
≺ ϕ(z), (z ∈ U).

respectively. Here the symbol ≺ denotes subordination.

A function f is said to be subordinate to F in U , written f(z) ≺ F (z), if there

exists a Schwarz function w, analytic in U with w(0) = 0, and |w(z)| < 1, such that

f(z) = F (w(z)). If the function F is univalent in U , then f ≺ F if f(0) = F (0)

and f(U) ⊆ F (U).

3



CHAPTER 2

CONVOLUTION AND DIFFERENTIAL SUBORDINATION

OF MULTIVALENT FUNCTIONS

2.1. MOTIVATION AND PRELIMINARIES

Let Ap (p ∈ N ) be the class of all analytic functions of the form

f(z) = zp + ap+1z
p+1 + . . .

with A := A1. For two functions

f(z) = zp + ap+1z
p+1 + . . . and g(z) = zp + bp+1z

p+1 + . . .

in Ap, the Hadamard product (or convolution) of f and g is the function f ∗g defined

by

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnz
n.

For univalent functions, the well-known Alexander theorem [3], states that f ∈

K if and only if zf ′(z) ∈ S∗. Since zf ′(z) = f(z) ∗ (z/(1 − z)2), it follows that

f is convex if and only if f ∗ g is starlike for g(z) = z/(1 − z)2. Moreover, since

f(z) = f(z) ∗ (z/(1 − z)), the investigation of the classes of convex and starlike

functions can be unified by considering the class of functions f for which f ∗ g is

starlike for a fixed function g. These ideas motivated the investigation of the class of

functions f for which

z(f ∗ g)′(z)
(f ∗ g)(z)

≺ h(z)

where g is a fixed function in A and h is a convex function with positive real

part. Shanmugam [55] introduced this class and several other related classes, and

4



investigated inclusion and convolution properties by using the convex hull method

[10, 54, 53] and the method of differential subordination.

Motivated by the investigation of Shanmugam [55], Ravichandran [45] and Ali

et al. [4] (see also [6, 39, 38, 40]), we introduce the following classes of multivalent

functions. Throughout this chapter, the function g ∈ Ap is a fixed function and,

unless otherwise mentioned, the function h is assumed to be a fixed convex univalent

function with positive real part and h(0) = 1.

Definition 2.1.1. The class Sp,g(h) consists of functions f ∈ Ap such that

(g∗f)(z)
zp 6= 0 in U and satisfying the subordination

1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
≺ h(z).

Similarly, Kp,g(h) is the class of functions f ∈ Ap satisfying (g∗f)′(z)
zp−1 6= 0 in U and

1

p

[
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

]
≺ h(z).

With g(z) = zp/(1− z), the class Sp,g(h) =: S∗
p(h) and Kp,g(h) =: Kp(h) con-

sists respectively of all p-valent starlike and convex functions satisfying the respective

subordinations

1

p

zf ′(z)

f(z)
≺ h(z), and

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ h(z).

For these two classes, several interesting properties including distortion, growth and

rotation inequalities as well as convolution properties have been investigated by Ali

et al. [4]. Note that the two classes S∗
p(h) and Sp,g(h) are closely related; in fact,

f ∈ Sp,g(h) if and only if f ∗ g ∈ S∗
p(h). Similarly, f ∈ Kp,g(h) if and only if

f ∗ g ∈ Kp(h).

Definition 2.1.2. The class Cp,g(h) consists of functions f ∈ Ap such that

(g∗ψ)(z)
zp 6= 0 in U for some ψ ∈ Sp,g(h) and satisfying

1

p

z(g ∗ f)′(z)

(g ∗ ψ)(z)
≺ h(z).

5



Definition 2.1.3. For any real number γ, the class Kγ
p,g(h) consists of func-

tions f ∈ Ap such that (g∗f)(z)
zp 6= 0 and (g∗f)′(z)

zp−1 6= 0 in U , and satisfying the

subordination

γ

p

[
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

]
+

(1− γ)

p

[
z(g ∗ f)′(z)

(g ∗ f)(z)

]
≺ h(z).

Definition 2.1.4. Let Qp,g(h) denote the class of functions f ∈ Ap such that

(g∗δ)′(z)
zp−1 6= 0 in U for some δ ∈ Kp,g(h) and satisfying the subordination

1

p

[z(g ∗ f)′(z)]′

(g ∗ δ)′(z)
≺ h(z).

Polya-Schoenberg [41] conjectured that the class K of convex functions is

preserved under convolution with convex functions:

f, g ∈ K ⇒ f ∗ g ∈ K.

In 1973, Ruscheweyh and Sheil-Small [54] proved the Polya-Schoenberg conjecture.

In fact, they proved that the classes of convex functions, starlike functions and close-

to-convex functions are closed under convolution with convex functions. For an in-

teresting development on these ideas, see Ruscheweyh [53] (and also Duren [16, pp.

246–258], as well as Goodman [19, pp. 129-130]). Using the techniques developed in

Ruscheweyh [53], several authors [4, 7, 8, 9, 10, 21, 23, 32, 33, 34, 39, 38, 40,

47, 45, 51, 55, 57, 58] have proved that their classes are closed under convolution

with convex (and other related) functions.

In this chapter, convolution properties as well as inclusion and related properties

are investigated for the general classes of p-valent functions defined above. These

classes are of course extensions of the classes of convex, starlike, close-to-convex, α-

convex, and quasi-convex functions. The results obtained here extend the well-known

convolution properties of p-valent functions.

The following definition and results are needed to prove our main results. For

α ≤ 1, the class Rα of prestarlike functions of order α consists of functions f ∈ A

6



satisfying  f ∗ z
(1−z)2−2α ∈ S∗(α), (α < 1);

<f(z)
z
> 1

2
, (α = 1)

where S∗(α) is the class introduced by Ma and Minda [28].

Theorem 2.1.1. [53, Theorem 2.4] Let α ≤ 1, f ∈ Rα and g ∈ S∗(α).

Then for any analytic function H ∈ H(U),

f ∗Hg
f ∗ g

(U) ⊂ co(H(U))

where co(H(U)) denotes the closed convex hull of H(U).

Theorem 2.1.2. [17, 31] Let β, ν ∈ C, and h ∈ H(U) be convex univalent

in U , with <(βh(z) + ν) > 0. If p is analytic in U with p(0) = h(0), then

p(z) +
zp′(z)

βp(z) + ν
≺ h(z) ⇒ p(z) ≺ h(z).

Theorem 2.1.3. [31, Theorem 3.2b] Let h ∈ H(U) be convex univalent in

U with h(0) = a. Suppose that the differential equation

q(z) +
zq′(z)

βq(z) + ν
= h(z)

has a univalent solution q that satisfies q(z) ≺ h(z). If p(z) = a+ a1z+ · · · satisfies

p(z) +
zp′(z)

βp(z) + ν
≺ h(z),

then p(z) ≺ q(z), and q is the best dominant.

Theorem 2.1.4. [31, Theorem 3.1a] Let h be convex in U and let P : U → C,

with <P (z) > 0. If p is analytic in U, then

p(z) + P (z)zp′(z) ≺ h(z) ⇒ p(z) ≺ h(z).

We will also be using the following convolution properties.

7



(i) For two functions f and g of the forms f(z) = zp +
∑∞

n=p+1 anz
n and g(z) =

zp +
∑∞

n=p+1 bnz
n, we have

(f ∗ g)(z) = (g ∗ f)(z).

Proof. For f and g as given, we have

(f ∗ g)(z) = zp +
∞∑

n=p+1

anbnz
n

= zp +
∞∑

n=p+1

bnanz
n

= (g ∗ f)(z). �

(ii) For two functions f and g of the forms f(z) = zp +
∑∞

n=p+1 anz
n and g(z) =

zp +
∑∞

n=p+1 bnz
n, we have

1

p
z(g ∗ f)′(z) = (g ∗ 1

p
zf ′)(z).

Proof. For f of the given form, we have

1

p
zf ′(z) = zp +

∞∑
n=p+1

1

p
nanz

n

and hence

(g ∗ 1

p
zf ′)(z) = zp +

∞∑
n=p+1

1

p
nanbnz

n

=
1

p
z

(
pzp−1 +

∞∑
n=p+1

nanbnz
n−1

)

=
1

p
z(g ∗ f)′(z). �

(iii) For two functions f and g of the forms f(z) = zp +
∑∞

n=p+1 anz
n and g(z) =

zp +
∑∞

n=p+1 bnz
n, we have

(g ∗ f)(z)

zp−1
= (

g

zp−1
∗ f

zp−1
)(z).

8



Proof. For

(g ∗ f)(z) = zp +
∞∑

n=p+1

anbnz
n,

we observe that

(g ∗ f)(z)

zp−1
=

1

zp−1

(
zp +

∞∑
n=p+1

anbnz
n

)

= z +
1

zp−1

∞∑
n=p+1

anbnz
n

=
g(z)

zp−1
∗ f(z)

zp−1
. �

2.2. INCLUSION AND CONVOLUTION THEOREMS

Every convex univalent function is starlike or equivalently K ⊂ S∗, and Alexan-

der’s theorem gives f ∈ K if and only if zf ′ ∈ S∗. These properties remain valid

even for multivalent functions.

Theorem 2.2.1. Let g be a fixed function in Ap and h be a convex univalent

function with positive real part and h(0) = 1. Then

(i) Kp,g(h) ⊆ Sp,g(h),

(ii) f ∈ Kp,g(h) if and only if 1
p
zf ′ ∈ Sp,g(h).

Proof. (i) Since (f ∗ g)(z)/zp 6= 0, the function q defined by

q(z) =
1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
,

is analytic in U . By some computations we have,

zq′(z)

q(z)
= 1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)
− z(g ∗ f)′(z)

(g ∗ f)(z)

= 1 +
z(g ∗ f)′′(z)

(g ∗ f)′(z)
− pq(z).

Equivalently, we have

pq(z) +
zq′(z)

q(z)
= 1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)
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and satisfies

(2.2.1) q(z) +
1

p

zq′(z)

q(z)
=

1

p

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
.

If f ∈ Kp,g(h), the right-hand side of (2.2.1) is subordinate to h. It follows from

Theorem 2.1.2 that q(z) ≺ h(z), and thus Kp,g(h) ⊆ Sp,g(h).

(ii) Since

1

p

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
=

1

p

[
(g ∗ f)′(z) + z(g ∗ f)′′(z)

(g ∗ f)′(z)

]
=

1

p

[z(g ∗ f)′(z)]′(z)

(g ∗ f)′(z)

=
1

p

(g ∗ zf ′)′(z)
(g ∗ f)′(z)

=
1

p

1
p
z

1
p
z

(g ∗ zf ′)′(z)
(g ∗ f)′(z)

=
1

p

z(g ∗ 1
p
zf ′)′(z)

(g ∗ 1
p
zf ′)(z)

,

it follows that f ∈ Kp,g(h) if and only if 1
p
zf ′ ∈ Sp,g(h). �

Suppose that the differential equation

q(z) +
1

p

zq′(z)

q(z)
= h(z)

has a univalent solution q that satisfies q(z) ≺ h(z). If f ∈ Kp,g(h), then from

Theorem 2.1.3 and (2.2.1), it follows that f ∈ Sp,g(q), or equivalently Kp,g(h) ⊂

Sp,g(q).

Theorem 2.2.2. Let h be a convex univalent function satisfying the condition

(2.2.2) <h(z) > 1− 1− α

p
(0 ≤ α < 1),

and φ ∈ Ap with φ/zp−1 ∈ Rα. If f ∈ Sp,g(h), then φ ∗ f ∈ Sp,g(h).

Proof. For f ∈ Sp,g(h), let the function H be defined by

H(z) :=
1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
.
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Then H is analytic in U and H(z) ≺ h(z). Also let Φ(z) := φ(z)/zp−1 belongs to

Rα. We now show that the function G(z) := (f ∗ g)(z)/zp−1 belongs to S∗(α).

Since f ∈ Sp,g(h), and h is a convex univalent function satisfying (2.2.2), it

follows that

1

p
<
(
z(f ∗ g)′(z)
(f ∗ g)(z)

)
> 1− 1− α

p
,

and hence

<zG
′(z)

G(z)
= <

(
z(f ∗ g)′(z)
(f ∗ g)(z)

)
− p+ 1

> p− 1 + α− p+ 1

> α.

Thus G ∈ S∗(α). Since Φ ∈ Rα, G ∈ S∗(α), and h is convex, an application of

Theorem 2.1.1 shows that

(2.2.3)
(Φ ∗GH)(z)

(Φ ∗G)(z)
≺ h(z).

We have

1

p

z(g ∗ φ ∗ f)′(z)

(g ∗ φ ∗ f)(z)
=
φ(z) ∗ 1

p
z(g ∗ f)′(z)

φ(z) ∗ (g ∗ f)(z)

=
φ(z)
zp−1 ∗

1
p
z(g∗f)′(z)

zp−1

φ(z)
zp−1 ∗ (g∗f)(z)

zp−1

=
φ(z)
zp−1 ∗ (g∗f)(z)

zp−1 H(z)
φ(z)
zp−1 ∗ (g∗f)(z)

zp−1

=
(Φ ∗GH)(z)

(Φ ∗G)(z)
.

Thus the subordination (2.2.3) gives

1

p

z(g ∗ φ ∗ f)′(z)

(g ∗ φ ∗ f)(z)
≺ h(z),

which proves φ ∗ f ∈ Sp,g(h). �

Corollary 2.2.1. Let h and φ satisfy the conditions of Theorem 2.2.2. Then

Sp,g(h) ⊆ Sp,φ∗g(h).
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Proof. If f ∈ Sp,g(h), Theorem 2.2.2 yields f ∗ φ ∈ Sp,g(h), that is f ∗ φ ∗ g ∈

S∗
p(h). Hence f ∈ Sp,φ∗g(h). �

In particular, when g(z) = zp/(1− z), the following corollary is obtained.

Corollary 2.2.2. Let h and φ satisfy the conditions of Theorem 2.2.2. If

f ∈ S∗
p(h), then f ∈ S∗

p,φ(h).

Corollary 2.2.3. Let h and φ satisfy the conditions of Theorem 2.2.2. If

f ∈ Kp,g(h), then f ∗ φ ∈ Kp,g(h) and Kp,g(h) ⊆ Kp,φ∗g(h).

Proof. If f ∈ Kp,g(h), it follows from Theorem 2.2.1(ii) and Theorem 2.2.2

that 1
p
(zf ′ ∗ φ) ∈ Sp,g(h). Hence f ∗ φ ∈ Kp,g(h). The second part follows from

Corollary 2.2.1. �

Theorem 2.2.3. Let h and φ satisfy the conditions of Theorem 2.2.2. If

f ∈ Cp,g(h) with respect to ψ ∈ Sp,g(h), then φ ∗ f ∈ Cp,g(h) with respect to

φ ∗ ψ ∈ Sp,g(h).

Proof. As in the proof of Theorem 2.2.2, define the functions H, Φ and G by

H(z) :=
1

p

z(g ∗ f)′(z)

(g ∗ ψ)(z)
, Φ(z) :=

φ(z)

zp−1
, and G(z) :=

(ψ ∗ g)(z)
zp−1

.

Then Φ ∈ Rα and G ∈ S∗(α). An application of Theorem 2.1.1 shows that the

quantity
(Φ ∗GH)(z)

(Φ ∗G)(z)
lies in the closed convex hull of H(U). Since h is convex and

H ≺ h, it follows that

(2.2.4)
(Φ ∗GH)(z)

(Φ ∗G)(z)
≺ h(z).
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Observe that

1

p

z(g ∗ φ ∗ f)′(z)

(g ∗ φ ∗ ψ)(z)
=
φ(z) ∗ 1

p
z(g ∗ f)′(z)

φ(z) ∗ (g ∗ ψ)(z)

=
φ(z)
zp−1 ∗

1
p
z(g∗f)′(z)

zp−1

φ(z)
zp−1 ∗ (g∗ψ)(z)

zp−1

=
φ(z)
zp−1 ∗ (g∗ψ)(z)

zp−1 H(z)
φ(z)
zp−1 ∗ (g∗ψ)(z)

zp−1

=
(Φ ∗GH)(z)

(Φ ∗G)(z)
.

Thus, the subordination (2.2.4) shows that φ ∗ f ∈ Cp,g(h) with respect to φ ∗ ψ ∈

Sp,g(h). �

Corollary 2.2.4. If h and φ satisfy the conditions of Theorem 2.2.2, then

Cp,g(h) ⊆ Cp,φ∗g(h).

Proof. From Theorem 2.2.3, for a function f ∈ Cp,g(h) with respect to ψ ∈

Sp,g(h), we have

1

p

z(g ∗ φ ∗ f)′(z)

(g ∗ φ ∗ ψ)(z)
≺ h(z).

Thus, f ∈ Cp,φ∗g(h), and hence Cp,g(h) ⊆ Cp,φ∗g(h). �

Theorem 2.2.4. Let h be a convex univalent function with positive real part

and h(0) = 1. Then

(i) Kγ
p,g(h) ⊆ Sp,g(h) for γ > 0,

(ii) Kγ
p,g(h) ⊆ Kβ

p,g(h) for γ > β ≥ 0,

where Kγ
p,g(h) is defined in Definition 2.1.3.

Proof. (i) Let

Jp,g(γ; f(z)) :=
γ

p

[
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

]
+

(1− γ)

p

[
z(g ∗ f)′(z)

(g ∗ f)(z)

]
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and the function q(z) be defined by

q(z) :=
1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
.

Note that

Jp,g(γ; f(z)) =
γ

p

[
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

]
+

(1− γ)

p

[
z(g ∗ f)′(z)

(g ∗ f)(z)

]
= γ

(
q(z) +

1

p

zq′(z)

q(z)

)
+ (1− γ)q(z)

= q(z) +
γzq′(z)

pq(z)
.(2.2.5)

Let f ∈ Kγ
p,g(h), so Jp,g(γ; f(z)) ≺ h(z). Now an application of Theorem 2.1.2

shows that q(z) ≺ h(z). Hence f ∈ Sp,g(h).

(ii) The case β = 0 is contained in (i), so we assume β > 0. We define q(z) as

in (i), then (2.2.5) yields

(2.2.6) Jp,g(β; f(z)) = q(z) +
β

p

zq′(z)

q(z)
.

Since

Jp,g(γ; f(z)) = q(z) +
γzq′(z)

pq(z)
,

we have

(2.2.7)
1

γ
(Jp,g(γ; f(z))− q(z)) =

1

p

zq′(z)

q(z)
.

Substituting (2.2.7) in (2.2.6), we have

Jp,g(β; f(z)) = (1− β

γ
)
z(g ∗ f)′(z)

p(g ∗ f)(z)
+
β

γ
Jp,g(γ; f(z))

From part (i),

1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
≺ h(z)

and

Jp,g(γ; f(z)) ≺ h(z).

Since Jp,g(β; f(z)) is a convex combination of points in h(U), and h is convex, it

follows that Jp,g(β; f(z)) ≺ h(z), proving that f ∈ Kβ
p,g(h). �
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Theorem 2.2.5. Let h be a convex univalent function with positive real part

and h(0) = 1. Then

(i) Kp,g(h) ⊆ Qp,g(h) ⊆ Cp,g(h),

(ii) f ∈ Qp,g(h) if and only if 1
p
zf ′ ∈ Cp,g(h).

Proof. (i) By taking f = δ, it follows from the definition that Kp,g(h) ⊆

Qp,g(h). To prove the middle inclusion, let

q(z) =
1

p

z(g ∗ f)′(z)

(g ∗ δ)(z)
.

By logarithmic differentiation and multiplication of z, we have

zq′(z)

q(z)
= 1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)
− z(g ∗ δ)′(z)

(g ∗ δ)(z)
.

Rewriting the equation,

zq′(z) = q(z) +
z(g ∗ f)′′(z)

(g ∗ f)′(z)
q(z)− z(g ∗ δ)′(z)

(g ∗ δ)(z)
q(z)

z(g ∗ δ)′(z)
(g ∗ δ)(z)

q(z) + zq′(z) = q(z) +
z(g ∗ f)′′(z)

(g ∗ f)′(z)
q(z)

q(z) +
zq′(z)
z(g∗δ)′(z)
(g∗δ)(z)

=
(g ∗ δ)(z)
z(g ∗ δ)′(z)

q(z) +
z(g ∗ f)′′(z)

(g ∗ f)′(z)
q(z) · (g ∗ δ)(z)

z(g ∗ δ)′(z)
.

Substituting q(z) = 1
p
z(g∗f)′(z)
(g∗δ)(z) on the right-hand side of the above equation, we have

q(z) +
zq′(z)
z(g∗δ)′(z)
(g∗δ)(z)

=
1

p

z(g ∗ f)′(z)

(g ∗ δ)′(z)
+

1

p

z(g ∗ f)′′(z)

(g ∗ δ)′(z)
.

The above computations shows that

(2.2.8) q(z) +
zq′(z)
z(g∗δ)′(z)
(g∗δ)(z)

=
1

p

[z(g ∗ f)′(z)]′(z)

(g ∗ δ)′(z)
.

If f ∈ Qp,g(h), then there exists a function δ ∈ Kp,g(h) such that the expression

on the right-hand side of (2.2.8) is subordinate to h(z). Also δ ∈ Kp,g(h) ⊆ Sp,g(h)

implies < z(g∗δ)′(z)
(g∗δ) > 0. Hence, an application of Theorem 2.1.4 to (2.2.8) yields

q(z) ≺ h(z). This shows that f ∈ Cp,g(h).
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(ii) It is easy to see that

1

p

[z(g ∗ f)′(z)]′(z)

(g ∗ δ)′(z)
=

1

p

(g ∗ zf ′)′(z)
(g ∗ δ)′(z)

·
1
p
z

1
p
z

=
1

p

z(g ∗ 1
p
zf ′)′(z)

(g ∗ 1
p
zδ′)(z)

.(2.2.9)

Now if f ∈ Qp,g(h) with respect to a function δ ∈ Kp,g(h), then the expression on

the left-hand side of (2.2.9) is subordinate to h(z). Now by Theorem 2.2.1(ii) and

definition of Cp,g(h), we get 1
p
zf ′ ∈ Cp,g(h).

Conversely, if 1
p
zf ′ ∈ Cp,g(h), then there exists a function δ1 ∈ Sp,g(h) such

that 1
p
zδ′ = δ1. The expression on the right-hand side of (2.2.9) is subordinate to

h(z) and thus f ∈ Qp,g(h). �

Corollary 2.2.5. Let h and φ satisfy the conditions of Theorem 2.2.2. If

f ∈ Qp,g(h), then φ ∗ f ∈ Qp,g(h).

Proof. If f ∈ Qp,g(h), then by Theorem 2.2.5(ii), 1
p
zf ′ ∈ Cp,g(h). Theorem

2.2.3 shows that 1
p
z(φ ∗ f)′ ∈ Cp,g(h), and by Theorem 2.2.5(ii), we have φ ∗ f ∈

Qp,g(h). �

Corollary 2.2.6. If h and φ satisfy the conditions of Theorem 2.2.2, then

Qp,g(h) ⊆ Qp,φ∗g.

Proof. If f ∈ Qp,g(h), Corollary 2.2.5 yields f ∗ φ ∈ Qp,g(h) with respect to

φ ∗ δ ∈ Kp,g(h). The subordination

1

p

[z(g ∗ φ ∗ f)′(z)]′

(g ∗ φ ∗ δ)′(z)
≺ h(z)

gives f ∈ Qp,g∗φ. Therefore, Qp,g(h) ⊆ Qp,g∗φ. �

A function is prestarlike of order 0 if f(z)∗(z/(1−z)2) is starlike, or equivalently

if f is convex. Thus, the class of prestarlike functions of order 0 is the class of convex
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functions, and therefore the results obtained in this chapter contains the results of

Shanmugam [55] for the special case p = 1 and α = 0.

Example 2.2.1. Let p = 1, g(z) = z/(1 − z), and α = 0. For h(z) = (1 +

z)/(1−z), Theorem 2.2.1 reduces to the following: K ⊆ S∗ and f ∈ K ⇔ zf ′ ∈ S∗.

Also Theorem 2.2.2 reduces to f ∈ S∗, g ∈ K ⇒ f ∗g ∈ S∗, and Corollary 2.23 shows

that the class of convex functions is closed under convolution with convex functions.

For

h(z) = 1 +
2

π2

[
log

1 +
√
z

1−
√
z

]2

,

the results obtained imply that UCV ⊆ Sp and f ∈ UCV ⇔ zf ′ ∈ Sp, where UCV

and Sp are the classes of uniformly convex functions and parabolic starlike functions

[51, 50]. It also follows as special cases that the classes Sp and UCV are closed under

convolution with convex functions.
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CHAPTER 3

THE FEKETE-SZEGÖ COEFFICIENT FUNCTIONAL FOR

TRANSFORMS OF ANALYTIC FUNCTIONS

3.1. MOTIVATION AND PRELIMINARIES

For a univalent function in the class A, it is well known that the n-th coefficient

is bounded by n. The bounds for the coefficients give information about the geomet-

ric properties of these functions. For example, the bound for the second coefficient

of normalized univalent functions readily yields the growth and distortion bounds for

univalent functions. The Fekete-Szegö coefficient functional also arise in the inves-

tigation of univalency of analytic functions. Several authors have investigated the

Fekete-Szegö functional for functions in various subclasses of univalent and multiva-

lent functions [1, 7, 5, 2, 11, 14, 13, 15, 22, 25, 35, 36, 44, 46, 56], and more

recently by Choi, Kim, and Sugawa [12].

Ma and Minda [28] gave a unified treatment of various subclasses consisting

of starlike and convex functions for which either the quantity zf ′(z)/f(z) or 1 +

zf ′′(z)/f ′(z) is subordinate to a more general superordinate function. In fact, they

considered the analytic function ϕ with positive real part in the unit disk U , ϕ(0) = 1,

ϕ′(0) > 0, and ϕ maps U onto a region starlike with respect to 1 and symmetric with

respect to the real axis.

The unified class S∗(ϕ) introduced by Ma and Minda [28] consists of starlike

functions and they also investigated the corresponding classK(ϕ) of convex functions,

for f ∈ A satisfying

zf ′(z)

f(z)
≺ ϕ(z), (z ∈ U)
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and

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z)

respectively. Ma and Minda [28] obtained subordination results, distortion, growth

and rotation theorems. They also obtained estimates for the first few coefficients and

determined bounds for the associated Fekete-Szegö functional. A function f ∈ S∗(ϕ)

is said to be starlike function with respect to ϕ, and a function f ∈ K(ϕ) is a convex

function with respect to ϕ.

The unified treatment of various subclasses of starlike and convex functions by

Ma and Minda [28] motivates one to consider similar classes defined by subordination.

In this chapter, we consider the following classes of functions which have been defined

earlier by several authors in [27], [37], [42] [43], [48].

Rb(ϕ) :=

{
f ∈ A : 1 +

1

b
(f ′(z)− 1) ≺ ϕ(z)

}
,

S∗(α, ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ ϕ(z)

}
,

L(α, ϕ) :=

{
f ∈ A :

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)1−α

≺ ϕ(z)

}
,

M(α, ϕ) :=

{
f ∈ A : (1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
,

where b ∈ C \ {0}, and α ≥ 0. Some coefficient problems for functions f belonging

to certain classes of p-valent functions were investigated in [5].

For a univalent function f(z) of the form

(3.1.1) f(z) = z +
∞∑
n=2

anz
n,

the k-th root transform is defined by

(3.1.2) F (z) := [f(zk)]1/k = z +
∞∑
n=1

bkn+1z
kn+1.
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In Section 3.2, sharp bounds for the Fekete-Szegö coefficient functional
∣∣b2k+1 − µb2k+1

∣∣
associated with the k-th root transform of the function f belonging to the above men-

tioned classes are derived. In Section 3.3, a similar problem is investigated for functions

G where G(z) := z/f(z) and the function f belongs to the above mentioned classes.

Let Ω be the class of analytic functions w, normalized by w(0) = 0, and satisfy-

ing the condition |w(z)| < 1. The following two lemmas regarding the coefficients of

functions in Ω are needed to prove our main results. Lemma 3.1.1 is a reformulation

of the corresponding result for functions with positive real part due to Ma and Minda

[28].

Lemma 3.1.1. [5] If w ∈ Ω and

(3.1.3) w(z) := w1z + w2z
2 + · · · (z ∈ U),

then

|w2 − tw2
1| ≤


−t if t ≤ −1

1 if − 1 ≤ t ≤ 1

t if t ≥ 1.

When t < −1 or t > 1, equality holds if and only if w(z) = z or one of its rotations.

If −1 < t < 1, equality holds if and only if w(z) = z2 or one of its rotations. Equality

holds for t = −1 if and only if w(z) = z λ+z
1+λz

(0 ≤ λ ≤ 1) or one of its rotations,

while for t = 1, equality holds if and only if w(z) = −z λ+z
1+λz

(0 ≤ λ ≤ 1) or one of

its rotations.

Lemma 3.1.2. [22] If w ∈ Ω, then

|w2 − tw2
1| ≤ max{1; |t|},

for any complex number t. The result is sharp for the functions w(z) = z2 or

w(z) = z.
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3.2. COEFFICIENT BOUNDS FOR THE k-TH ROOT

TRANSFORMATION

In the first theorem below, the bound for the coefficient functional |b2k+1 −

µb2k+1| corresponding to the k-th root transformation of starlike functions with respect

to ϕ is given. Notice that the classes S∗(α, ϕ), L(α, ϕ) and M(α, ϕ) reduce to the

class S∗(ϕ) for appropriate choice of the parameters. Although Theorem 3.2.1 is

contained in the corresponding results for the classes S∗(α, ϕ), L(α, ϕ) and M(α, ϕ),

it is stated and proved separately here because of its importance in its own right as

well as to illustrate the main ideas.

Theorem 3.2.1. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · and

σ1 :=
1

2

[
k

B1

(
B2

B1

− 1

)
+ 1

]
, σ2 :=

1

2

[
k

B1

(
B2

B1

+ 1

)
+ 1

]
.

If f given by (3.1.1) belongs to S∗(ϕ), and F is the k-th root transformation of f

given by (3.1.2), then

∣∣b2k+1 − µb2k+1

∣∣ ≤


B2
1

2k2
(1− 2µ) +

B2

2k
, if µ ≤ σ1,

B1

2k
, if σ1 ≤ µ ≤ σ2,

−B2
1

2k2
(1− 2µ)− B2

2k
, if µ ≥ σ2,

and for µ complex,

∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k
max

{
1;

∣∣∣∣B1

k
(1− 2µ) +

B2

B1

∣∣∣∣} .
Proof. If f ∈ S∗(ϕ), then there is an analytic function w ∈ Ω of the form

(3.1.3) such that

(3.2.1)
zf ′(z)

f(z)
= ϕ(w(z)).
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Since

zf ′(z)

f(z)
=
z(1 + 2a2z + 3a3z

2 + . . .)

z + a2z2 + a3z3 + . . .
=

1 + 2a2z + 3a3z
2 + . . .

1 + a2z + a3z2 + . . .

= (1 + 2a2z + 3a3z
2 + . . .)[1− (a2z + a3z

2 + . . .) + (a2z + a3z
2 + . . .)2 − . . .]

= 1 + a2z + (−a2
2 + 2a3)z

2 + (3a4 − 3a2a3 + a3
2)z

3 + . . .

and

ϕ(w(z)) = 1 +B1(w1z + w2z
2 + . . .) +B2(w1z + w2z

2 + . . .)2 + . . .

= 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + . . . ,

it follows from (3.2.1) that

(3.2.2) a2 = B1w1

and

(3.2.3) a3 =
1

2
[B1w2 + (B2 +B2

1)w
2
1].

For a function f given by (3.1.1), we have

[f(zk)]1/k = [zk + a2z
2k + a3z

3k + . . .]1/k

= [zk(1 + a2z
k + a3z

2k + . . .)]1/k

= z

[
1 +

1

k
(a2z

k + a3z
2k + . . .) +

1− k

2k2
(a2z

k + a3z
2k + . . .)2 + . . .

]
= z +

1

k
a2z

k+1 +

(
1

k
a3 −

1

2

k − 1

k2
a2

2

)
z2k+1 + · · · .(3.2.4)

The equations (3.1.2) and (3.2.4) yield

(3.2.5) bk+1 =
1

k
a2,

and

(3.2.6) b2k+1 =
1

k
a3 −

1

2

k − 1

k2
a2

2.
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On substituting for a2 and a3 in (3.2.5) and (3.2.6) from (3.2.2) and (3.2.3),

it follows that

bk+1 =
B1w1

k

and

b2k+1 =
1

2k

[
B1w2 +B2w

2
1 +

B2
1w

2
1

k

]
,

and hence

b2k+1 − µb2k+1 =
B1

2k

{
w2 −

[
−B1

k
(1− 2µ)− B2

B1

]
w2

1

}
.

The first half of the result is established by an application of Lemma 3.1.1.

If −B1

k
(1− 2µ)− B2

B1
≤ −1, then

µ ≤ 1

2

[
k

B1

(
B2

B1

− 1

)
+ 1

]
(µ ≤ σ1),

and Lemma 3.1.1 gives

∣∣b2k+1 − µb2k+1

∣∣ ≤ B2
1

2k2
(1− 2µ) +

B2

2k
.

For −1 ≤ −B1

k
(1− 2µ)− B2

B1
≤ 1, we have

1

2

[
k

B1

(
B2

B1

− 1

)
+ 1

]
≤ µ ≤ 1

2

[
k

B1

(
B2

B1

+ 1

)
+ 1

]
(σ1 ≤ µ ≤ σ2),

and Lemma 3.1.1 yields ∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k
.

For −B1

k
(1− 2µ)− B2

B1
≥ 1, we have

µ ≥ 1

2

[
k

B1

(
B2

B1

+ 1

)
+ 1

]
(µ ≥ σ2),

and it follows from Lemma 3.1.1 that

∣∣b2k+1 − µb2k+1

∣∣ ≤ −B2
1

2k2
(1− 2µ)− B2

2k
.
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The second half of the result follows by an application of Lemma 3.1.2:

∣∣b2k+1 − µb2k+1

∣∣ =
B1

2k

∣∣∣∣w2 −
[
−B1

k
(1− 2µ)− B2

B1

]
w2

1

∣∣∣∣
≤ B1

2k
max

{
1;

∣∣∣∣B1

k
(1− 2µ) +

B2

B1

∣∣∣∣} . �

Remark 3.2.1.

(1) In view of the Alexander result [3] that f ∈ K(ϕ) if and only if zf ′ ∈ S∗(ϕ),

the estimate for
∣∣b2k+1 − µb2k+1

∣∣ for a function in K(ϕ) can be obtained from

the corresponding estimates in Theorem 3.2.1 for functions in S∗(ϕ).

(2) For k = 1, the k-th root transformation of f reduces to the given function

f itself. Thus, the estimate given in equation (3.2.1) of Theorem 3.2.1

is an extension of the corresponding result for the Fekete-Szegö coefficient

functional corresponding to functions starlike with respect to ϕ. Similar

remark applies to the other results in this section.

The well-known Noshiro-Warschawski theorem states that a function f ∈ A

with positive derivative in U is univalent. The classRb(ϕ) of functions defined in terms

of the subordination of the derivative f ′ is closely associated with the class of functions

with positive real part. The bound for the Fekete-Szegö functional corresponding to

the k-th root transformation of functions in Rb(ϕ) is given in Theorem 3.2.2.

Theorem 3.2.2. Let ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f given by

(3.1.1) belongs to Rb(ϕ), and F is the k-th root transformation of f given by (3.1.2),

then

∣∣b2k+1 − µb2k+1

∣∣ ≤ |b|B1

3k
max

{
1;

∣∣∣∣3bB1

4

(
1

2
− 1

2k
+
µ

k

)
− B2

B1

∣∣∣∣} .
Proof. If f ∈ Rb(ϕ), then there is an analytic function w(z) = w1z + w2z

2 +

· · · ∈ Ω such that

(3.2.7) 1 +
1

b
(f ′(z)− 1) = ϕ(w(z)).
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Since

1 +
1

b
(f ′(z)− 1) = 1 +

1

b

[
2a2z + 3a3z

2 + . . .
]

= 1 +
2

b
a2z +

3

b
a3z

2 + . . .

and

ϕ(w(z)) = 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + . . . ,

it follows from (3.2.7) that

(3.2.8) a2 =
bB1w1

2

and

(3.2.9) a3 =
b

3
(B1w2 +B2w

2
1).

By using (3.2.8) and (3.2.9) in (3.2.5) and (3.2.6), it follows that

bk+1 =
bB1w1

2k

and

b2k+1 =
bB1w2

3k
+
bB2w

2
1

3k
− b2B2

1w
2
1

8k
+
b2B2

1w
2
1

8k2
,

and hence

(3.2.10) b2k+1 − µb2k+1 =
bB1

3k

{
w2 −

[
3bB1

4

(
1

2
− 1

2k
+
µ

k

)
− B2

B1

]
w2

1

}
.

Applying Lemma 3.1.2 yields

∣∣b2k+1 − µb2k+1

∣∣ =
|b|B1

3k

∣∣∣∣w2 −
[
3bB1

4

(
1

2
− 1

2k
+
µ

k

)
− B2

B1

]
w2

1

∣∣∣∣
≤ |b|B1

3k
max

{
1;

∣∣∣∣3bB1

4

(
1

2
− 1

2k
+
µ

k

)
− B2

B1

∣∣∣∣} . �

Remark 3.2.2. When k = 1 and

ϕ(z) =
1 + Az

1 +Bz
(−1 ≤ B ≤ A ≤ 1),

Theorem 3.2.2 reduces to a result in [15, Theorem 4, p. 894].
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We consider the special case of functions f ∈ A having positive derivatives, in

particular, functions f satisfying the subordination f ′(z) ≺ ϕ(z). The class of such

functions is the special case of the class Rb(ϕ) when b = 1. In fact, when b = 1,

equation (3.2.10) becomes

b2k+1 − µb2k+1 =
B1

3k

{
w2 −

[
3B1

4

(
1

2
− 1

2k
+
µ

k

)
− B2

B1

]
w2

1

}
.

Lemma 3.1.1 now yields the following.

Corollary 3.2.1. If f ∈ A satisfies f ′(z) ≺ ϕ(z), then

∣∣b2k+1 − µb2k+1

∣∣ ≤


−B2
1

4k

(
1

2
− 1

2k
+
µ

k

)
+
B2

3k
, if µ ≤ σ1,

B1

3k
, if σ1 ≤ µ ≤ σ2,

B2
1

4k

(
1

2
− 1

2k
+
µ

k

)
− B2

3k
, if µ ≥ σ2

where

σ1 :=
4kB2

3B2
1

− 4k

3B1

− k

2
+

1

2
and σ2 :=

4kB2

3B2
1

+
4k

3B1

− k

2
+

1

2
.

The following result gives the bounds for the Fekete-Szegö coefficient functional

corresponding to the k-th root transformation of functions in the class S∗(α, ϕ).

Theorem 3.2.3. Let ϕ(z) = 1+B1z+B2z
2 +B3z

3 + · · · . Further define σ1,

σ2 and υ by

σ1 :=
k(1 + 2α)2

2B1(1 + 3α)

[
B1

(1 + 2α)
+
B2

B1

− B1(k − 1)(1 + 3α)

(1 + 2α)2
− 1

]
,

σ2 :=
k(1 + 2α)2

2B1(1 + 3α)

[
B1

(1 + 2α)
+
B2

B1

− B1(k − 1)(1 + 3α)

(1 + 2α)2
+ 1

]
,

υ :=
B1

(1 + 2α)

[
(k − 1)(1 + 3α)

k(1 + 2α)
+

2µ(1 + 3α)

k(1 + 2α)
− 1

]
− B2

B1

.
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If f given by (3.1.1) belongs to S∗(α, ϕ), and F is k-th root transformation of f

given by (3.1.2), then

∣∣b2k+1 − µb2k+1

∣∣ ≤


− B1

2k(1 + 3α)
υ, if µ ≤ σ1,

B1

2k(1 + 3α)
, if σ1 ≤ µ ≤ σ2,

B1

2k(1 + 3α)
υ, if µ ≥ σ2,

and for µ complex, ∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k(1 + 3α)
max {1; |υ|} .

Proof. If f ∈ S∗(α, ϕ), then there is an analytic function w(z) = w1z+w2z
2 +

· · · ∈ Ω such that

zf ′(z)

f(z)
+
αz2f ′′(z)

f(z)
= ϕ(w(z)).

Since

zf ′(z)

f(z)
=
z(1 + 2a2z + 3a3z

2 + . . .)

z + a2z2 + a3z3 + . . .
=

1 + 2a2z + 3a3z
2 + . . .

1 + a2z + a3z2 + . . .

= (1 + 2a2z + 3a3z
2 + . . .)[1− (a2z + a3z

2 + . . .) + (a2z + a3z
2 + . . .)2 − . . .],

we get

(3.2.11)
zf ′(z)

f(z)
= 1 + a2z + (−a2

2 + 2a3)z
2 + (3a4 − 3a2a3 + a3

2)z
3 + . . .

and since

αz2f ′′(z)

f(z)
=
αz2[2a2 + 6a3z + . . .]

z + a2z2 + a3z3 + . . .

= [2a2α+ 6a3αz + . . .][1− (a2z + a3z
2 + . . .) + (a2z + a3z

2 + . . .)2 − . . .],

we get

(3.2.12)
αz2f ′′(z)

f(z)
= 2a2αz − (2a2

2α− 6a3α)z2.

Then equations (3.2.11) and (3.2.12) yield

(3.2.13)
zf ′(z)

f(z)
+
αz2f ′′(z)

f(z)
= 1+a2(1+2α)z+[2(1+3α)a3−(1+2α)a2

2]z
2+ · · · .
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Since

ϕ(w(z)) = 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + . . . ,

equation (3.2.13) gives

(3.2.14) a2 =
B1w1

(1 + 2α)

and

(3.2.15) a3 =
1

2(1 + 3α)

[
B1w2 +B2w

2
1 +

B2
1w

2
1

(1 + 2α)

]
.

Using (3.2.14) and (3.2.15) in (3.2.5) and (3.2.6), we get

bk+1 =
1

k

B1w1

(1 + 2α)
,

and

b2k+1 =
1

2k(1 + 3α)

(
B1w2 +B2w

2
1 +

B2
1w

2
1

(1 + 2α)

)
− B2

1w
2
1

2k2(1 + 2α)2
(k − 1),

and hence

b2k+1 − µb2k+1 =
B1

2k(1 + 3α)

{
w2 −

[
B1

(1 + 2α)

(
(k − 1)(1 + 3α)

k(1 + 2α)

+
2µ(1 + 3α)

k(1 + 2α)
− 1

)
− B2

B1

]
w2

1

}
.

The first part of the result is established by applying Lemma 3.1.1.

If υ ≤ −1, then µ ≤ σ1 and hence Lemma 3.1.1 yields

∣∣b2k+1 − µb2k+1

∣∣ ≤ − B1

2k(1 + 3α)
υ.

For −1 ≤ υ ≤ 1, then σ1 ≤ µ ≤ σ2 and hence Lemma 3.1.1 yields

∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k(1 + 3α)
.

For υ ≥ 1, then µ ≥ σ2 and hence Lemma 3.1.1 yields

∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k(1 + 3α)
υ.

The second result follows by an application of Lemma 3.1.2. �
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Observe that Theorem 3.2.3 reduces to Theorem 3.2.1 when α = 0.

Theorem 3.2.4. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · and β = (1− α).

Further let

σ1 :=
k

2(α+ 3β)

[
(α+ 2β)2

B1

(
B2

B1

− 1

)
− (α+ 2β)2 − 3(α+ 4β)

2
− (k − 1)(α+ 3β)

k

]
,

σ2 :=
k

2(α+ 3β)

[
(α+ 2β)2

B1

(
B2

B1

+ 1

)
− (α+ 2β)2 − 3(α+ 4β)

2
− (k − 1)(α+ 3β)

k

]
,

υ :=
B1

(α+ 2β)2

[
(α+ 2β)2 − 3(α+ 4β)

2
+

1

k
(k − 1)(α+ 3β) +

2µ

k
(α+ 3β)

]
−B2

B1

.

If f given by (3.1.1) belongs to L(α, ϕ), and F is k-th root transformation of f given

by (3.1.2), then

(3.2.16)
∣∣b2k+1 − µb2k+1

∣∣ ≤


− B1

2k(α+ 3β)
υ, if µ ≤ σ1,

B1

2k(α+ 3β)
, if σ1 ≤ µ ≤ σ2,

B1

2k(α+ 3β)
υ, if µ ≥ σ2,

and for µ complex,

∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k(α+ 3β)
max {1; |υ|} .

Proof. If f ∈ L(α, ϕ), then there is an analytic function w(z) = w1z+w2z
2 +

· · · ∈ Ω such that

(3.2.17)

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β
= ϕ(w(z)).

We have

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a2

2)z
2 + (3a4 + a3

2 − 3a3a2)z
3 + · · ·

and therefore

(3.2.18)

(
zf ′(z)

f(z)

)α
= 1 + αa2z +

(
2αa3 +

α2 − 3α

2
a2

2

)
z2 + · · · .
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Similarly

1 +
zf ′′(z)

f ′(z)
= 1 +

z(2a2 + 6a3z + . . .)

(1 + 2a2z + 3a3z2 + . . .)

= 1 + [2a2 + 6a3z + . . .][1− (2a2z + 3a3z
2 + . . .) + (2a2z + 3a3z

2 + . . .)2 − . . .]

= 1 + 2a2z + (6a3 − 4a2
2)z

2 + · · ·

and therefore

(3.2.19)

(
1 +

zf ′′(z)

f ′(z)

)β
= 1 + 2βa2z +

(
6βa3 + 2(β2 − 3β)a2

2

)
z2 + · · · .

Thus, from (3.2.18) and (3.2.19),(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β
= 1 + (α+ 2β)a2z + [2(α+ 3β)a3

+
(α+ 2β)2 − 3(α+ 4β)

2
a2

2

]
z2 + · · · .

Since

ϕ(w(z)) = 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + . . . ,

it follows from (3.2.17) that

(3.2.20) a2 =
B1w1

(α+ 2β)

and

(3.2.21) a3 =
B1w2 +B2w

2
1

2(α+ 3β)
− [(α+ 2β)2 − 3(α+ 4β)]B2

1w
2
1

4(α+ 2β)2(α+ 3β)
.

Using (3.2.20) and (3.2.21) in (3.2.5) and (3.2.6), we get

bk+1 =
1

k

B1w1

k(α+ 2β)
,

and

b2k+1 =
B1w2

2k(α+ 3β)
+

B2w
2
1

2k(α+ 3β)
− [(α+ 2β)2 − 3(α+ 4β)]B2

1w
2
1

4k(α+ 2β)2(α+ 3β)
− B2

1w
2
1(k − 1)

2k2(α+ 2β)2
,

and hence

b2k+1 − µb2k+1 =
B1

2k(α+ 3β)

{
w2 − σw2

1

}
,
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where

σ :=
B1

(α+ 2β)2

[
(α+ 2β)2 − 3(α+ 4β)

2
+

1

k
(k − 1)(α+ 3β) +

2µ

k
(α+ 3β)

]
−B2

B1

.

The results now follow by using Lemma 3.1.1 and Lemma 3.1.2. �

Remark 3.2.3. We note that if k = 1, inequality (3.2.16) is the result estab-

lished in [44, Theorem 2.1, p.3].

For the class M(α, ϕ), we now get the following coefficient bounds:

Theorem 3.2.5. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · . Further let

σ1 :=
k

2(1 + 2α)

[
(1 + α)2

B1

(
B2

B1

− 1

)
+ (1 + 3α)− (k − 1)(1 + 2α)

]
,

σ2 :=
k

2(1 + 2α)

[
(1 + α)2

B1

(
B2

B1

+ 1

)
+ (1 + 3α)− (k − 1)(1 + 2α)

]
,

υ :=
B1

(1 + α)2

[
(k − 1)(1 + 2α) +

2µ

k
(1 + 2α)− (1 + 3α)

]
− B2

B1

.

If f given by (3.1.1) belongs to M(α, ϕ), and F is k-th root transformation of f

given by (3.1.2), then

∣∣b2k+1 − µb2k+1

∣∣ ≤


− B1

2k(1 + 2α)
υ, if µ ≤ σ1,

B1

2k(1 + 2α)
, if σ1 ≤ µ ≤ σ2,

B1

2k(1 + 2α)
υ, if µ ≥ σ2,

and for µ complex,

∣∣b2k+1 − µb2k+1

∣∣ ≤ B1

2k(1 + 2α)
max {1; |υ|} .

Proof. If f ∈M(α, ϕ), then there is an analytic function w(z) = w1z+w2z
2 +

· · · ∈ Ω such that

(3.2.22) (1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
= ϕ(w(z)).
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Since

(3.2.23) (1− α)
zf ′(z)

f(z)
= (1− α) + a2(1− α)z + (1− α)(−a2

2 + 2a3)z
2 + · · ·

and

(3.2.24) α

(
1 +

zf ′′(z)

f ′(z)

)
= α+ 2a2αz + 2α(3a3 − 2a2

2)z
2,

from equations (3.2.23) and (3.2.24), it follows that

(1−α)
zf ′(z)

f(z)
+α

(
1 +

zf ′′(z)

f ′(z)

)
= 1+(1+α)a2z+[−(1+3α)a2

2+2(1+2α)a3]z
2+. . . .

Since

ϕ(w(z)) = 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + . . . ,

it follows from equation (3.2.22) that

(3.2.25) a2 =
B1w1

(1 + α)

and

(3.2.26) a3 =
1

2(1 + 2α)

[
B1w2 +B2w

2
1 +

(1 + 3α)B2
1w

2
1

(1 + α)2

]
.

By using, (3.2.25) and (3.2.26) in (3.2.5) and (3.2.6), it follows that

bk+1 =
B1w1

k(1 + α)
,

and

b2k+1 =
1

2k(1 + 2α)

[
B1w2 +B2w

2
1 +

(1 + 3α)B2
1w

2
1

(1 + α)2

]
− B2

1w
2
1(k − 1)

2k2(1 + α)2
,

and hence

b2k+1 − µb2k+1 =
B1

2k(1 + α)
{w2 − σw2

1}

where

σ :=
B1

(1 + α)2

[
(k − 1)(1 + 2α) +

2µ

k
(1 + 2α)− (1 + 3α)

]
− B2

B1

.

The results follow from Lemma 3.1.1 and Lemma 3.1.2. �
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Remark 3.2.4. When k = 1 and α = 1, Theorem 3.2.5 reduces to a result in

[28, Theorem 3, p. 164].

3.3. THE FEKETE-SZEGÖ FUNCTIONAL ASSOCIATED WITH z/f(z)

In this section, bounds for the Fekete-Szegö coefficient functional associated

with the function G defined by

(3.3.1) G(z) =
z

f(z)
= 1 +

∞∑
n=1

dnz
n,

where f belongs to one of the classes S∗(ϕ), Rb(ϕ), S∗(α, ϕ), L(α, ϕ) and M(α, ϕ)

are investigated. Proofs of the results obtained here are similar to those proofs in

Section 3.2, and hence detailed proofs are omitted.

The following result is for functions belonging to the class S∗(ϕ).

Theorem 3.3.1. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , and

σ1 :=
1

2
− 2

B3
1

− B2

2B2
1

, σ2 :=
1

2
+

2

B3
1

− B2

2B2
1

.

If f given by (3.1.1) belongs to S∗(ϕ), and G is a function given by (3.3.1), then

∣∣d2 − µd2
1

∣∣ ≤


−1

4
B1B2 −

1

4
B3

1(2µ− 1), if µ ≤ σ1,

1

2
B1, if σ1 ≤ µ ≤ σ2,

1

4
B1B2 +

1

4
B3

1(2µ− 1), if µ ≥ σ2,

and for µ complex,

∣∣d2 − µd2
1

∣∣ ≤ 1

2
B1 max

{
1;

∣∣∣∣(1− µ)B2
1 −

1

2
(B2 +B2

1)

∣∣∣∣} .
33



Proof. Observe that

z

f(z)
=

z

z + a2z2 + a3z3

= 1− (a2z + a3z
2 + . . .) + (a2z + a3z

2 + . . .)2 − . . .

= 1− a2z + (a2
2 − a3)z

2 + · · · .(3.3.2)

Comparing coefficients of (3.3.1), and (3.3.2) yields

(3.3.3) d1 = −a2

and

(3.3.4) d2 = a2
2 − a3.

By using (3.2.2) and (3.2.3) in (3.3.3) and (3.3.4), it follows that

d1 = −B1w1

and

d2 = B2
1w

2
1 −

1

2
[B1w2 + (B2 +B2

1)w
2
1],

and hence

d2 − µd2
1 = −1

2
B1

{
w2 −

[
(1− µ)B2

1 −
1

2
(B2 +B2

1)

]
w2

1

}
.

The result is established by an application of Lemma 3.1.1. The second result follows

from Lemma 3.1.2:

∣∣d2 − µd2
1

∣∣ =
1

2
B1

∣∣∣∣w2 −
[
(1− µ)B2

1 −
1

2
(B2 +B2

1)

]
w2

1

∣∣∣∣
≤ 1

2
B1 max

{
1;

∣∣∣∣(1− µ)B2
1 −

1

2
(B2 +B2

1)

∣∣∣∣} . �

For the class Rb(ϕ), the following coefficient bound is obtained:
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Theorem 3.3.2. Let ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f given by

(3.1.1) belongs to Rb(ϕ), and G is a function given by (3.3.1), then

∣∣d2 − µd2
1

∣∣ ≤ |b|B1

3
max

{
1;

∣∣∣∣34(1− µ)bB1 −
B2

B1

∣∣∣∣} .
Proof. Using (3.2.8) and (3.2.9) in (3.3.3) and (3.3.4), it follows that

d1 = −bB1w1

2

and

d2 =
1

4
b2B2

1w
2
1 −

b

3
(B1w2 +B2w

2
1),

and hence

d2 − µd2
1 = −bB1

3

{
w2 −

[
3

4
(1− µ)bB1 −

B2

B1

]
w2

1

}
.

Lemma 3.1.2 gives

∣∣d2 − µd2
1

∣∣ =
|b|B1

3

∣∣∣∣w2 −
[
3

4
(1− µ)bB1 −

B2

B1

]
w2

1

∣∣∣∣
≤ |b|B1

3k
max

{
1;

∣∣∣∣34(1− µ)bB1 −
B2

B1

∣∣∣∣} . �

For functions with positive derivative, the above theorem becomes

Corollary 3.3.1. If f ∈ A satisfies f ′(z) ≺ ϕ(z), then

∣∣d2 − µd2
1

∣∣ ≤


1

4
(1− µ)B2

1 −
B2

3
, if µ ≤ σ1,

B1

3
, if σ1 ≤ µ ≤ σ2,

−1

4
(1− µ)B2

1 +
B2

3
, if µ ≥ σ2

where

σ1 := 1− 4

3B1

− 4B2

3B2
1

and σ2 := 1 +
4

3B1

− 4B2

3B2
1

.

The following result gives the coefficient bounds for the class S∗(α, ϕ).
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Theorem 3.3.3. Let ϕ(z) = 1+B1z+B2z
2 +B3z

3 + · · · . Further define σ1,

σ2, υ and γ by

σ1 := (1 + 2α)

[
1 +

(1 + 2α)B2

2(1 + 3α)B2
1

+
1

2(1 + 3α)
− (1 + 2α)

2(1 + 3α)B1

]

σ2 := (1 + 2α)

[
1 +

(1 + 2α)B2

2(1 + 3α)B2
1

+
1

2(1 + 3α)
+

(1 + 2α)

2(1 + 3α)B1

]
,

υ :=
2B1(1 + 3α)

(1 + 2α)2
− 2µ(1 + 3α)B1

(1 + 2α)2
+

B1

(1 + 2α)
+
B2

B1

, γ := − B1

2(1 + 3α)
.

If f given by (3.1.1) belongs to S∗(α, ϕ), and G is a function given by (3.3.1), then

∣∣d2 − µd2
1

∣∣ ≤


B1

2(1 + 3α)
υ, if µ ≤ σ1,

B1

2(1 + 3α)
, if σ1 ≤ µ ≤ σ2,

− B1

2(1 + 3α)
υ, if µ ≥ σ2,

and for µ complex, ∣∣d2 − µd1
2
∣∣ ≤ B1

2(1 + 3α)
max {1; |υ|} .

Proof. By using the relations (3.2.14) and (3.2.15) in (3.3.3) and (3.3.4), it

follows that

d1 = − B1w1

(1 + 2α)
,

and

d2 =
B2

1w
2
1

(1 + 2α)2
− 1

2(1 + 3α)

(
B1w2 +B2w

2
1 +

B2
1w

2
1

(1 + 2α)

)
,

and hence

d2−µd2
1 = − B1

2(1 + 3α)

{
w2 −

[
2B1(1 + 3α)

(1 + 2α)2
− 2µ(1 + 3α)B1

(1 + 2α)2
+

B1

(1 + 2α)
+
B2

B1

]
w2

1

}
.

The result is established by an application of Lemma 3.1.1. The second result follows

by an application of Lemma 3.1.2:∣∣d2 − µd2
1

∣∣ =
B1

2(1 + 3α)

∣∣∣∣w2 −
[
2B1(1 + 3α)

(1 + 2α)2
− 2µ(1 + 3α)B1

(1 + 2α)2
+

B1

(1 + 2α)
+
B2

B1

]
w2

1

∣∣∣∣
≤ B1

2(1 + 3α)
max {1; |υ|} . �
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For the class L(α, ϕ), we now get the following coefficient bounds:

Theorem 3.3.4. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · and β = (1− α).

Further let

σ1 := 1− (α+ 2β)2B2

2(α+ 3β)B2
1

+
[(α+ 2β)2 − 3(α+ 4β)](α+ 2β)

4(α+ 3β)
− 1

B1

,

σ2 := 1− (α+ 2β)2B2

2(α+ 3β)B2
1

+
[(α+ 2β)2 − 3(α+ 4β)](α+ 2β)

4(α+ 3β)
+

1

B1

,

υ := B1 −
(α+ 2β)2B2

2(α+ 3β)B1

+
[(α+ 2β)2 − 3(α+ 4β)]B1(α+ 2β)

4(α+ 3β)
− µB1.

If f given by (3.1.1) belongs to L(α, ϕ), and G is a function given by (3.3.1), then

∣∣d2 − µd2
1

∣∣ ≤


B1υ

(α+ 2β)2
, if µ ≤ σ1,

B1

(α+ 2β)2
, if σ1 ≤ µ ≤ σ2,

− B1υ

(α+ 2β)2
, if µ ≥ σ2,

and for µ complex,

∣∣d2 − µd1
2
∣∣ ≤ B1

(α+ 2β)2
max {1; |υ|} .

Proof. Using (3.2.20) and (3.2.21) in (3.3.3) and (3.3.4), it follows that

d1 = − B1w1

(α+ 2β)
,

and

d2 =
B2

1w
2
1

(α+ 2β)2
− B2w1 +B2w

2
1

2(α+ 3β)
+

[(α+ 2β)2 − 3(α+ 4β)]B2
1w

2
1

4(α+ 2β)2(α+ 3β)
.

Hence

d2 − µd2
1 = − B1

(α+ 2β)2

{
w2 − σw2

1

}
,

where

σ := B1 −
(α+ 2β)2B2

2(α+ 3β)B1

+
[(α+ 2β)2 − 3(α+ 4β)]B1(α+ 2β)

4(α+ 3β)
− µB1.
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The result now follows from Lemma 3.1.1. The second result follows by an application

of Lemma 3.1.2: ∣∣d2 − µd2
1

∣∣ =
B1

(α+ 2β)2

∣∣w2 − σw2
1

∣∣
≤ B1

(α+ 2β)2
max {1; |σ|} . �

Finally for the class M(α, ϕ), the following coefficient bounds are obtained:

Theorem 3.3.5. Let ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · . Further let

σ1 := 1− B2(1 + α)2

2B2
1(1 + 2α)

− (1 + 3α)− (1 + α)2

2B1(1 + 2α)
,

σ2 := 1− B2(1 + α)2

2B2
1(1 + 2α)

− (1 + 3α) +
(1 + α)2

2B1(1 + 2α)
,

υ :=
2(1 + 2α)B1

(1 + α)2
− B2

B1

− 2(1 + 2α)(1 + 3α)B1

(1 + α)2
− 2µ(1 + 2α)B1

(1 + α)2
.

If f given by (3.1.1) belongs to M(α, ϕ), and G is a function given by (3.3.1), then

∣∣d2 − µd2
1

∣∣ ≤


B1

2(1 + 2α)
υ, if µ ≤ σ1,

B1

2(1 + 2α)
, if σ1 ≤ µ ≤ σ2,

− B1

2(1 + 2α)
υ, if µ ≥ σ2,

and for µ complex, ∣∣d2 − µd1
2
∣∣ ≤ B1

2(1 + 2α)
max {1; |υ|} .

Proof. Putting (3.2.25) and (3.2.26) in (3.3.3) and (3.3.4), yield

d1 = − B1w1

(1 + α)
,

and

d2 =
B2

1w
2
1

(1 + α)2
− 1

2(1 + 2α)

[
B1w2 +B2w

2
1 +

(1 + 3α)B2
1w

2
1

(1 + α)2

]
,

and hence

d2 − µd2
1 = − B1

2(1 + 2α)2

{
w2 − σw2

1

}
,
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where

σ :=
2(1 + 2α)B1

(1 + α)2
− B2

B1

− 2(1 + 2α)(1 + 3α)B1

(1 + α)2
− 2µ(1 + 2α)B1

(1 + α)2
.

The results follows from Lemma 3.1.1. The second result follows by an application

of Lemma 3.1.2: ∣∣d2 − µd2
1

∣∣ =
B1

2(1 + 2α)2

∣∣w2 − σw2
1

∣∣
≤ B1

2(1 + 2α)
max {1; |σ|} . �
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CHAPTER 4

COEFFICIENT BOUNDS FOR MEROMORPHIC STARLIKE

AND CONVEX FUNCTIONS

4.1. INTRODUCTION AND PRELIMINARIES

Let U(p) denote the class of univalent meromorphic functions f(z) in the unit

disk U with a simple pole at z = p, p > 0 and with the normalization f(0) = 0

and f ′(0) = 1. Let U∗(p, w0) be the subclass of U(p) such that f(z) ∈ U∗(p, w0)

if and only if there is a ρ, 0 < ρ < 1, with the property that < zf ′(z)
f(z)−w0

< 0 for

ρ < |z| < 1. The functions in U∗(p, w0) map |z| < r < ρ (for some ρ, p < ρ < 1)

onto the complement of a set which is starlike with respect to w0. Further the

functions in U∗(p, w0) all omit the value w0. This class of starlike meromorphic

functions is developed from Robertson’s concept of star center points [49]. Let P

denote the class of functions P (z) which are meromorphic in U and satisfy P (0) = 1

and <{P (z)} ≥ 0 for all z ∈ U .

We consider the function

A(z) ≡ QST (w0)
+ S(z) ≡ z

f ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz
.

By taking f(z) = a−1/(z − p) +
∑∞

n=0 an(z − p)n, we have

QST (w0)
= z

f ′(z)

f(z)− w0

=
−a−1z(z − p)−2 + z

∑∞
n=0 nan(z − p)n−1

a−1(z − p)−1 +
∑∞

n=0 an(z − p)n − w0

≡ −p

(z − p)
+

∞∑
n=0

Bn(z − p)n

for some coefficient Bn, (n = 0, 1, . . .).
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On the other hand,

S(z) =
p

z − p
− pz

1− pz

=
p

z − p
− p(z − p) + p2

−p(z − p) + (1− p2)

≡ p

z − p
−

∞∑
n=0

Cn(z − p)n

for some coefficient Cn, (n = 0, 1, . . .).

The function A is analytic in U because both QST (w0)
and S(z) have only one

simple pole at z = p and the residues are −p and p respectively. Since <S(eiθ) = 0,

the function S maps the boundary of the unit disk to the imaginary axis. So the

interior of the unit disk has to be mapped either to the left half plane or the right half

plane. Since A(0) = −1, we conclude that <A(z) < 0, which shows that −A(z) is

in P (z).

For f(z) ∈ U∗(p, w0), there is a function P (z) ∈ P such that

(4.1.1) z
f ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz
= −P (z)

for all z ∈ U . Let
∑∗(p, w0) denote the class of functions f(z) which satisfy (4.1.1)

and the condition f(0) = 0, f ′(0) = 1. Then U∗(p, w0) is a subset of
∑∗(p, w0).

Miller [29] proved that U∗(p, w0) =
∑∗(p, w0) for p < 2−

√
3.

Let K(p) denote the class of functions which belong to U(p) and map |z| <

r < ρ (for some p < ρ < 1) onto the complement of a convex set. If f ∈ K(p), then

there is a p < ρ < 1, such that for each z, ρ < |z| < 1

<
{

1 +
zf ′′(z)

f ′(z)

}
≤ 0.

If f ∈ K(p), then for each z in U ,

(4.1.2) <
{

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

}
≤ 0.
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Let
∑

(p) denote the class of functions f which satisfy (4.1.2) and the conditions

f(0) = 0 and f ′(0) = 1. The class K(p) is contained in
∑

(p). Royster [52] showed

that for 0 < p < 2−
√

3, if f ∈
∑

(p) and is meromorphic, then f(z) ∈ K(p). Also,

for each function f ∈
∑

(p), there is a function P ∈ P such that

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz
= −P (z).

The class U(p) and related classes have been studied in [18],[20],[24] and [26].

Several subclasses of univalent functions are characterized by the quantities

zf ′(z)/f(z) or 1 + zf ′′(z)/f ′(z) lying often in a region in the right-half plane. Ma

and Minda [28] gave a unified presentation of various subclasses of convex and starlike

functions. For an analytic function φ(z) with positive real part on U with φ(0) = 1,

φ′(0) > 0, and φ maps the unit disk U onto a region starlike with respect to 1,

symmetric with respect to the real axis, they considered the class S∗(φ) consisting of

functions f ∈ A for which zf ′(z)/f(z) ≺ φ(z) (z ∈ U). As mentioned in Chapter

2, they also investigated a corresponding class K(φ) of functions f ∈ A satisfying

1 + zf ′′(z)/f ′(z) ≺ φ(z) (z ∈ U). In the following definition, we consider the

corresponding extension for meromorphic univalent functions.

Definition 4.1.1. Let φ(z) be a function with positive real part on U with

φ(0) = 1, φ′(0) > 0, and φ maps U onto a region starlike with respect to 1, symmetric

with respect to the real axis. The class
∑∗(p, w0, φ) consists of functions f ∈ U(p)

satisfying

−
(

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

)
≺ φ(z) (z ∈ U).

The class
∑

(p, φ) consists of functions f ∈ U(p) satisfying

−
(

1 + z
f ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

)
≺ φ(z) (z ∈ U).

In this chapter, the bounds on |w0| will be determined. Also the bounds for

some coefficients of f in
∑∗(p, w0, φ) and

∑
(p, φ) will be obtained.
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4.2. COEFFICIENTS BOUND PROBLEM

To prove our main result, we need the following:

Lemma 4.2.1. [28] If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive

real part in U , then

|c2 − vc21| ≤


−4v + 2 if v ≤ 0

2 if 0 ≤ v ≤ 1

4v − 2 if v ≥ 1.

When v < 0 or v > 1, equality holds if and only if p1(z) is (1 + z)/(1− z) or one of

its rotations. If 0 < v < 1, then equality holds if and only if p1(z) is (1+z2)/(1−z2)

or one of its rotations. If v = 0, equality holds if and only if

p1(z) =

(
1

2
+

1

2
λ

)
1 + z

1− z
+

(
1

2
− 1

2
λ

)
1− z

1 + z
(0 ≤ λ ≤ 1)

or one of its rotations. If v = 1, equality holds if and only if p1 is the reciprocal of

one of the functions such that equality holds in the case of v = 0.

Theorem 4.2.1. Let φ(z) = 1 +B1z +B2z
2 + . . . and f(z) = z + a2z

2 + . . .

in |z| < p. If f ∈
∑∗(p, w0, φ), then

w0 =
2p

pB1c1 − 2p2 − 2

and

(4.2.1)
p

p2 +B1p + 1
≤ |w0| ≤

p

p2 −B1p + 1
.

Also we have

(4.2.2)

∣∣∣∣a2 +
w0

2

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ ≤


|w0||B2|
2

if |B2| ≥ B1,

|w0|B1

2
if |B2| ≤ B1.

Proof. Let p(z) be defined by

p(z) := −
[

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

]
= 1 + b1z + b2z

2 + . . . .
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We have

−
[

zf ′(z)

f(z)− w0

+
p

z − p
− pz

1− pz

]

= −

[
zf ′(z)

f(z)− w0

− 1

1− 1
p
z
− pz

1− pz

]

=
zf ′(z)

w0[1− 1
w0
f(z)]

+
1

1− 1
p
z

+
pz

1− pz

=
1

w0

(z + 2a2z
2 + 3a3z

3 + . . .)

[
1 +

1

w0

(z + a2z
2 + a3z

3 + . . .)

+
1

w2
0

(z + a2z
2 + a3z

3 + . . .)2 + . . .

]
+

[
1 +

1

p
z +

1

p2
z2 +

1

p3
z3 + . . .

]
+ pz

[
1 + pz + p2z2 + p3z3 + . . .

]
=

1

w0

[
z + (2a2 +

1

w0

)z2 + (3a3 +
2a2

w0

+
a2

w0

+
1

w2
0

)z3 + . . .

]
+

[
1 +

1

p
z +

1

p2
z2 +

1

p3
z3 + . . .

]
+ (pz + p2z2 + p3z3 + . . .)

= 1 +

(
1

w0

+
1

p
+ p

)
z +

[
1

w0

(2a2 +
1

w0

) +
1

p2

+ p2

]
z2 + . . . .

Then it follows that

b1 = p +
1

p
+

1

w0

,(4.2.3)

and

b2 = p2 +
1

p2
+

1

w2
0

+
2a2

w0

.(4.2.4)

Since φ(z) is univalent and p(z) ≺ φ(z), the function

p1(z) =
1 + φ−1(p(z))

1− φ−1(p(z))
= 1 + c1z + c2z

2 + · · ·

is analytic and has positive real part in U . Also we have

(4.2.5) p(z) = φ

(
p1(z)− 1

p1(z) + 1

)
.
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We have

p1(z)− 1

p1(z) + 1
=

c1z + c2z
2 + c3z

3 + . . .

2 + c1z + c2z2 + c3z3 + . . .

=
1

2
(c1z + c2z

2 + c3z
3 + . . .)

[
1− 1

2
(c1z + c2z

2 + c3z
3 + . . .)

+
1

4
(c1z + c2z

2 + c3z
3 + . . .)2 + . . .

]
=

1

2

[
c1z + (c2 −

1

2
c21)z

2 + (c3 − c1c2 +
1

4
c31)z

3 + . . .

]
which yields

φ

(
p1(z)− 1

p1(z) + 1

)
= 1 +B1

[
1

2
c1z +

1

2
(c2 −

1

2
c21)z

2 + . . .

]
+B2

[
1

2
c1z +

1

2
(c2 −

1

2
c21)z

2 + . . .

]2

+ . . .

= 1 +

(
1

2
B1c1

)
z +

[
1

2
B1(c2 −

1

2
c21) +

1

4
B2c

2
1

]
z2 + . . . .

From equation (4.2.5), we obtain

b1 =
1

2
B1c1(4.2.6)

and

b2 =
1

2
B1(c2 −

1

2
c21) +

1

4
B2c

2
1.(4.2.7)

From (4.2.3) and (4.2.6), we get

(4.2.8) w0 =
2p

pB1c1 − 2p2 − 2

and from (4.2.4) and (4.2.7), we obtain

(4.2.9) a2 =
w0

8
(2B1c2 −B1c

2
1 +B2c

2
1)−

p2w0

2
− w0

2p2
− 1

2w0

.

From (4.2.3) and (4.2.6), we see that

p +
1

p
+

1

w0

=
1

2
B1c1
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and since |c1| ≤ 2 for a function with positive real part, we have∣∣∣∣p +
1

p
− 1

|w0|

∣∣∣∣ ≤ ∣∣∣∣p +
1

p
+

1

w0

∣∣∣∣ ≤ 1

2
B1|c1| ≤ B1

or

−B1 ≤ p +
1

p
− 1

|w0|
≤ B1.

Rewriting the inequality we obtain

p

p2 +B1p + 1
≤ |w0| ≤

p

p2 −B1p + 1
.

To prove the second part of the results, from (4.2.9), we have∣∣∣∣a2 +
w0

2

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ =
∣∣∣w0

8

(
2B1c2 −B1c

2
1 +B2c

2
1

)∣∣∣
=
|w0|B1

4

∣∣∣∣c2 − (B1 −B2

2B1

)
c21

∣∣∣∣ .
The result now follows from Lemma 4.2.1. �

The classes
∑∗(p, w0, φ) and

∑
(p, φ) are indeed more general classes of func-

tions as can be seen from the following corollaries.

Corollary 4.2.1. [30, inequality 4, p. 447] If f ∈
∑∗(p, w0), then

p

(1 + p)2
≤ |w0| ≤

p

(1− p)2
.

Proof. Let B1 = 2 in (4.2.1) of Theorem 4.2.1. �

Corollary 4.2.2. [30, Theorem 1, p. 447] Let f ∈
∑∗(p, w0) and f(z) =

z + a2z
2 + . . . in |z| < p. Then the second coefficient a2 is given by

a2 =
1

2
w0

(
b2 − p2 − 1

p2
− 1

w2
0

)
where the region of variability for a2 is contained in the disk∣∣∣∣a2 +

1

2
w0

(
p2 +

1

p2
+

1

w2
0

)∣∣∣∣ ≤ |w0|.

Proof. Let B1 = 2 in (4.2.2) in Theorem 4.2.1. �
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The next theorem is for convex meromorphic functions.

Theorem 4.2.2. Let φ(z) = 1 +B1z +B2z
2 + . . . and f(z) = z + a2z

2 + . . .

in |z| < p. If f ∈
∑

(p, φ), then

2p2 −B1p + 2

2p
≤ |a2| ≤

2p2 +B1p + 2

2p
.

And∣∣∣∣∣a3 −
1

3

(
p2 +

1

p2

)
− 2

3
a2

2 − µ

(
a2 − p− 1

p

)2
∣∣∣∣∣ ≤


|2B2+3µB2

1 |
12

if |2B2

B1
+ 3µB1| ≥ 2,

B1

6
if |2B2

B1
+ 3µB1| ≤ 2.

Proof. Let p(z) be defined by

p(z) = −
[
1 +

zf ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

]
= 1 + b1z + b2z

2 + . . .

and p1(z) be defined as in the proof of Theorem 4.2.1. We have

−
[
1 +

zf ′′(z)

f ′(z)
+

2p

z − p
− 2pz

1− pz

]
= −1− zf ′′(z)

f ′(z)
+

2

1− 1
p
z

+
2pz

1− pz

= −1− (2a2z + 6a3z
2 + . . .)

[
1− (2a2z + 3a3z

2 + . . .) + (2a2z + 3a3z
2 + . . .)2 + . . .

]
+ 2

[
1 +

1

p
z +

1

p2
z2 + . . .

]
+ 2pz

[
1 + pz + p2z2 + . . .

]
= −1 + [−2a2z + (4a2

2 −+6a3)z
2 + . . .] + 2

[
1 +

1

p
z +

1

p2
z2 + . . .

]
+ 2pz

[
1 + pz + p2z2 + . . .

]
= 1 + 2

(
p +

1

p
− a2

)
z + 2

(
p2 +

1

p2
+ 2a2

2 − 3a3

)
z2 + . . .

which yield

(4.2.10) b1 = 2

(
p +

1

p
− a2

)
and

(4.2.11) b2 = 2

(
p2 +

1

p2
+ 2a2

2 − 3a3

)
.

47



From (4.2.6) and (4.2.10), we have

a2 = p +
1

p
− B1c1

4
.(4.2.12)

From (4.2.7) and (4.2.11), we have

a3 =
1

24

(
8p2 +

8

p2
+ 16a2

2 − 2B1c2 +B1c
2
1 −B2c

2
1

)
.(4.2.13)

Rewriting equation (4.2.12), we have

2p +
2

p
− 2a2 =

1

2
B1c1

or ∣∣∣∣2p +
2

p
− 2|a2|

∣∣∣∣ ≤ |2p +
2

p
− 2a2| ≤

1

2
B1|c1| ≤ B1

Thus we have

−B1 ≤ 2p + (2/p)− 2|a2| ≤ B1

or
2p2 −B1p + 2

2p
≤ |a2| ≤

2p2 +B1p + 2

2p
.

From (4.2.12) and (4.2.13), we obtain

a2 − p− 1

p
= −B1c1

4

a3 −
1

3

(
p2 +

1

p2

)
− 2

3
a2

2 =
1

24

(
−2B1c2 +B1c

2
1 −B2c

2
1

)
.

Hence, we have ∣∣∣∣∣a3 −
1

3

(
p2 +

1

p2

)
− 2

3
a2

2 − µ

(
a2 − p− 1

p

)2
∣∣∣∣∣

=

∣∣∣∣ 1

24

(
−2B1c2 +B1c

2
1 −B2c

2
1

)
− µ

(
B2

1c
2
1

16

)∣∣∣∣
=

∣∣∣∣−B1c2
12

+
B1c

2
1

24
− B2c

2
1

24
− µB2

1c
2
1

16

∣∣∣∣
=

∣∣∣∣−B1

12

[
c2 −

c21
2

+
B2c

2
1

2B1

+
3µB1c

2
1

4

]∣∣∣∣
=
B1

12

∣∣∣∣c2 − (1

2
− B2

2B1

− 3µB1

4

)
c21

∣∣∣∣
The result now follows from Lemma 4.2.1. �
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CONCLUSION

The work is devoted to the study of certain subclasses of univalent and multi-

valent functions in the unit disk U .

Certain general classes of multivalent starlike, convex, close-to-convex and quasi-

convex functions are introduced. These classes provide a unified treatment to various

known subclasses. Inclusion and convolution properties are derived using the methods

of convex hull and differential subordination.

Bounds for the Fekete-Szegö coefficient functional associated with the k-th root

transform [f(zk)]1/k of normalized analytic functions f defined on the open unit disk

in the complex plane are derived. A similar problem is investigated for functions

z/f(z) when f belongs to a certain class of functions.

Also, some subclasses of meromorphic univalent functions in the unit disk U

are extended. The bounds for some initial coefficients are obtained.
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