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SUBORDINASI DAN KONVOLUSI FUNGSI MULTIVALEN DAN
PENJELMAAN KAMIRAN BAK–BINTANG

ABSTRAK

Tesis ini membincangkan fungsi analisis dan fungsi multivalen yang tertakrif

pada cakera unit terbuka U . Umumnya, fungsi-fungsi tersebut diandaikan ternor-

mal, sama ada dalam bentuk

f(z) = z +
∞∑
k=2

akz
k,

atau

f(z) = zp +
∞∑
k=1

ak+pz
k+p,

dengan p integer positif tetap. Andaikan A sebagai kelas yang terdiri daripada

fungsi-fungsi f dengan penormalan pertama, manakala Ap terdiri daripada fungsi-

fungsi f dengan penormalan kedua. Tesis ini mengkaji lima masalah penyelidikan.

Pertama, andaikan f (q) sebagai terbitan peringkat ke-q bagi fungsi f ∈ Ap.

Dengan menggunakan teori subordinasi pembeza, syarat cukup diperoleh agar

rantai pembeza berikut dipenuhi:

f (q)(z)

λ(p; q)zp−q
≺ Q(z), atau

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z).

Di sini, Q ialah fungsi superordinasi yang bersesuaian, λ(p, q) = p!/(p − q)!, dan

≺ menandai subordinasi. Sebagai hasil susulan penting, beberapa kriteria sifat

univalen dan cembung diperoleh bagi kes p = q = 1.

Sifat bak-bintang terhadap titik n-lipat juga diitlakkan kepada kes fungsi mul-
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tivalen. Hal ini melibatkan fungsi-fungsi f ∈ Ap yang memenuhi subordinasi

1

p

zf ′(z)

1
n

n−1∑
k=0

εn−kf(εkz)

≺ h(z),

dengan h sebagai fungsi cembung ternormalkan yang mempunyai bahagian nyata

positif serta h(0) = 1, n integer positif tetap, dan ε memenuhi εn = 1, ε 6= 1.

Dengan cara yang serupa, kelas fungsi p-valen cembung, hampir-cembung dan

kuasicembung terhadap titik n-lipat diperkenalkan, serta juga fungsi p-valen bak-

bintang dan fungsi cembung terhadap titik simetri n-lipat, titik konjugat dan titik

konjugat simetri. Sifat rangkuman kelas dan konvolusi bagi kelas-kelas tersebut

dikaji.

Sifat mengawetkan rangkuman bagi pengoperasian kamiran juga diperluaskan.

Dua pengoperasian kamiran F : An×U2 → A dan G : An×U2 → A dibincangkan,

dengan

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U),

G(z) = Gf1,··· ,fn;z1,z2(z) = z
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U).

Pengoperasian tersebut merupakan pengitlakan hasil kajian-kajian terdahulu. Sifat

mengawetkan bak-bintang, cembung, dan hampir-cembung dikaji, bukan sahaja

bagi fungsi fj yang terletak di dalam kelas-kelas tertentu, tetapi juga bagi fungsi

fj yang terletak di dalam kelas fungsi bak-bintang ala Ma-Minda dan cembung

ala Ma-Minda.

Satu penjelmaan kamiran menarik yang mendapat perhatian pelbagai kajian
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dewasa ini ialah Vλ : A → A dengan

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt.

Di sini λmerupakan fungsi nyata tak negatif terkamirkan pada [0, 1] yang memenuhi

syarat
∫ 1

0 λ(t)dt = 1. Penjelmaan tersebut mempunyai penggunaan signifikan

dalam teori fungsi geometri. Tesis ini mengkaji sifat bak-bintang penjelmaan Vλ

pada kelas

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}

dengan menggunakan Prinsip Dual. Sebagai hasil susulan penting, nilai terbaik

β < 1 diperoleh yang mempastikan fungsi-fungsi f ∈ A yang memenuhi syarat

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

in U adalah semestinya bak-bintang pada U . Contoh-contoh penting turut diban-

gunkan sepadan dengan pilihan tertentu fungsi teraku λ.

Tesis ini diakhiri dengan memperkenalkan dua subkelas multivalen pada Ap.

Kelas-kelas tersebut terdiri daripada fungsi bak-bintang parabola teritlak per-

ingkat α jenis λ, ditandai SPp(α, λ), dan kelas fungsi cembung parabola peringkat

α jenis λ, ditandai CPp(α, λ). Kedua-dua kelas tersebut ditunjukkan tertutup ter-

hadap konvolusi dengan fungsi prabak-bintang. Turut diperoleh adalah kriteria

baru bagi fungsi-fungsi untuk terletak di dalam kelas SPp(α, λ). Jiranan- δ bagi

fungsi-fungsi di dalam kelas-kelas tersebut juga dicirikan.
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SUBORDINATION AND CONVOLUTION OF MULTIVALENT
FUNCTIONS AND STARLIKENESS OF INTEGRAL

TRANSFORMS

ABSTRACT

This thesis deals with analytic functions as well as multivalent functions de-

fined on the unit disk U . In most cases, these functions are assumed to be nor-

malized, either of the form

f(z) = z +
∞∑
k=2

akz
k,

or

f(z) = zp +
∞∑
k=1

ak+pz
k+p,

p a fixed positive integer. Let A be the class of functions f with the first nor-

malization, while Ap consists of functions f with the latter normalization. Five

research problems are discussed in this work.

First, let f (q) denote the q-th derivative of a function f ∈ Ap. Using the theory

of differential subordination, sufficient conditions are obtained for the following

differential chain to hold:

f (q)(z)

λ(p; q)zp−q
≺ Q(z), or

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z).

Here Q is an appropriate superordinate function, λ(p; q) = p!/(p − q)!, and ≺

denotes subordination. As important consequences, several criteria for univalence

and convexity are obtained for the case p = q = 1.

The notion of starlikeness with respect to n−ply points is also generalized to

xii



the case of multivalent functions. These are functions f ∈ Ap satisfying

1

p

zf ′(z)

1
n

n−1∑
k=0

εn−kf(εkz)

≺ h(z),

where h is a normalized convex function with positive real part satisfying h(0) = 1,

n a fixed positive integer, and ε satisfies εn = 1, ε 6= 1. Similar classes of p-valent

functions to be convex, close-to-convex and quasi-convex functions with respect

to n-ply points, as well as p-valent starlike and convex functions with respect to

n-ply symmetric points, conjugate points and symmetric conjugate points respec-

tively are introduced. Inclusion and convolution properties of these classes are

investigated.

Membership preservation properties of integral operators are also extended.

Two integral operators F : An × U2 → A and G : An × U2 → A are considered,

where

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U),

G(z) = Gf1,··· ,fn;z1,z2(z) = z
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U).

These operators are generalization of earlier works. Preservation properties of star-

likeness, convexity, and close-to-convexity are investigated, not only for functions

fj belonging to those respective classes, but also for functions fj in the classes of

Ma-Minda type starlike and convex functions.

An interesting integral transform that has attracted many recent works is the

transform Vλ : A → A given by

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt,
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where λ is an integrable non-negative real-valued function on [0, 1] satisfying∫ 1
0 λ(t)dt = 1. This transform has significant applications in geometric function

theory. This thesis investigates starlikeness of the transform Vλ over the class

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}

using the Duality Principle. As a significant consequence, the best value of β < 1

is obtained that ensures functions f ∈ A satisfying

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

in U are necessarily starlike. Important examples are also determined for specific

choices of the admissible function λ.

Finally, two multivalent subclasses of Ap are introduced. These classes con-

sist of generalized parabolic starlike functions of order α and type λ, denoted by

SPp(α, λ), and parabolic convex functions of order α and type λ, denoted by

CPp(α, λ). It is shown that these two classes are closed under convolution with

prestarlike functions. Additionally, a new criterion for functions to belong to the

class SPp(α, λ) is derived. We also describe the δ-neighborhood of functions be-

longing to these classes.

xiv



CHAPTER 1

INTRODUCTION

1.1 Univalent Functions

Let C be the complex plane. A function f is analytic at z0 in a domain D if it

is differentiable in some neighborhood of z0, and it is analytic on a domain D if

it is analytic at all points in D. A function f which is analytic on a domain D

is said to be univalent there if it is a one-to-one mapping on D, and f is locally

univalent at z0 ∈ D if it is univalent in some neighborhood of z0. It is evident

that f is locally univalent at z0 provided f ′(z0) 6= 0. The Riemann Mapping

theorem is an important theorem in geometric function theory. It states that every

simply connected domain which is not the whole complex plane can be mapped

conformally onto the unit disk U ={z ∈ C : |z| < 1}.

Theorem 1.1 (Riemann Mapping Theorem) [40, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D

onto the unit disk U satisfying f(ζ) = 0 and f ′(ζ) > 0.

Let H(U) be the class of analytic functions in U and H[b, n] be the subclass of

H(U) consisting of functions of the form

g(z) = b+ bnz
n + bn+1z

n+1 + · · · . (1.1)

Denote by H0 ≡ H[0, 1] and H ≡ H[1, 1]. If g ∈ H[b0, 1] is univalent in U , then

g(z) − b0 is again univalent in U as the addition of a constant only translates

the image. Since g is univalent in U , then b1 = g′(0) 6= 0, and hence f(z) =

(g(z)− b0)/b1 is also univalent in U . Conversely, if f is univalent in U , then so is

1



g. Putting bn/b1 = an, n = 1, 2, 3 · · · in (1.1) gives the normalized form

f(z) = z + a2z
2 + a3z

3 + · · · .

In the treatment of univalent analytic functions in U , it is sufficient to consider

the class A consisting of all functions f analytic in U normalized by the conditions

f(0) = 0 and f ′(0) = 1. A function f in A has a Taylor series of the form

f(z) = z +
∞∑
k=2

akz
k (z ∈ U).

The subclass of A consisting of univalent functions is denoted by S. The function

k in the class S given by

k(z) =
z

(1− z)2 =
1

4

((
1 + z

1− z

)2
− 1

)
=
∞∑
n=1

nzn (z ∈ U) (1.2)

is called the Koebe function. It maps U onto the complex plane except for a slit

along the half-line (−∞,−1/4]. The Koebe function and its rotations e−iβk(eiβz), β

∈ R (R is the set of real numbers), play a very important role in the study of S.

They often are the extremal functions for various problems in S. In 1916, Bieber-

bach [20] proved the following theorem for functions in S.

Theorem 1.2 (Bieberbach’s Theorem) [40, p. 30] If f ∈ S, then |a2| ≤ 2, with

equality if and only if f is a rotation of the Koebe function k.

In the same paper, Bieberbach conjectured that, for f ∈ S, |an| ≤ n is generally

valid. For the cases n = 3, and n = 4, the conjecture was proved respectively by

Löwner [69], and Garabedian and Schiffer [50]. Much later in 1985, de Branges

[22] proved the Bieberbach’s conjecture for all coefficients with the help of the

hypergeometric functions. Bieberbach’s theorem has important implications in

the theory of univalent functions. These include the famous covering theorem
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which states that if f ∈ S, then the image of U under f must cover the open disk

centered at the origin of radius 1/4.

Theorem 1.3 (Koebe One-Quarter Theorem) [40, p. 31] The range of every func-

tion f ∈ S contains the disk {w : |w| < 1/4}.

The Koebe function shows that the radius one-quarter is sharp. Another important

consequence of the Bieberbach’s theorem is the Distortion Theorem which provides

sharp upper and lower bounds for |f ′(z)|.

Theorem 1.4 (Distortion Theorem) [40, p. 32] For each f ∈ S,

1− r
(1 + r)3 ≤ |f

′(z)| ≤ 1 + r

(1− r)3 (|z| = r < 1).

The Distortion Theorem can be applied to obtain sharp upper and lower bounds

for |f(z)|, known as the Growth Theorem.

Theorem 1.5 (Growth Theorem) [40, p. 33] For each f ∈ S,

r

(1 + r)2 ≤ |f(z)| ≤ r

(1− r)2 (|z| = r < 1).

Again the Koebe function demonstrates sharpness of both theorems above.

Another implication of the Bieberbach’s theorem is the Rotation Theorem

which provides sharp upper bound for | arg f ′(z)|.

Theorem 1.6 (Rotation Theorem) [40, p. 99] For each f ∈ S,

| arg f ′(z)| ≤


4sin−1r (r ≤ 1√

2
),

π + log r2

1−r2 (r ≥ 1√
2
),

where r = |z| < 1. The bound is sharp for each z ∈ U .
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Figure 1.1: Starlike and convex domains

The very long gap between the Bieberbach’s conjecture [20] of 1916 and its proof in

1985 by de Branges [22] motivated researchers to work in several directions. One of

these directions was to prove the Bieberbach’s conjecture |an| ≤ n for subclasses of

S defined by geometric conditions. Among these classes are the classes of starlike

functions, convex functions, close-to-convex functions, and quasi-convex functions.

A set D ⊂ C is called starlike with respect to w0 ∈ D if the line segment joining

w0 to every other point w ∈ D lies in the interior of D (see Figure 1.1a). The set

D is called convex if for every pair of points w1 and w2 in D, the line segment

joining w1 and w2 lies in the interior of D (see Figure 1.1b). A function f ∈ A

is said to be a starlike function if f(U) is a starlike domain with respect to 0,

and f ∈ A is a convex function if f(U) is a convex domain. Analytically, these

geometric properties are respectively equivalent to the conditions [40,51,52,55,93]

Re

(
zf ′(z)

f(z)

)
> 0, and Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0,
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where Re(w) is the real part of the complex number w. The Koebe function k in

(1.2) is an example of a starlike function. The function

f(z) =
z

1− z
=
∞∑
n=1

zn

which maps U onto the half-plane {w : Rew > −1/2} is convex. The subclasses of

A consisting of starlike and convex functions are denoted respectively by ST and

CV . An important relationship between convex and starlike functions was first

observed by Alexander [5] in 1915.

Theorem 1.7 (Alexander’s Theorem) [40, p. 43] Let f ∈ A. Then f ∈ CV if and

only if zf ′ ∈ ST .

Robertson [105] in 1936 introduced the concepts of starlike and convex functions

of order α, 0 ≤ α < 1. A function f ∈ A is said to be starlike or convex of order

α if it satisfies the condition

Re

(
zf ′(z)

f(z)

)
≥ α or Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ α (0 ≤ α < 1).

These classes will be denoted respectively by ST (α) and CV(α). Evidently ST (0) =

ST and CV(0) = CV .

For 0 < α ≤ 1, Brannan and Kirwan [23] introduced the classes of strongly

starlike and strongly convex functions of order α. A function f ∈ A is said to be

strongly starlike of order α if it satisfies

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1),

and is strongly convex of order α if

∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1).
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The subclasses of A consisting of strongly starlike and strongly convex functions

of order α are denoted respectively by SST α and SCVα. Since the condition

Rew(z) > 0 is equivalent to | argw(z)| < π/2, it follows that SST 1 ≡ ST and

SCV1 ≡ CV .

In 1952, Kaplan [61] introduced the class of close-to-convex functions. A func-

tion f ∈ A is said to be close-to-convex if there is a function g ∈ CV such that

Re
(
f ′(z)/g′(z)

)
> 0 for all z ∈ U , or equivalently, if there is a function g ∈ ST

such that Re
(
zf ′(z)/g(z)

)
> 0 for all z ∈ U . The class of all close-to-convex func-

tions in A is denoted by CCV . A function f ∈ A is said to be close-to-convex of

order α, 0 ≤ α < 1, if there is a function g ∈ CV such that Re
(
f ′(z)/g′(z)

)
> α

for all z ∈ U . This class is denoted by CCVα.

Reade [104] introduced the class of strongly close-to-convex functions of order

α, 0 < α ≤ 1. A function f ∈ A is said to be strongly close-to-convex of order α

if there is function φ ∈ CV satisfying

∣∣∣∣arg
f ′(z)

φ′(z)

∣∣∣∣ ≤ απ

2
(z ∈ U , 0 < α ≤ 1).

The subclass of A consisting of strongly close-to-convex functions of order α is

denoted by SCCVα. When α = 1, SCCV1 ≡ CCV .

In 1980, Noor and Thomas [80] introduced the class of quasi-convex functions.

A function f ∈ A is said to be quasi-convex if there is a function g ∈ CV such that

Re
(
(zf ′(z))′/g′(z)

)
> 0 for all z ∈ U . The class of all quasi-convex functions in

A is denoted by QCV .

A function f ∈ A is said to be starlike with respect to symmetric points in U

if for every r less than and sufficiently close to one and every ζ on |z| = r, the

angular velocity of f(z) about the point f(−ζ) is positive at z = ζ as z traverses

6



the circle |z| = r in the positive direction, that is,

Re

(
zf ′(z)

f(z)− f(−ζ)

)
> 0 (z = ζ, |ζ| = r).

This class was introduced and studied in 1959 by Sakaguchi [115]. Let the class

of these functions be denoted by ST s. An equivalent description of this class is

given by the following theorem.

Theorem 1.8 [115] Let f ∈ A. Then f ∈ ST s if and only if

Re

(
zf ′(z)

f(z)− f(−z)

)
> 0 (z ∈ U).

Further investigations into the class of starlike functions with respect to symmetric

points can be found in [35, 79, 85, 117, 128, 130–132, 135]. El-Ashwah and Thomas

[41] introduced and studied the classes consisting of starlike functions with respect

to conjugate points, and starlike functions with respect to symmetric conjugate

points defined respectively by the conditions

Re

(
zf ′(z)

f(z) + f(z)

)
> 0, Re

(
zf ′(z)

f(z)− f(−z)

)
> 0.

Let the classes of these functions be denoted respectively by ST c and ST sc .

Ford [44] observed that convex or starlike functions inherit hereditary proper-

ties. In other words, if f ∈ S is starlike or convex, then f(Ur) is also a starlike or

a convex domain, where Ur = {z : |z| < r}.

Theorem 1.9 (Ford’s Theorem) [52, p. 114] Let f be in S. If f (U) is a convex

domain, then for each positive r < 1, f (Ur) is also a convex domain. If f (U)

is starlike with respect to the origin, then for each positive r < 1, f (Ur) is also

starlike with respect to the origin.
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It follows from the above theorem that convex (starlike) functions map circles

centered at the origin in the unit disk onto convex (starlike) area. However this

geometric property does not hold in general for circles whose centers are not at the

origin. This motivated Goodman [53, 54] to introduce the classes UCV and UST

of uniformly convex and uniformly starlike functions. An analytic function f ∈ S

is uniformly convex (uniformly starlike) if f maps every circular arc γ contained

in U with center ζ also in U onto a convex (starlike with respect to f(ζ)) arc.

Analytic descriptions of these classes are given by the following theorem.

Theorem 1.10 [53, 54] Let f ∈ A. Then

(a) f ∈ UCV if and only if

Re

(
1 + (z − ζ)

f ′′(z)

f ′(z)

)
≥ 0 ( (z, ζ) ∈ U × U) .

(b) f ∈ UST if and only if

Re
f(z)− f(ζ)

(z − ζ)f ′(z)
≥ 0 ( (z, ζ) ∈ U × U) .

Rønning [106] (also, see [70]) gave a more applicable one variable analytic charac-

terization for UCV . A normalized analytic function f ∈ A belongs to UCV if and

only if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U).

Goodman [54] gave examples that demonstrated the Alexander’s relation (Theo-

rem 1.7) does not hold between the classes UCV and UST . Later Rønning [107]

introduced the class of parabolic starlike functions PST consisting of functions
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F = zf ′ such that f ∈ UCV . It is evident that f ∈ PST if and only if

Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U).

Let

Ω = {w : Rew > |w − 1|} =
{
w : (Imw)2 < 2 Rew − 1

}
.

Clearly, Ω is a parabolic region bounded by y2 = 2x − 1. The function f ∈ UCV

if and only if
(
1 + zf ′′/f ′

)
∈ Ω. Similarly, f ∈ PST if and only if zf ′/f ∈ Ω.

For this reason, a function f ∈ PST is called a parabolic starlike function. A

survey of these functions can be found in [108]. In [106,109], Rønning generalized

the classes UCV and PST by introducing a parameter α in the following way: a

function f ∈ A is in PST (α) if it satisfies the analytic characterization

Re

(
zf ′(z)

f(z)
− α

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (α ∈ R, z ∈ U),

and f ∈ UCV(α), the class of uniformly convex functions of order α, if it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (α ∈ R, z ∈ U).

He also introduced the more general classes PST (α, β) consisting of parabolic

β-starlike functions of order α that satisfies the condition

Re

(
zf ′(z)

f(z)
− α

)
> β

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (−1 < α ≤ 1, β ≥ 0, z ∈ U). (1.3)
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Analogously, the class UCV(α, β) consists of uniformly β-convex functions of order

α satisfying the condition

Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
> β

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (−1 < α ≤ 1, β ≥ 0, z ∈ U). (1.4)

Indeed, it follows from (1.3) and (1.4) that f ∈ UCV(α, β) if and only if zf ′ ∈

PST (α, β). The geometric representation of the relation (1.3) is that the class

PST (α, β) consists of functions f for which the function
(
zf ′/f

)
takes values in

the parabolic region Ω, where

Ω = {w : Rew − α > β|w − 1|} =

{
w : Imw <

1

β

√
(Rew − α)2 − β2 (Rew − 1)2

}
.

Clearly, PST (α, 1) = PST (α) and UCV(α, 1) = UCV(α).

The transform ∫ z

0

f(t)

t
dt ≡

∫ 1

0

f(tz)

t
dt

introduced by Alexander [5] is known as Alexander transform of f . Using Alexan-

der’s Theorem (Theorem 1.7), it is clear that f ∈ ST if and only if the Alexander

transform of f is in CV . Libera [67] and Livingston [68] investigated the transform

2

∫ 1

0
f(tz)dt,

and Bernardi [17] later considered the transform

(c+ 1)

∫ 1

0
tc−1f(tz)dt, (c > −1) (1.5)

which generalizes the Libera and Livingston transform. For that reason, the trans-

form (1.5) is called the generalized Bernardi-Libera-Livingston integral transform.

It is well-known [17] that the classes of starlike, convex and close-to-convex func-
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tions are closed under the Bernardi-Libera-Livingston transform for all c > −1.

An analytic function f is subordinate to g in U , written f ≺ g, or f(z) ≺

g(z) (z ∈ U), if there exists a function w analytic in U with w(0) = 0 and

|w(z)| < 1 satisfying f(z) = g(w(z)). In particular, if the function g is univalent

in U , then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Recall that a function f ∈ A belongs to the class of starlike functions ST ,

convex functions CV , or close-to-convex functions CCV if it satisfies respectively

the analytic condition

Re

(
zf ′(z)

f(z)

)
> 0, Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 and Re

(
f ′(z)

g′(z)

)
> 0, g(z) ∈ CV .

A function in any one of these classes is characterized by either of the quantities

zf ′(z)/f(z), 1 + zf ′′(z)/f ′(z) or f ′(z)/g′(z) lying in a given region in the right

half plane; the region is convex and symmetric with respect to the real axis [71].

Since p(z) = (1 + z)/(1 − z) is a normalized analytic function mapping U onto

{w : Rew > 0}, in terms of subordination, the above conditions are respectively

equivalent to

zf ′(z)

f(z)
≺ 1 + z

1− z
, 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z
and

f ′(z)

g′(z)
≺ 1 + z

1− z
.

Ma and Minda [71] gave a unified presentation of various subclasses of starlike

and convex functions by replacing the superordinate function p(z) = (1+z)/(1−z)

by a more general analytic function ϕ with positive real part and normalized by

the conditions ϕ(0) = 1 and ϕ′(0) > 0. Further it is assumed that ϕ maps the unit

disk U onto a region starlike with respect to 1 that is symmetric with respect to

the real axis. They introduced the following general classes that enveloped several

11



well-known classes as special cases:

CV(ϕ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z)

}
,

and

ST (ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
.

When

ϕ(z) = ϕα(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1),

the classes CV(ϕα) and ST (ϕα) reduce to the familiar classes CV(α) and ST (α)

of univalent convex and starlike functions of order α.

When

ϕ(z) =
1 + Az

1 +Bz
(−1 ≤ B ≤ A ≤ 1),

the classes CV(ϕ) and ST (ϕ) reduce respectively to the class CV [A,B] of Janowski

convex functions and the class ST [A,B] of Janowski starlike functions [60, 90].

Thus

CV [A,B] =: CV
(

1 + Az

1 +Bz

)
and ST [A,B] =: ST

(
1 + Az

1 +Bz

)
.

When

ϕ(z) = 1 +
2

π2

(
log

1 +
√
z

1−
√
z

)2
,

the classes CV(ϕ) and ST (ϕ) reduce to the familiar classes of uniformly convex

functions UCV and its associated class PST .
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Define the functions hϕ ∈ ST (ϕ) and kϕ ∈ CV(ϕ) respectively by

zh′ϕ(z)

hϕ(z)
= ϕ(z) (z ∈ U , hϕ ∈ A)

1 +
zk′′ϕ(z)

k′ϕ(z)
= ϕ(z) (z ∈ U , kϕ ∈ A).

In [71], Ma and Minda showed that the functions hϕ and kϕ turned out to be ex-

tremal for certain functionals in ST (ϕ) and CV(ϕ). In addition, they derived dis-

tortion, growth, covering and rotation theorems for the classes ST (ϕ) and CV(ϕ)

and obtained sharp order of growth for coefficients of these classes.

Theorem 1.11 (Distortion Theorem for CV(ϕ)) [71, Corollary 1] For each f ∈

CV(ϕ),

k′ϕ(−r) ≤ |f ′(z)| ≤ k′ϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.

Theorem 1.12 (Growth Theorem for CV(ϕ)) [71, Corollary 2] For each f ∈

CV(ϕ),

−kϕ(−r) ≤ |f(z)| ≤ kϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.

Theorem 1.13 (Covering Theorem for CV(ϕ)) [71, Corollary 3] Suppose f ∈

CV(ϕ). Then either f is a rotation of kϕ or f(U) ⊇
{
w : |w| ≤ −kϕ(−1)

}
. Here

−kϕ(−1) is understood to be the limit of −kϕ(−r) as r tends to 1.

Theorem 1.14 (Rotation Theorem for CV(ϕ)) [71, Corollary 4] For each f ∈

CV(ϕ),

| arg f ′(z)| ≤ max
|z|=r

arg
(
k′ϕ(z)

)
(|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of kϕ.
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Next, we state the corresponding results for the class ST (ϕ). These results

follows from the correspondence between ST (ϕ) and CV(ϕ).

Theorem 1.15 (Distortion Theorem for ST (ϕ)) [71, Theorem 2] If f ∈ ST (ϕ)

with min|z|=r |ϕ(z)| = |ϕ(−r)| and max|z|=r |ϕ(z)| = |ϕ(r)|, then

h′ϕ(−r) ≤ |f ′(z)| ≤ h′ϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of hϕ.

Theorem 1.16 (Growth Theorem for ST (ϕ)) [71, Corollary 1’] If f ∈ ST (ϕ),

then

−hϕ(−r) ≤ |f(z)| ≤ hϕ(r) (|z| = r < 1).

Equality holds for some z 6= 0 if and only if f is a rotation of hϕ.

Theorem 1.17 (Covering Theorem for ST (ϕ)) [71, Corollary 2’] Suppose f ∈

ST (ϕ). Then either f is a rotation of hϕ or f(U) ⊇
{
w : |w| ≤ −hϕ(−1)

}
. Here

−hϕ(−1) is the limit of −hϕ(−r) as r tends to 1.

Let f(z) =
∑∞
n=1 anz

n be analytic in |z| < R1, and g(z) =
∑∞
n=1 bnz

n be

analytic in |z| < R2. The convolution, or Hadamard product, of f and g is the

function h = f ∗ g given by the power series

h(z) = (f ∗ g)(z) =
∞∑
n=1

anbnz
n. (1.6)

This power series is convergent in |z| < R1R2. The term ”convolution” arose from

the following equivalent representation

(f ∗ g)(z) =
1

2πi

∫
|ζ|=ρ

f

(
z

ζ

)
g(ζ)

dζ

ζ

(
|z|
R1

< ρ < R2

)
.
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The geometric series

l(z) =
∞∑
n=1

zn =
z

1− z
,

acts as the identity element under convolution [40, pp. 246-247] for the class A.

The functions f and zf ′ can be represented in terms of convolution as

f(z) = f ∗ z

1− z
and zf ′(z) = f ∗ z

(1− z)2 .

Using Alexander’s theorem (Theorem 1.7), a function f ∈ A is convex if and only if

f ∗
(
z/(1− z)2) is starlike. So the classes ST and CV can be unified by considering

Sg = {f ∈ A : f ∗ g ∈ ST } for an appropriate g. For g(z) = z/(1− z), Sg = ST ,

while for g(z) = z/(1− z)2, Sg = CV .

An important subclass of A defined by using convolution is the class of prestar-

like functions introduced by Ruscheweyh [111]. For α < 1, the class Rα of prestar-

like functions of order α is defined by

Rα :=

{
f ∈ A : f ∗ z

(1− z)2−2α ∈ ST (α)

}
,

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2. Prestarlike functions

have a number of interesting geometric properties. For instance, R0 is the class of

univalent convex functions CV , and R1/2 is the class of univalent starlike functions

ST (1/2) of order 1/2.

1.2 Multivalent Functions

A function f is p-valent (or multivalent of order p) if for each w0 (w0 may be

infinity), the equation f(z) = w0 has at most p roots in U , where the roots are

counted with their multiplicities, and for some w1 the equation f(z) = w1 has

exactly p roots in U [52]. For a fixed p ∈ N := {1, 2, · · · }, let Ap denote the class
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of all analytic functions f of the form

f(z) = zp +
∞∑
k=1

ak+pz
k+p (1.7)

that are p-valent in the open unit disk U , and for p = 1, let A1 := A.

The convolution, or Hadamard product, of two p-valent functions

f(z) = zp +
∞∑
k=1

ak+pz
k+p and g(z) = zp +

∞∑
k=1

bk+pz
k+p

is defined as

(f ∗ g)(z) = zp +
∞∑
k=1

ak+pbk+pz
k+p.

A p-valent function f ∈ Ap is starlike if it satisfies the condition

1

p
Re

zf ′(z)

f(z)
> 0 (f(z)/z 6= 0, z ∈ U),

and is convex if it satisfies the condition

1

p
Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (f ′(z) 6= 0, z ∈ U).

The subclasses of Ap consisting of starlike and convex functions are denoted re-

spectively by ST p and CVp. More generally, let ϕ be an analytic function with

positive real part in U , ϕ(0) = 1, ϕ′(0) > 0, and ϕ maps the unit disk U onto a

region starlike with respect to 1 and symmetric with respect to the real axis. The

classes ST p(ϕ) and CVp(ϕ) consist respectively of p-valent functions f starlike

with respect to ϕ and p-valent functions f convex with respect to ϕ in U given by

ST p(ϕ) :=

{
f ∈ Ap :

1

p

zf ′(z)

f(z)
≺ ϕ(z)

}
,
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and

CVp(ϕ) :=

{
f ∈ Ap :

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
.

These classes were introduced and investigated by Ali et al. in [8]. The func-

tions hϕ,p and kϕ,p defined respectively by

1

p

zh′ϕ,p(z)

hϕ,p(z)
= ϕ(z) (z ∈ U , hϕ,p ∈ Ap),

1

p

(
1 +

zk′′ϕ,p(z)

k′ϕ,p(z)

)
= ϕ(z) (z ∈ U , kϕ,p ∈ Ap),

are important examples of functions in ST p(ϕ) and CVp(ϕ). A result analogues

to Alexander’ theorem (Theorem 1.7) was obtained by Ali et al. in [8].

Theorem 1.18 [8, Theorem 2.1] The function f belongs to CVp(ϕ) if and only

if (1/p)zf ′ ∈ ST p(ϕ).

When p = 1 these classes reduced to the ST (ϕ) and CV(ϕ) classes introduced by

Ma and Minda [71].

When

ϕ(z) =
1 + z

1− z
,

the classes ST p(ϕ) and CVp(ϕ) reduce to the familiar classes of p-valent starlike

and convex functions ST p and CVp. In addition if p = 1 these classes are respec-

tively the classes of univalent starlike and convex functions ST and CV .

When

ϕ(z) = ϕβ(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1)

the classes ST p(ϕβ) and CVp(ϕβ) reduce to the familiar classes of p-valent starlike

17



and convex functions of order β introduced by Patil and Thakare in [88]:

ST p(β) :=

{
f ∈ Ap :

1

p
Re

(
zf ′(z)

f(z)

)
> β

}
,

CVp(β) :=

{
f ∈ Ap :

1

p
Re

(
1 +

zf ′′(z)

f ′(z)

)
> β

}
.

For p ∈ N and α < 1, Kumar and Reddy [12] defined the class Rp(α) of

p-valent prestarlike functions of order α by

Rp(α) =

{
f ∈ Ap : f(z) ∗ zp

(1− z)2p(1−α)
∈ ST p(α)

}
.

They obtained necessary and sufficient coefficient conditions for a function f to be

in the class Rp(α). Evidently, this class reduces to the class of prestarlike functions

R(α) introduced by Ruscheweyh [111] for p = 1.

1.3 Differential Subordination

In the theory of complex-valued functions there are many differential conditions

which shape the characteristics of a function. A simple example is the Noshiro-

Warschawski Theorem [40, Theorem 2.16, p.47]: If f is analytic in a convex domain

D, then

Re
(
f ′(z)

)
> 0⇒ f is univalent in D.

This theorem and many known similar differential implications dealt with real-

valued inequalities that involved the real part, imaginary part or modulus of a

complex expression. In 1981 Miller and Mocanu [74] replaced the differential in-

equality, a real valued concept, with its complex analogue of differential subordi-

nation.

Let ψ : C3×U → C be an analytic function and let h be univalent in the unit
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disk U . If p is analytic in U and satisfies the second-order differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.8)

then p is called a solution of the differential subordination. A univalent function

q is called a dominant if p(z) ≺ q(z) for all p satisfying (1.8). A dominant q1

satisfying q1(z) ≺ q(z) for all dominants q of (1.8) is said to be the best dominant

of (1.8). The best dominant is unique up to a rotation of U . If p ∈ H[a, n], then p

is called an (a, n)-solution, q an (a, n)-dominant, and q1 the best (a, n)-dominant.

Let Ω ⊂ C and let (1.8) be replaced by

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω (z ∈ U), (1.9)

where Ω is a simply connected domain containing h(U). Even though this is

a “differential inclusion” and ψ(p(z), zp′(z), z2p′′(z); z) may not be analytic in

U , the condition in (1.9) will also be referred to as a second-order differential

subordination, and the same definition for solution, dominant and best dominant as

given above can be extended to this generalization. The monograph [75] by Miller

and Mocanu provides a detailed account on the theory of differential subordination.

Denote byQ the set of all functions q that are analytic and injective on U\E(q),

where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) =∞},

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Definition 1.1 [75, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and n

be a positive integer. The class of admissible functions Ψn[Ω, q] consists of those

functions ψ : C3 × U → C satisfying the admissibility condition

ψ(r, s, t; z) 6∈ Ω (1.10)
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whenever r = q(ζ), s = kζq′(ζ), and

Re

(
t

s
+ 1

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U, ζ ∈ ∂U \E(q) and k ≥ n. Additionally, Ψ1[Ω, q] will be written as Ψ[Ω, q].

If ψ : C2 × U → C, then the admissibility condition (1.10) reduces to

ψ(q(ζ), kζq′(ζ); z) 6∈ Ω,

z ∈ U , ζ ∈ ∂U \ E(q) and k ≥ n.

If ψ : C× U → C, then the admissibility condition (1.10) becomes

ψ(q(ζ); z) 6∈ Ω,

z ∈ U , and ζ ∈ ∂U \ E(q).

A foundation result in the theory of first and second order differential subordina-

tion is the following theorem:

Theorem 1.19 [75, Theorem 2.3b, p.28] Let ψ ∈ Ψn[Ω, q] with q(0) = a. If

p ∈ H[a, n] satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, (1.11)

then p ≺ q.

It is evident that the dominant of a differential subordination of the form (1.11)

can be obtained by checking that the function ψ is an admissible function. This

requires that the function ψ satisfies (1.10). Considering the special case when

Ω = h(U) is a simply connected domain, and h is a conformal mapping of U onto
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Ω, the following second-order differential subordination result is an immediate

consequence of Theorem 1.19. The set Ψn[h(U), q] is written as Ψn[h, q].

Theorem 1.20 [75, Theorem 2.3c, p.30] Let ψ ∈ Ψn[h, q] with q(0) = a. If

p ∈ H[a, n], ψ(p(z), zp′(z), z2p′′(z); z) is analytic in U , and

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.12)

then p ≺ q.

The next theorem yields best dominant of the differential subordination (1.12)

Theorem 1.21 [75, Theorem 2.3f, p.32] Let h be univalent in U and ψ : C3×U →

C. Suppose that the differential equation

ψ(q(z), nzq′(z), n(n− 1)zq′(z) + n2z2q′′(z); z) = h(z)

has a solution q, with q(0) = a, and one of the following conditions is satisfied:

(i) q ∈ Q and ψ ∈ Ψn[h, q],

(ii) q is univalent in U and ψ ∈ Ψn[h, qρ] for some ρ ∈ (0, 1), or

(iii) q is univalent in U and there exists ρ0 ∈ (0, 1) such that ψ ∈ Ψn[hρ, qρ]

for all ρ ∈ (ρ0, 1).

If p ∈ H[a, n], ψ(p(z), zp′(z), z2p′′(z); z) is analytic in U , and p satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),

then p ≺ q, and q is the best (a, n)-dominant.

When dealing with first-order differential subordination, the following theorem is

useful.
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Theorem 1.22 [75, Theorem 3.4h, p.132] Let q be univalent in U and let θ and

φ be analytic in a domain D containing q(U), with φ(w) 6= 0 when w ∈ q(U). Set

Q(z) = zq′(z)φ (q(z)) , h(z) = θ (q(z)) +Q(z) and suppose that either

(i) h is convex, or

(ii) Q is starlike.

In addition, assume that

(iii) Re
zh′(z)
Q(z) = Re

(
θ′(q(z))
φ(q(z)) +

zQ′(z)
Q(z)

)
> 0.

If p is analytic in U , with p(0) = q(0), p(U) ⊂ D and

θ (p(z)) + zp′(z)φ (p(z)) ≺ θ (q(z)) + zq′(z)φ (q(z)) = h(z),

then p ≺ q, and q is the best dominant.

Let f ∈ Ap be given by (1.7). Upon differentiating both sides of f q-times with

respect to z, the following differential operator is obtained:

f (q)(z) = λ(p; q)zp−q +
∞∑
k=1

λ(k + p; q)ak+pz
k+p−q,

where

λ(p; q) :=
p!

(p− q)!
(p ≥ q; p ∈ N; q ∈ N ∪ {0}).

Several researchers have investigated higher-order derivatives of multivalent func-

tions, see for example [10, 11, 37, 56–58, 81, 89, 120, 141]. Recently, by use of the

well-known Jack’s Lemma [59, 75], Irmak and Cho [57] obtained interesting re-

sults for certain classes of functions defined by higher-order derivatives. We shall

continue this investigation in Chapter 2.
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1.4 Functions with Respect to n-ply Points

As defined on p. 14, the convolution of two functions f and g with power series

f(z) = z +
∞∑
n=1

anz
n and g(z) = z +

∞∑
n=1

bnz
n

convergent in U is defined by

(f ∗ g)(z) := z +
∞∑
n=1

anbnz
n (z ∈ U).

Pólya and Schoenberg in 1958 [91] posed two important conjectures:

1. If f and g ∈ CV , then f ∗ g ∈ CV .

2. If f ∈ CV and g ∈ ST , then f ∗ g ∈ ST .

Using Alexander’s theorem, (Theorem 1.7), it is clear that any one of these con-

jectures implies the other. These conjunctures were later proved by Ruscheweyh

and Sheil-Small [114].

Let h : U → C be a convex function with positive real part in U , h(0) = 1, and

g be a given fixed function in A. Shanmugam [116] introduced the classes ST g(h)

and CVg(h) consisting of functions f satisfying

z(f ∗ g)′(z)

(f ∗ g)(z)
≺ h(z) and 1 +

z(f ∗ g)′′(z)

(f ∗ g)′(z)
≺ h(z).

Note that for g(z) = z/(1− z), the class ST g(h) ≡ ST (h) and the class CVg(h) ≡

CV(h). He introduced these classes [116] and other related classes, and investigated

inclusion and convolution properties by using the convex hull method [113, 114]

and the method of differential subordination [75]. Ali et al. [8] investigated the

subclasses of p−valent starlike and convex functions, and obtained several subor-

dination and convolution properties, as well as sharp distortion, growth and rota-
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tion estimates. These works were recently extended by Supramaniam et al. [127].

Similar problems but for the class of meromorphic functions were also recently

investigated by Mohd et al. [78].

For a fixed positive integer n, εn = 1, ε 6= 1 and f ∈ A, define the function

with n−ply points fn ∈ A by

fn(z) :=
1

n

n−1∑
k=0

εn−kf(εkz). (1.13)

It is clear that f1(z) = f(z) and f2(z) = (f(z)− f(−z)) /2. A function f ∈ A is

starlike with respect to n-symmetric points if it satisfies

Re
zf ′(z)

fn(z)
> 0. (1.14)

Denote the class of these functions by ST ns . For n = 2, the class ST ns reduces to

the class ST s consisting of the starlike functions with respect to symmetric points

in U introduced by Sakaguchi [115]. If k is an integer, then the following identities

follow directly from (1.13) :

fn(εkz) = εkfn(z),

f ′n(εkz) = f ′n(z) =
1

n

n−1∑
m=0

f ′(εmz),

εkf ′′n(εkz) = f ′′n(z) =
1

n

n−1∑
m=0

εmf ′′(εmz).

More generally, the condition (1.14) can be generalized to the subordination

zf ′(z)

fn(z)
≺ h(z),
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where h is a given convex function, with h(0) = 1 and Re (h) > 0. El-Ashwah

and Thomas [41] introduced the classes ST c and ST sc consisting of the starlike

functions with respect to conjugate points in U and the starlike functions with

respect to symmetric conjugate points in U respectively. In 2004, Ravichandran

[101] introduced the classes of starlike, convex and close-to-convex functions with

respect to n−ply symmetric points, conjugate points and symmetric conjugate

points, and obtained several convolution properties. Other investigations into the

classes defined by using conjugate and symmetric conjugate points can be found

in [4,38,62,133,134,136,137,139]. These classes of functions will be treated further

in Chapter 3.

1.5 Integral Operators

The study of integral operators is an important problem in the field of Geometric

Function Theory. In [21], Biernacki falsely claimed that
∫ z

0 (f(ζ)/ζ) dζ is univalent

whenever f is univalent. Moved by this, Causey [34] considered a related problem

of finding conditions on δ ∈ C such that the integral operator Fδ : A → A given

by

(Fδf) (z) =

∫ z

0

(
f(ζ)

ζ

)δ
dζ

is univalent whenever f is univalent. It is known [64] that Fδ ∈ S when |δ| < 1/4.

The case δ = 1 was earlier considered by Alexander [5] and he proved that F1 is in

CV whenever f is in ST . In [73], Merkes obtained various extension of inclusion

results for certain subclasses of S. He showed that

Fδ(ST ) ⊂ S whenever |δ| ≤ 1/2. (1.15)

There is no larger disk |δ| ≤ R, R > 1/2, such that the inclusion (1.15) holds.
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In the case δ is real, Merkes [73, Theorem 2] obtained

Fδ(ST ) ⊂ ST whenever − 1/2 ≤ δ ≤ 1

and

Fδ(ST ) ⊂ CCV whenever 1 < δ ≤ 3/2.

He also obtained necessary and sufficient conditions on α such that Fδ(ST ) ⊂

SCCVα, the class of strongly close-to-convex functions of order α defined on p. 6.

In recent years, considerable attention has been given to the problem for various

classes of univalent functions, see for example, the works of [1, 8, 24–32, 34, 42, 43,

64,77,87,118,126].

Suppose |z1| ≤ 1, |z2| ≤ 1, and f ∈ SCCVα. Pommerenke [92] proved that

∫ z

0

f(z2ζ)− f(z1ζ)

(z2 − z1)ζ
dζ ∈ SCCVα.

Singh [121] showed that 1/2
∫ z

0 (f(t)− f(−t))t−1 dt is starlike if f is starlike. Anal-

ogous results were also proven for convexity and close-to-convexity. Extending the

results of Singh [121], Chandra and Singh [36] proved that the integral

∫ z

0

f(eiµζ)− f(eiψζ)

(eiµ − eiψ)ζ
dζ (µ 6= ψ, 0 ≤ µ, ψ < 2π)

preserves membership in the classes of starlike, convex and close-to-convex func-

tions.

For αj ≥ 0 and fj ∈ A, define the operators F : An × U2 → A and G :
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An × U2 → A respectively by

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U)

(1.16)

G(z) = Gf1,··· ,fn;z1,z2(z) = z

n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U) (1.17)

where U is the closed unit disk. Ponnusamy and Singh [97] introduced the operator

F , given in (1.16), and investigated its univalence. In particular, they proved that

for certain αj the integral operator F is close-to-convex of order 1/2 for all fj ∈ A.

In Chapter 4, we shall explore further inclusion properties for the operators F and

G.

1.6 Dual Set and the Duality Principle

Let H denote the class of all analytic functions in U of the form g(z) = 1 + b1z +

b2z
2 + · · · . For a set V ⊂ H, the dual of V , denoted by V∗, is defined as

V∗ = {g ∈ H : (f ∗ g)(z) 6= 0 in U for all f ∈ V} .

The set V∗∗ = (V∗)∗ is called the second dual of V . The standard reference

to duality theory for convolutions is the monograph by Ruscheweyh [113] and his

paper [110]. A subset V ⊂ H is said to be complete, if it has the following property:

f ∈ V ⇒ fx ∈ V (|x| ≤ 1)

where fx(z) = f(xz), z ∈ U . Let Λ be the space of continuous linear functionals

on H. The Duality Principle states that, subject to certain conditions on V , the

range λ(V) = {λ(f) : f ∈ V} of a continuous complex-valued linear functional on
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V equals its range on V∗∗.

Theorem 1.23 (The Duality Principle) [113, p. 15] Let V ⊂ H be compact and

complete. Then λ(V) = λ(V∗∗) for all λ ∈ Λ. Moreover, co(V) = co(V∗∗), where

co stands for the closed convex hull of a set.

Ruscheweyh proved the following important result as a corollary of the Duality

Principle.

Theorem 1.24 [113, Corollary1.1, p. 17] Let V ⊂ H be compact and complete.

Let λ1, λ2 ∈ Λ with 0 6∈ λ2(V). Then for any f ∈ V∗∗ there exists a function g ∈ V

such that

λ1(f)

λ2(f)
=
λ1(g)

λ2(g)
.

Ruscheweyh obtained the second dual of some widely used subsets of H. One of

these sets is Vβ which is described in the following theorem.

Theorem 1.25 [110, Theorem 1] Let β 6= 1 be real, and

Vβ =

{
β + (1− β)

(
1 + xz

1 + yz

)
: |x| = |y| = 1

}
.

Then

V∗β =

{
g ∈ H : Re g(z) >

1− 2β

2− 2β
, z ∈ U

}
,

and

Vβ∗∗ =
{
g ∈ H : ∃φ ∈ R such that Re

(
eiφ(g(z)− β)

)
> 0, z ∈ U

}
.

For β < 1, let

R(β) =
{
f ∈ A : Re (f ′(z) + zf ′′(z)) > β, z ∈ U

}
.
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Several authors discussed the problem of finding the smallest value of β for which

a function f ∈ R(β) would be starlike. For β = 0, Chichra [39] proved that if

f ∈ R(0), then f is univalent, i.e R(0) ⊂ S. Singh and Singh [122] showed that

f ∈ R(0) would imply that f is starlike, while Krzyz [65] gave an example to

show that f ∈ R(0) is not necessarily convex. Later Singh and Singh [123] proved

that for β ≤ −1/4 the function f ∈ R(β) is starlike. This estimate was improved

by Nunokawa and Thomas [82]. They showed that R(β) ⊂ ST if β satisfies the

equation

3β + (1− β)(2− log(4/e)) log(4/e) = 0,

and thus β ∼= −0.262. In 1994, Ali [6] improved the lower bound for β. He proved

that R(β0) ⊂ S for β0 = −(2 log 2− 1)/2(1− log 2) ∼= −0.629, and R(β) ⊂ ST if

β = (6 − π2)/(24 − π2) ∼= −0.2739. Ali conjectured that R(β0) ⊂ ST , and that

β0 is the best estimate. This conjecture was proved to be affirmative by Fournier

and Ruscheweyh [48].

The implication

Re (f ′(z) + zf ′′(z)) > β ⇒ f ∈ ST

is equivalent to V (f) ∈ ST whenever Re (f ′(z)) > β, where V : A → A is given

by

V (f)(z) =

∫ 1

0

f(tz)

t
dt.

Fournier and Ruscheweyh [48] introduced a more general operator Vλ : A → A

given by

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt, (1.18)
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where λ is a non-negative real-valued integrable function satisfying the condition

∫ 1

0
λ(t)dt = 1.

They used the Duality Principle [110,113] to prove starlikeness of the linear integral

transform Vλ over functions f in the class

P(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z)− β

)
> 0, z ∈ U

}
.

Such problems were previously handled by using the theory of subordination (see

for example [94]). The duality methodology seems to work best in this case since

it gives sharp estimates on the parameter β. The following result was proved by

Fournier and Ruscheweyh [48].

Theorem 1.26 [48] Let Λ be integrable function over [0, 1] and positive on (0, 1).

If

Λ(t)

1− t2
is decreasing on (0, 1),

then LΛ(CCV) = 0, where

LΛ(f) := inf
z∈U

∫ 1

0
Λ(t)

(
Re

f(tz)

tz
− 1

(1 + t)2

)
dt (for f ∈ S),

and

LΛ(S) := inf
z∈U
LΛ(f).

This duality technique is now popularly used by several authors to discuss

similar problems. In 2001, Kim and Rønning [63] investigated starlikeness property
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of the integral transform (1.18) for functions f in the class

Pα(β) :=

{
f ∈ A : ∃φ ∈ R with

Re eiφ
(

(1− α)
f(z)

z
+ αf ′(z)− β

)
> 0, z ∈ U

}
.

In a recent paper Ponnusamy and Rønning [96] discussed this problem for func-

tions f in the class

Rγ(β) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ U

}
.

For α ≥ 0, γ ≥ 0 and β < 1, define the class

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}
.

(1.19)

It is evident that P(β) ≡ Wβ(1, 0), Pα(β) ≡ Wβ(α, 0), and Rγ(β) ≡ Wβ(1 +

2γ, γ). In Chapter 5, starlikeness of the integral transform (1.18) over the class

Wβ(α, γ) will be investigated.

1.7 Neighborhood Sets

For δ ≥ 0, Rusheweyh [112] defined the δ-neighborhood of a function

f(z) = z +
∞∑
k=2

akz
k (z ∈ U)
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to be the set

Nδ(f) :=

{
g ∈ A : g(z) = z +

∞∑
k=2

bkz
k, and

∞∑
k=2

k|ak − bk| ≤ δ

}
.

Among other results, Ruscheweyh [112] proved that

N1/4(f) ⊂ ST

for f ∈ CV . Sheil-Small and Silvia [119] introduced a more general notion of T -

δ-neighborhood of an analytic function. The neighborhood problems for analytic

functions were considered by many others, for example, see [2, 3, 18, 19, 45–47, 86,

98,129].

Ruscheweyh in [112] developed new inclusion criteria for some known sub-

classes of analytic functions. These criteria are very useful in solving extremal

problems associated with several subclasses of univalent functions. In particular,

he proved that

f ∈ ST ⇐⇒ (f ∗ h)(z) 6= 0 in U ,

where

h(z) =
1

1 + it

(
z

(1− z)2 − it
z

1− z

)
(t ∈ R, z ∈ U).

Several results of this type for different classes of functions in U were obtained

by Ruscheweyh [112], Rahman and Stankiewicz [98] and Silverman et al. [124].

Padmanabhan [84] investigated the δ-neighborhood problem for the class UCV

of uniformly convex functions. In Chapter 6, we shall introduce two generalized

p-valent parabolic starlike and p-valent parabolic convex subclasses of Ap. The

δ-neighborhood problems for functions belonging to these classes are investigated

and a new inclusion criterion for the subclass of p-valent parabolic starlike functions

is obtained.
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1.8 Scope of the Thesis

This thesis investigates five research problems. In Chapter 2, corresponding to

an appropriate superordinate function Q defined on the unit disk U , sufficient

conditions are obtained for a p-valent function f to satisfy the subordination

f (q)(z)

λ(p; q)zp−q
≺ Q(z), or

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z),

where

f (q)(z) = λ(p; q)zp−q +
∞∑
k=1

λ(k + p; q)ak+pz
k+p−q,

and

λ(p; q) :=
p!

(p− q)!
(p ≥ q; p ∈ N; q ∈ N ∪ {0}).

For the case p = q = 1, criteria for univalece and convexity of analytic functions are

obtained. Additionally, the second subordination gives conditions for starlikeness

of functions for the case q = 0 and p = 1.

The aim of Chapter 3 is to give a unified treatment for classes of starlike, convex

and close-to-convex functions with respect to n−ply symmetric points, conjugate

points and symmetric conjugate points. For this purpose, general classes of p-

valent starlike, convex, close-to-convex and quasi-convex functions with respect

to n-ply points, as well as p-valent starlike and convex functions with respect to

symmetric points, conjugate points and symmetric conjugate points respectively

are introduced. Inclusion and convolution properties of these classes will be inves-

tigated, and it would be evident that previous earlier works are special instances

of our work.

In Chapter 4, membership preservation properties of the operators F and G

given by (1.16) and (1.17) on the subclasses of starlike, convex and close-to-convex

functions will be investigated. We shall also make connections with various earlier
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works.

In Chapter 5, the Duality Principle is used to determine the best value of

β < 1 that ensures the integral transform Vλ(f) in (1.18) maps the classWβ(α, γ)

defined in (1.19) respectively into the class S of normalized univalent functions

and the class ST of starlike univalent functions. Simple sufficient conditions for

Vλ(f) to be starlike are obtained. This will lead to several applications for specific

choices of the admissible function λ. In addition, the smallest value β < 1 is

obtained that ensures a function f satisfying

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

is starlike. This result generalizes the earlier work of Fournier and Ruscheweyh [48],

Kim and Rønning [63], and Ponnusamy and Rønning [96].

In Chapter 6, a subclass SPp(α, λ) of p-valent parabolic starlike functions

of order α and type λ, and a subclass CPp(α, λ) of p-valent parabolic convex

functions of order α and type λ will be introduced and studied. It is shown

that these two classes are closed under convolution with prestarlike functions. In

addition, new inclusion criterion for functions to belong to the class SPp(α, λ)

will be derived, and the δ-neighborhood for functions belonging to the classes

SPp(α, λ) and CPp(α, λ) will be investigated.
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CHAPTER 2

SUBORDINATION PROPERTIES OF HIGHER-ORDER

DERIVATIVES OF MULTIVALENT FUNCTIONS

2.1 Higher-Order Derivatives

Let f ∈ Ap be given by

f(z) = zp +
∞∑
k=1

ak+pz
k+p.

Upon differentiating both sides of f q-times with respect to z, the following dif-

ferential operator is obtained:

f (q)(z) = λ(p; q)zp−q +
∞∑
k=1

λ(k + p; q)ak+pz
k+p−q,

where

λ(p; q) :=
p!

(p− q)!
(p ≥ q; p ∈ N; q ∈ N ∪ {0}).

As defined in Section 1.2, p. 16, a p-valent function f ∈ Ap is starlike if it

satisfies the condition 1
pRe (zf ′(z)/f(z)) > 0 (z ∈ U). More generally, let φ be

an analytic function with positive real part in U , φ(0) = 1, φ′(0) > 0, and φ maps

the unit disk U onto a region starlike with respect to 1 and symmetric with respect

to the real axis. The classes ST p(φ) and CVp(φ) consist respectively of p-valent

functions f starlike with respect to φ and p-valent functions f convex with respect

to φ in U given by

f ∈ ST p(φ)⇔ 1

p

zf ′(z)

f(z)
≺ φ(z), and f ∈ CVp(φ)⇔ 1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ φ(z).

These classes were introduced and investigated in [8]. The functions hφ,p and kφ,p

35



defined respectively by

1

p

zh′φ,p
hφ,p

= φ(z) (z ∈ U , hφ,p ∈ Ap), (2.1)

1

p

(
1 +

zk′′φ,p
k′φ,p

)
= φ(z) (z ∈ U , kφ,p ∈ Ap), (2.2)

are important examples of functions in ST p(φ) and CVp(φ).

In this chapter, corresponding to an appropriate superordinate function Q

defined on the unit disk U , sufficient conditions are obtained for a p-valent function

f to satisfy the subordination

f (q)(z)

λ(p; q)zp−q
≺ Q(z), or

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z).

In the particular case when q = 1 and p = 1, and Q a function with positive real

part, the first subordination gives sufficient conditions for univalence of analytic

functions, while the second subordination implication gives conditions for convex-

ity of functions. If q = 0 and p = 1, the second subordination gives conditions

for starlikeness of functions. Thus results obtained in this work give important

information on the geometric properties of functions satisfying differential subor-

dination conditions involving higher-order derivatives.

The following lemmas are needed to prove our main results. These results are

special cases of Theorem 1.22.

Lemma 2.1 [75, Corollary 3.4h.1, p. 135] Let Q be univalent in U , and ϕ be

analytic in a domain D containing Q(U). If zQ′(z)ϕ(Q(z)) is starlike, and P is

analytic in U with P (0) = Q(0) and P (U) ⊂ D, then

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z))⇒ P (z) ≺ Q(z),

and Q is the best dominant.
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Lemma 2.2 [75, Corollary 3.4h.2, p. 135] Let Q be convex univalent in U , and θ

be analytic in a domain D containing Q(U). Assume that

Re

(
θ′(Q(z)) + 1 +

zQ′′(z)

Q′(z)

)
> 0.

If P is analytic in U with P (0) = Q(0) and P (U) ⊂ D, then

zP ′(z) + θ(P (z)) ≺ zQ′(z) + θ(Q(z)) ⇒ P (z) ≺ Q(z),

and Q is the best dominant.

2.2 Subordination Conditions for Univalence

The theorems below give sufficient conditions for the differential subordination

f (q)(z)

λ(p; q)zp−q
≺ Q(z)

to hold. In addition, as corollary to these theorems, three sufficient conditions for

functions to be univalent are obtained.

Theorem 2.1 Let Q be univalent and nonzero in U with Q(0) = 1 and zQ′(z)/Q(z)

be starlike in U . If a function f ∈ Ap satisfies the subordination

zf (q+1)(z)

f (q)(z)
≺ zQ′(z)

Q(z)
+ p− q, (2.3)

then

f (q)(z)

λ(p; q)zp−q
≺ Q(z),

and Q is the best dominant.
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Proof. Define the analytic function P by

P (z) :=
f (q)(z)

λ(p; q)zp−q
.

Then a computation shows that

zf (q+1)(z)

f (q)(z)
=
zP ′(z)

P (z)
+ p− q. (2.4)

The subordination (2.3) yields

zP ′(z)

P (z)
+ p− q ≺ zQ′(z)

Q(z)
+ p− q,

or equivalently

zP ′(z)

P (z)
≺ zQ′(z)

Q(z)
. (2.5)

Define the function ϕ : C \ {0} → C by ϕ(w) := 1/w. Then (2.5) can be written

as

zP ′(z) · ϕ(P (z)) ≺ zQ′(z) · ϕ(Q(z)).

Since Q(z) 6= 0, ϕ is analytic in a domain containing Q(U). Also zQ′(z) · ϕ(Q(z))

= zQ′(z)/Q(z) is starlike. The result now follows from Lemma 2.1.

Remark 2.1 For f ∈ Ap, Irmak and Cho [57, Theorem 2.1, p.2] showed that

Re
zf (q+1)(z)

f (q)(z)
< p− q ⇒ |f (q)(z)| < λ(p; q)|z|p−q−1.

However it is evident that the hypothesis of this implication cannot be satisfied by

any function in Ap as the quantity

zf (q+1)(z)

f (q)(z)

∣∣∣∣∣
z=0

= p− q.
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Theorem 2.1 is the correct formulation of their result and under a more general

setting.

Corollary 2.1 Let −1 ≤ B < A ≤ 1. If f ∈ Ap satisfies

zf (q+1)(z)

f (q)(z)
≺ z(A−B)

(1 + Az)(1 +Bz)
+ p− q,

then

f (q)(z)

λ(p; q)zp−q
≺ 1 + Az

1 +Bz
.

Proof. For −1 ≤ B < A ≤ 1, define the function Q by

Q(z) =
1 + Az

1 +Bz
.

Then a computation shows that

F (z) :=
zQ′(z)

Q(z)
=

(A−B)z

(1 + Az)(1 +Bz)

and

h(z) :=
zF ′(z)

F (z)
=

1− ABz2

(1 + Az)(1 +Bz)
.

With z = reiθ, note that

Re (h(reiθ)) = Re
1− ABr2e2iθ

(1 + Areiθ)(1 +Breiθ)

=
(1− ABr2)(1 + ABr2 + (A+B)r cos θ)∣∣(1 + Areiθ)(1 +Breiθ)

∣∣2 .

Now (A+B) ≥ 0 yields

1 + ABr2 + (A+B)r cos θ ≥ (1− Ar)(1−Br) > 0,
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while (A+B) ≤ 0 gives

1 + ABr2 + (A+B)r cos θ ≥ (1 + Ar)(1 +Br) > 0.

Thus Reh(z) > 0, and hence zQ′(z)/Q(z) is starlike. The desired result now

follows from Theorem 2.1.

Example 2.1

1. For 0 < β ≤ 1, choose A = β, B = 0 in Corollary 2.1. Since w ≺

βz/(1+βz) is equivalent to |w| ≤ β |1− w| , it follows that if f ∈ Ap satisfies

∣∣∣∣∣zf (q+1)(z)

f (q)(z)
− p+ q +

β2

1− β2

∣∣∣∣∣ < β

1− β2 ,

then ∣∣∣∣∣ f (q)(z)

λ(p; q)zp−q
− 1

∣∣∣∣∣ < β.

2. With A = 1 and B = 0, it follows from Corollary 2.1 that whenever f ∈ Ap

satisfies

Re

(
zf (q+1)(z)

f (q)(z)
− p+ q

)
<

1

2
,

then ∣∣∣∣∣ f (q)(z)

λ(p; q)zp−q
− 1

∣∣∣∣∣ < 1.

Taking q = 0 and Q(z) = hφ,p/z
p given by (2.1), Theorem 2.1 yields the

following corollary:

Corollary 2.2 [8] If f ∈ ST p(φ), then

f(z)

zp
≺
hφ,p
zp

.
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Similarly choosing q = 1 and Q(z) = k′φ,p/pz
p−1 given by (2.2), Theorem 2.1

yields the following corollary:

Corollary 2.3 [8] If f ∈ CVp(φ), then

f ′(z)

zp−1 ≺
k′φ,p
zp−1 .

Theorem 2.2 Let Q be convex univalent in U with Q(0) = 1. If f ∈ Ap satisfies

f (q)(z)

λ(p; q)zp−q

(
zf (q+1)(z)

f (q)(z)
− p+ q

)
≺ zQ′(z),

then

f (q)(z)

λ(p; q)zp−q
≺ Q(z),

and Q is the best dominant.

Proof. Define the analytic function P by P (z) := f (q)(z)/λ(p; q)zp−q. Then it

follows from (2.4) that

f (q)(z)

λ(p; q)zp−q

(
zf (q+1)(z)

f (q)(z)
− p+ q

)
= zP ′(z).

By assumption,

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z)),

where ϕ : C→ C defined by ϕ(w) := 1. Since Q is convex, and zQ′(z)ϕ(Q(z)) =

zQ′(z) is starlike, Lemma 2.1 gives the desired result.

Example 2.2 When

Q(z) := 1 +
z

λ(p; q)
,
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Theorem 2.2 reduces to Theorem 2.4 in [57]: If f ∈ Ap satisfies

∣∣∣∣∣f (q)(z)

(
zf (q+1)(z)

f (q)(z)
− p+ q

)∣∣∣∣∣ ≤ |z|p−q,
then ∣∣∣f (q)(z)− λ(p; q)zp−q

∣∣∣ ≤ |z|p−q.
In the special case q = 1, this result provides a sufficient condition for multivalent

functions f to be close-to-convex.

Theorem 2.3 Let Q be convex univalent in U with Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)

λ(p; q)zp−q
≺ zQ′(z) + (p− q)Q(z),

then

f (q)(z)

λ(p; q)zp−q
≺ Q(z),

and Q is the best dominant.

Proof. Define the function P by

P (z) =
f (q)(z)

λ(p; q)zp−q
.

It follows from (2.4) that

zP ′(z) + (p− q)P (z) ≺ zQ′(z) + (p− q)Q(z),

that is,

zP ′(z) + θ(P (z)) ≺ zQ′(z) + θ(Q(z)),

where θ : C → C defined by θ(w) := (p − q)w. The conditions in Lemma 2.2 are

clearly satisfied. Thus f (q)(z)/λ(p; q)zp−q ≺ Q(z), and Q is the best dominant.

42



Taking q = 0, Theorem 2.3 yields the following corollary:

Corollary 2.4 [144, Corollary 2.11] Let Q be convex univalent in U , and Q(0) =

1. If f ∈ Ap satisfies

f ′(z)

zp−1 ≺ zQ′(z) + pQ(z),

then

f(z)

zp
≺ Q(z).

With p = 1, Corollary 2.4 yields the following corollary:

Corollary 2.5 [144, Corollary 2.9] Let Q be convex univalent in U , and Q(0) = 1.

If f ∈ A satisfies

f ′(z) ≺ zQ′(z) +Q(z),

then

f(z)

z
≺ Q(z).

Theorem 2.4 Let Q be univalent and nonzero in U with Q(0) = 1 and zQ′(z)/Q2(z)

be starlike. If f ∈ Ap satisfies

λ(p; q)zp−q

f (q)(z)

(
zf (q+1)(z)

f (q)(z)
− p+ q

)
≺ zQ′(z)

Q2(z)
,

then

f (q)(z)

λ(p; q)zp−q
≺ Q(z),

and Q is the best dominant.

Proof. Define the function P by

P (z) =
f (q)(z)

λ(p; q)zp−q
.
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It follows from (2.4) that

λ(p; q)zp−q

f (q)(z)

(
zf (q+1)(z)

f (q)(z)
− (p− q)

)
=

1

P (z)

zP ′(z)

P (z)
=
zP ′(z)

P 2(z)
.

By assumption,

zP ′(z)

P 2(z)
≺ zQ′(z)

Q2(z)
. (2.6)

With ϕ : C \ {0} → C defined by ϕ(w) := 1/w2, equation (2.6) can be written as

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z)).

The function ϕ is analytic in C − {0}. Since zQ′(z)ϕ(Q(z)) is starlike, it follows

from Lemma 2.1 that P (z) ≺ Q(z), and Q is the best dominant.

Taking q = 1, p = 1, and Q(z) = (1 + z)/(1− z) in Theorem 2.1, Theorem 2.2

and Theorem 2.3 yields three sufficient conditions for f to be univalent:

Corollary 2.6 A function f ∈ A is univalent if it satisfies one of the following

subordinations:

(i)
zf ′′(z)
f ′(z) ≺

2z
1−z2 ,

(ii) zf ′′(z) ≺ 2z
(1−z)2 , or

(iii)
zf ′′(z)
(f ′(z))2 ≺

2z
(1+z)2 .

2.3 Subordination Related to Convexity

In this section we look for sufficient conditions to ensure the following differential

subordination

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z)

holds. As corollaries, sufficient conditions are obtained for functions f to be convex.
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Theorem 2.5 Let Q be univalent and nonzero in U with Q(0) = 1, Q(z) 6=

q − p + 1, and zQ′(z)/(Q(z)(Q(z) + p − q − 1)) be starlike in U . If f ∈ Ap

satisfies

1 +
zf (q+2)(z)
f (q+1)(z)

− p+ q + 1

zf (q+1)(z)
f (q)(z)

− p+ q + 1
≺ 1 +

zQ′(z)

Q(z)(Q(z) + p− q − 1)
, (2.7)

then

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z),

and Q is the best dominant.

Proof. Let the function P be defined by

P (z) =
zf (q+1)(z)

f (q)(z)
− p+ q + 1. (2.8)

Upon differentiating logarithmically both sides of (2.8), it follows that

zP ′(z)

P (z) + p− q − 1
= 1 +

zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)
. (2.9)

Thus

1 +
zf (q+2)(z)

f (q+1)(z)
− p+ q + 1 =

zP ′(z)

P (z) + p− q − 1
+ P (z). (2.10)

The equations (2.8) and (2.10) yield

1 +
zf (q+2)(z)
f (q+1)(z)

− p+ q + 1

zf (q+1)(z)
f (q)(z)

− p+ q − 1
=

zP ′(z)

P (z)(P (z) + p− q − 1)
+ 1. (2.11)

If f ∈ Ap satisfies the subordination (2.7), equation (2.11) gives

zP ′(z)

P (z)(P (z) + p− q − 1)
≺ zQ′(z)

Q(z)(Q(z) + p− q − 1)
,
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that is,

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z))

with ϕ : C\{0, 1− p+ q} → C defined by ϕ(w) := 1/w(w+p−q−1). The desired

result is now established by an application of Lemma 2.1.

Theorem 2.5 contains Corollary 4 in [102] as a special case. In particular, we

note that Theorem 2.5 with p = 1, q = 0, and Q(z) = (1 + Az)/(1 + Bz) for

−1 ≤ B < A ≤ 1 yields the following corollary:

Corollary 2.7 [102, Corollary 6, p. 123] Let −1 ≤ B < A ≤ 1. If f ∈ A satisfies

1 +
zf ′′(z)
f ′(z)

zf ′(z)
f(z)

≺ 1 +
(A−B)z

(1 + Az)2 ,

then f ∈ ST [A,B].

For A = 0, B = b and A = 1, B = −1, Corollary 2.7 gives the results of Obradovič

and Tuneski [83].

Theorem 2.6 Let Q be univalent and nonzero in U with Q(0) = 1, Q(z) 6= q−p+1

and zQ′(z)/(Q(z) + p− q − 1), be starlike in U . If f ∈ Ap satisfies

1 +
zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)
≺ zQ′(z)

Q(z) + p− q − 1
,

then

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z),

and Q is the best dominant.

Proof. Let the function P be defined by (2.8). It follows from (2.9) and the

hypothesis that

zP ′(z)

P (z) + p− q − 1
≺ zQ′(z)

Q(z) + p− q − 1
. (2.12)
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Define the function ϕ : C \ {1− p+ q} → C by

ϕ(w) :=
1

w + p− q − 1
.

Then (2.12) can be written as

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z)).

Since ϕ is analytic in a domain containing Q(U), and zQ′(z)ϕ(Q(z)) is starlike,

the result follows from Lemma 2.1.

Theorem 2.7 Let Q be a convex function in U with Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)

f (q)(z)

(
2 +

zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)

)
≺ zQ′(z) +Q(z) + p− q − 1,

then

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z),

and Q is the best dominant.

Proof. Let the function P be defined by (2.8). Using (2.9), it follows that

zf (q+1)(z)

f (q)(z)

(
1 +

zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)

)
= zP ′(z),

and therefore

zf (q+1)(z)

f (q)(z)

(
2 +

zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)

)
= zP ′(z) + P (z) + p− q − 1.

By assumption,

zP ′(z) + P (z) + p− q − 1 ≺ zQ′(z) +Q(z) + p− q − 1,
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or

zP ′(z) + θ(P (z)) ≺ zQ′(z) + θ(Q(z)),

where the function θ : C \ {1− p+ q} → C defined by θ := 1. The proof now

follows from Lemma 2.2.

Theorem 2.8 Let Q be a convex function in U with Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)

f (q)(z)

(
1 +

zf (q+2)(z)

f (q+1)(z)
− zf (q+1)(z)

f (q)(z)

)
≺ zQ′(z),

then

zf (q+1)(z)

f (q)(z)
− p+ q + 1 ≺ Q(z),

and Q is the best dominant.

Proof. Let the function P be defined by (2.8). It follows from (2.9) that

zP ′(z)ϕ(P (z)) ≺ zQ′(z)ϕ(Q(z)),

where ϕ : C → C defined by ϕ(w) := 1. The result follows easily from Lemma

2.1.

Taking q = 1, p = 1, and Q(z) = (1 + z)(1− z) in Theorem 2.5, Theorem 2.6,

Theorem 2.7 and Theorem 2.8 yield four convexity conditions:

Corollary 2.8 A function f ∈ A is convex if it satisfies one of the following

subordinations:

(i)
2+zf ′′′(z)/f ′′(z)
1+zf ′′(z)/f ′(z) ≺ 1 +

z(1−z)2
1−z2 ,

(ii) 1 +
zf ′′′(z)
f ′′(z) −

zf ′′(z)
f ′(z) ≺

1
1−z ,

(iii)
zf ′′(z)
f ′(z)

(
2 +

zf ′′′(z)
f ′′(z) −

zf ′′(z)
f ′(z)

)
≺ 2z(2−z)

(1−z)2 , or

(iv)
zf ′′(z)
f ′(z)

(
1 +

zf ′′′(z)
f ′′(z) −

zf ′′(z)
f ′(z)

)
≺ 2z

(1−z)2 .
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CHAPTER 3

CONVOLUTION PROPERTIES OF MULTIVALENT FUNCTIONS

WITH RESPECT TO N-PLY POINTS AND SYMMETRIC

CONJUGATE POINTS

3.1 Motivation and Preliminaries

As defined in Section 1.1, p. 7, a function f ∈ A is starlike with respect to

symmetric points in U if

Re

(
zf ′(z)

f(z)− f(−z)

)
> 0

for all z ∈ U . The class of all such functions, denoted by ST s, was introduced

and investigated by Sakaguchi [115]. El-Ashwah and Thomas [41] introduced the

class ST c consisting of starlike functions with respect to conjugate points, and

the class ST sc of starlike functions with respect to symmetric conjugate points

defined respectively by the conditions

Re

(
zf ′(z)

f(z) + f(z)

)
> 0, and Re

(
zf ′(z)

f(z)− f(−z)

)
> 0.

In 2004, Ravichandran [101] introduced the classes of starlike, convex and close-

to-convex functions with respect to n−ply symmetric points, conjugate points and

symmetric conjugate points, and obtained several convolution properties. Other

investigations into the classes defined by using conjugate and symmetric conjugate

points can be found in [4, 38,62,133,134,136,137,139].

All these many investigations can be unified, and it is the aim of this chapter

to show such a unified method. For this purpose, several general subclasses of

p-valent functions are introduced such as starlike, convex, close-to-convex and

quasi-convex functions with respect to n-ply points, as well as p-valent starlike and
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convex functions with respect to symmetric points, conjugate points and symmetric

conjugate points respectively. Inclusion and convolution properties of these classes

will be investigated, and it would be evident that previous earlier works are special

instances of our present work.

The following theorems would be required.

Theorem 3.1 [75, Corollary 4.1h.1, p. 200] Let h be convex in U , and S and T

be analytic functions in U with S(0) = T (0). If Re
(
zS′(z)/S(z)

)
> 0, then

T ′(z)

S′(z)
≺ h(z) =⇒ T (z)

S(z)
≺ h(z).

The following theorem provides a convolution result between a prestalike func-

tion of order α, f ∈ Rα (cf. p. 15), and a starlike function of the same order α,

g ∈ ST (α) (cf. p. 5).

Theorem 3.2 [113, Theorem 2.4, p. 54] Let α ≤ 1, f ∈ Rα and g ∈ ST (α).

Then

f ∗ (Hg)

f ∗ g
(U) ⊂ co(H(U)),

for any analytic function H in U , where co(H(U)) denote the closed convex hull

of H(U).

Theorem 3.2 due to Ruscheweyh [113] can easily be adapted to yield the fol-

lowing result for multivalent functions.

Theorem 3.3 If f(z)/zp−1 ∈ Rα and g(z)/zp−1 ∈ ST (α), then

f ∗ (Hg)

f ∗ g
(U) ⊂ co (H (U))

for any analytic function H defined in U .
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Proof. It is evident that

f(z) ∗ (Hg)(z)

f(z) ∗ g(z)
=

f(z)
zp−1 ∗H(z) · g(z)

zp−1

f(z)
zp−1 ∗

g(z)
zp−1

.

Since f/zp−1 ∈ Rα and g/zp−1 ∈ ST (α), Theorem 3.2 yields

f(z) ∗ (Hg)(z)

f(z) ∗ g(z)
⊂ coH(U).

3.2 Multivalent Functions with Respect to n-ply Points

In the following sequel, the function g ∈ Ap is a fixed function and the function

h is a convex univalent function with positive real part satisfying h(0) = 1. On

certain occasions, for example in Theorem 3.4, we would additionally require that

Reh(z) > 1 − (1 − α)/p, where 0 ≤ α < 1. Multivalent functions starlike and

convex with respect to n−ply points are given below:

Definition 3.1 Let n ≥ 1 be an integer, εn = 1, and ε 6= 1. For f(z) = zp +∑∞
k=1 ak+pz

k+p ∈ Ap, define the function fn ∈ Ap with respect to n−ply points

by

fn(z) :=
1

n

n−1∑
k=0

εn−pkf(εkz) = zp + ap+nz
p+n + ap+2nz

p+2n + · · · .

Definition 3.2 The class ST np (h) consists of functions f ∈ Ap satisfying fn(z)/zp

6= 0 in U and the subordination

1

p

zf ′(z)

fn(z)
≺ h(z).

Denote by ST np,g(h) the class

ST np,g(h) :=
{
f ∈ Ap : f ∗ g ∈ ST np (h)

}
.
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Similarly, CVnp (h) consists of functions f ∈ Ap satisfying f ′n(z)/zp−1 6= 0 in U

and the subordination

1

p

(
zf ′
)′

(z)

f ′n(z)
≺ h(z),

and

CVnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ CVnp (h)

}
.

Remark 3.1 For n = 1, the classes ST 1
p,g(h) and CV1

p,g(h) were studied by Supra-

maniam et al. [127].

Evidently when g(z) = zp/(1− z), the classes ST np,g(h) and CVnp,g(h) reduced

respectively to the classes ST np (h) and CVnp (h). Thus these new classes of p-valent

starlike and convex functions with respect to n-ply points unify the classes ST np (h)

and CVnp (h). Note that for n = 1, ST 1
p(h) := ST p(h) and CV1

p(h) := CVp(h).

It is clear that ST np,zg′(h) = CVnp,g(h). Interestingly the property that every

convex function is necessarily starlike remains valid even for multivalent functions

with respect to n-ply points. Indeed the following result holds:

Lemma 3.1 Let g be a fixed function in Ap, and h a convex univalent function

having positive real part with h(0) = 1.

(i) If f ∈ ST np,g(h), then fn ∈ ST p,g(h).

(ii) The function f ∈ CVnp,g(h) if and only if zf ′/p ∈ ST np,g(h).

(iii) The inclusion CVnp,g(h) ⊂ ST np,g(h) holds.

Proof. It is sufficient to prove the result for g(z) = zp/(1− z).

(i) Let f ∈ ST np (h). For any fixed z ∈ U ,

1

p

zf ′(z)

fn(z)
∈ h(U). (3.1)
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Replacing z by εkz in (3.1), it follows that

1

p

εkzf ′(εkz)

fn(εkz)
∈ h(U). (3.2)

In light of the fact that

fn(εkz) = εpkfn(z), (3.3)

the containment (3.2) becomes

1

p

εk(1−p)zf ′(εkz)

fn(z)
∈ h(U).

Since h(U) is convex, it follows that

1

n

n−1∑
k=0

1

p

εk(1−p)zf ′(εkz)

fn(z)
∈ h(U). (3.4)

Using the identity

f ′n(z) =
1

n

n−1∑
k=0

εk(1−p)f ′(εkz), (3.5)

it is seen that (3.4) becomes

1

p

zf ′n(z)

fn(z)
∈ h(U).

Thus

1

p

zf ′n(z)

fn(z)
≺ h(z),

that is, fn ∈ ST p(h).

(ii) Since (zf ′/p)n(z) = zf ′n(z)/p, it is evident that

1

p

(
zf ′
)′

(z)

f ′n(z)
=

1

p

z
(

1
pzf

′)′
(z)

(1
pzf
′)n(z)

.
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Thus f ∈ CVnp (h) if and only if zf
′
/p ∈ ST np (h).

(iii) Let f ∈ CVnp (h). Then part (ii) shows that zf
′
/p ∈ ST np (h). We deduce from

part (i) that (zf
′
/p)n ∈ ST p(h). From (zf

′
/p)n = zf

′
n/p, part (ii) now shows

that fn ∈ CVp(h). Since CVp(h) is subset of ST p(h) [127, Theorem 2.1], it follows

that fn ∈ ST p(h), and because h is a function with positive real part, the function

fn is starlike.

Define the functions T and S by

T (z) :=
1

p
zf ′(z) and S(z) := fn(z).

Since the function S is starlike and

T ′(z)

S′(z)
=

1

p

(
zf ′
)′

(z)

f ′n(z)
≺ h(z),

Theorem 3.1 implies that

1

p

zf ′(z)

fn(z)
=
T (z)

S(z)
≺ h(z),

whence f ∈ ST np (h).

Ruscheweyh and Sheil-Small [114] proved the Polya-Schoenberg conjecture

that the classes of convex functions, starlike functions and close-to-convex func-

tions are closed under convolution with convex functions. In the following theorem,

this result is extended for the convolution between prestarlike functions and mul-

tivalent functions with respect to n-ply points.

Theorem 3.4 Let h be a convex univalent function satisfying the condition

Reh(z) > 1− 1− α
p

(0 ≤ α < 1),

54



and φ ∈ Ap with φ/zp−1 ∈ Rα.

(i) If f ∈ ST np,g(h), then φ∗f ∈ ST np,g(h). Equivalently, ST np,g(h) ⊂ ST np,g∗φ(h).

(ii) If f ∈ CVnp,g(h), then φ∗f ∈ CVnp,g(h). Equivalently, CVnp,g(h) ⊂ CVnp,g∗φ(h).

Proof. (i) Let f ∈ ST np (h). From Lemma 3.1 (i), it follows that fn ∈ ST p(h).

The function ψn defined by

ψn(z) :=
fn(z)

zp−1

is analytic and satisfies

zψ′n(z)

ψn(z)
=
zf ′n(z)

fn(z)
− (p− 1) ≺ p h(z)− (p− 1).

Since Reh(z) > 1− (1− α)/p, it follows that

Re
zψ′n(z)

ψn(z)
> α,

and hence ψn ∈ ST (α). Define the function H by

H(z) :=
1

p

zf ′(z)

fn(z)
.

Since H ≺ h and h is convex, an application of Theorem 3.3 shows that

1

p

z(φ ∗ f)′(z)

(φ ∗ f)n(z)
=
φ(z) ∗ 1

pzf
′(z)

φ(z) ∗ fn(z)
=

(φ ∗Hfn)(z)

(φ ∗ fn)(z)
≺ h(z),

and thus φ ∗ f ∈ ST np (h).

The general result for f ∈ ST np,g(h) follows from the fact that

f ∈ ST np,g(h)⇔ f ∗ g ∈ ST np (h).

(ii) Now let f ∈ CVnp,g(h) so that zf
′
/p ∈ ST np,g(h). The result of part (i) yields
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(zf ′/p) ∗ φ = z(f ∗ φ)′/p ∈ ST np,g(h), and thus φ ∗ f ∈ CVnp,g(h).

Close-to-convex and quasi-convex multivalent functions with respect to n−ply

points are defined as follows:

Definition 3.3 The class CCVnp (h) consists of functions f ∈ Ap satisfying the

subordination

1

p

zf ′(z)

φn(z)
≺ h(z)

for some φ ∈ ST np (h). The general class CCVnp,g(h) then consists of functions

f ∈ Ap satisfying the subordination

1

p

z(g ∗ f)′(z)

(g ∗ φ)n(z)
≺ h(z)

for some φ ∈ ST np,g(h). The class QCVnp (h) consists of functions f ∈ Ap satisfying

the subordination

1

p

(
zf ′
)′

(z)

φ′n(z)
≺ h(z)

for some φ ∈ CVnp (h), while the class QCVnp,g(h) consists of f ∈ Ap such that

1

p

(
z(g ∗ f)′

)′
(z)

(g ∗ φ)′n(z)
≺ h(z)

for some φ ∈ CVnp,g(h).

Lemma 3.2 Let g be a fixed function in Ap, and h a convex univalent function

with positive real part satisfying h(0) = 1. Then

(i) CVnp,g(h) ⊂ QCVnp,g(h) ⊂ CCVnp,g(h),

(ii) f ∈ QCVnp,g(h) if and only if zf
′
/p ∈ CCVnp,g(h).

Proof. (i) By taking φ = f , it is evident from the definition that CVnp,g(h) ⊂

QCVnp,g(h). To prove the second inclusion, suppose that f ∈ QCVnp,g(h). Then
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there exists φ ∈ CVnp,g(h) such that

1

p

(
z(g ∗ f)′

)′
(z)

(g ∗ φ)′n(z)
≺ h(z).

Since φ ∈ CVnp,g(h), it follows that (g∗φ)n ∈ CVp(h) which is subset of ST p(h) [127,

Theorem 2.1]. Thus (g ∗ φ)n ∈ ST p(h). The result now follows from Theorem 3.1

with

T (z) =
1

p
z(g ∗ f)′(z) and S(z) = (g ∗ φ)n(z).

(ii) Here the proof follows from the identity

1

p

(
z(g ∗ f)′

)′
(z)

(g ∗ φ)′n(z)
=

1

p

z
(

(g ∗ 1
pzf

′
)
)′

(z)

(g ∗ 1
pzφ
′)n(z)

,

and Lemma 3.1 (ii).

Theorem 3.5 Let h and φ satisfy the conditions of Theorem 3.4.

(i) If f ∈ CCVnp,g(h) with respect to a function f1 ∈ ST np,g(h), then φ ∗ f ∈

CCVnp,g(h) with respect to the function φ ∗ f1 ∈ ST np,g(h). Also CCVnp,g(h) ⊂

CCVnp,g∗φ(h).

(ii) If f ∈ QCVnp,g(h) with respect to f1 ∈ CVnp,g(h), then φ∗f ∈ QCVnp,g(h) with

respect to φ ∗ f1 ∈ CVnp,g(h). Also QCVnp,g(h) ⊂ QCVnp,g∗φ(h).

Proof. (i) It is sufficient to prove the result for the case g(z) = zp/(1 − z). Let

f ∈ CCVnp (h) with respect to a function f1 ∈ ST np (h). Theorem 3.4 yields φ∗f1 ∈

ST np (h), and Lemma 3.1 (i) gives (f1)n is in ST p(h). Also it is easy to see that

the function (f1)n/z
p−1 ∈ ST (α). Now define the analytic function H by

H(z) :=
1

p

zf ′(z)

(f1)n(z)
.

57



Since H(z) ≺ h(z), an application of Theorem 3.3 shows that

1

p

z(φ ∗ f)′(z)

(φ ∗ f1)n(z)
=
φ(z) ∗ 1

pzf
′(z)

φ(z) ∗ (f1)n(z)
=

(φ ∗H(f1)n)(z)

(φ ∗ (f1)n)(z)
≺ h(z).

This completes the proof of part (i).

(ii) If f ∈ QCVnp,g(h), then Lemma 3.2 (ii) gives zf ′/p ∈ CCVnp,g(h). Since

1

p
z(φ ∗ f)′(z) = φ(z) ∗ 1

p
zf ′(z),

the result of part (i) shows that z(φ ∗ f)′/p ∈ CCVnp,g(h). From Lemma 3.2 (ii),

φ ∗ f ∈ QCVnp,g(h).

3.3 Multivalent Functions with Respect to n-ply Symmetric Points

In this and the following two sections, it is assumed that p is an odd number.

Also, the function g ∈ Ap is a fixed function and the function h is convex univalent

with positive real part satisfying h(0) = 1. The classes of multivalent functions

that are p−valent starlike and p−valent convex with respect to n-ply symmetric,

conjugate, and symmetric conjugate points are introduced, and their convolution

properties discussed.

Definition 3.4 For odd positive integer p , the class ST Snp (h) consists of func-

tions f ∈ Ap satisfying (fn(z)− fn(−z)) /zp 6= 0 in U and the subordination

1

p

2zf ′(z)

fn(z)− fn(−z)
≺ h(z).

Denote by ST Snp,g(h) the class

ST Snp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ ST Snp (h)

}
.
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Similarly, CVSnp (h) consists of functions f ∈ Ap satisfying
(
f ′n(z) + f ′n(−z)

)
/zp−1

6= 0 in U and the subordination

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(−z)
≺ h(z),

and

CVSnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ CVSnp (h)

}
.

In the special case n = 1, we shall adopt the following usual notations:

ST S1
p,g(h) =: ST Sp,g(h) and CVS1

p,g(h) =: CVSp,g(h).

Remark 3.2 When p = 1, these two classes were investigated by Ravichandran

[101]. We also took note that these classes reduced to the classes studied in [100]

when n = 1 and g(z) = z/(1− z).

Lemma 3.3 Let g be a fixed function in Ap, and h a convex univalent function

with positive real part satisfying h(0) = 1.

(i) If f ∈ ST Snp,g(h) and F (z) := (f(z)− f(−z))/2, then Fn ∈ ST p,g(h).

(ii) If f ∈ ST Snp,g(h), then fn ∈ ST Sp,g(h).

(iii) The function f ∈ CVSnp,g(h) if and only if zf
′
/p ∈ ST Snp,g(h),

(iv) The inclusion CVSnp,g(h) ⊂ ST Snp,g(h) holds.

Proof. Again it is enough to prove the results for g(z) = zp/(1− z).

(i) Let f ∈ ST Snp (h). For any fixed z ∈ U ,

1

p

zf ′(z)

Fn(z)
∈ h(U).
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Replacing z by −z and taking the convex combination of these two expressions, it

readily follows that

1

2p

(
zf ′(z)

Fn(z)
+

(−z)f ′(−z)

Fn(−z)

)
=

1

p

zF ′(z)

Fn(z)
∈ h(U).

This shows that the function F ∈ ST np (h) and Lemma 3.1 (i) now yields Fn ∈

ST p(h).

(ii) Replacing z by εkz in

1

p

2zf ′(z)

fn(z)− fn(−z)
∈ h(U),

and using (3.3) and (3.5), it follows from the convexity of h(U) that

1

p

2zf ′n(z)

fn(z)− fn(−z)
=

1

n

n−1∑
k=0

1

p

2εkzf ′(εkz)

fn(εkz)− fn(−εkz)
∈ h(U).

Thus fn ∈ ST Sp(h).

(iii) Since (zf ′/p)n(−z) = −zf ′n(−z)/p, it is clear that

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(−z)
=

1

p

2z(1
pzf
′)′(z)

(1
pzf
′)n(z)− (1

pzf
′)n(−z)

.

Thus f ∈ CVSnp (h) if and only if zf ′/p ∈ ST Snp (h).

(iv) Let f ∈ CVSnp (h) and F (z) := (f(z) − f(−z))/2. The result in part (iii)

shows that zf
′
/p ∈ ST Snp (h). Hence, by part (i), (zF

′
/p)n ∈ ST p(h). Since

(zF
′
/p)n = zF

′
n/p, Lemma 3.1(ii) shows that Fn ∈ CVp(h). So it follows from

Lemma 3.1(iii) that Fn ∈ ST p(h). Since h is a function with positive real part,

we deduce that the function Fn is starlike.

Now let T (z) := zf ′(z)/p and S(z) := (fn(z) − fn(−z))/2 = Fn(z). Since
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f ∈ CVSnp (h),

T ′(z)

S′(z)
=

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(−z)
≺ h(z).

Since S is starlike, the above subordination together with Theorem 3.1 implies

that

1

p

2zf ′(z)

fn(z)− fn(−z)
=
T (z)

S(z)
≺ h(z),

and hence f ∈ ST Snp (h).

Theorem 3.6 Let h and φ satisfy the conditions of Theorem 3.4.

(i) If f ∈ ST Snp,g(h), then φ ∗ f ∈ ST Snp,g(h). Equivalently, ST Snp,g(h) ⊂

ST Snp,g∗φ(h).

(ii) If f ∈ CVSnp,g(h), then φ ∗ f ∈ CVSnp,g(h). Equivalently, CVSnp,g(h) ⊂

CVSnp,g∗φ(h).

Proof. It is enough to prove the results when g(z) = zp/(1− z).

(i) Define the functions F and H by

F (z) :=
1

2
(f(z)− f(−z)) and H(z) :=

1

p

zf ′(z)

Fn(z)
.

Lemma 3.3 (i) shows that Fn ∈ ST p(h). Since h is a convex function with

Reh(z) > 1− (1− α)/p, it follows that

Re
zF ′n(z)

Fn(z)
> p− 1 + α,

and whence the function Fn(z)/zp−1 is starlike of order α. Since H(z) ≺ h(z),

Theorem 3.3 yields

1

p

2z(φ ∗ f)′(z)

(φ ∗ f)n(z)− (φ ∗ f)n(−z)
=

φ(z) ∗ 1
pzf
′(z)

φ(z) ∗ (fn(z)− fn(−z))/2
=

(φ ∗HFn)(z)

(φ ∗ Fn)(z)
≺ h(z),
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and thus φ ∗ f ∈ ST Snp (h).

(ii) If f ∈ CVSnp (h), Lemma 3.3 (iii) and the result of part (i) above yield

φ ∗ 1

p
zf ′ =

1

p
z(φ ∗ f)′ ∈ ST Snp (h).

Hence φ ∗ f ∈ CVSnp (h).

3.4 Multivalent Functions with Respect to n-ply Conjugate Points

Definition 3.5 For odd positive integer p , the class ST Cnp (h) consists of func-

tions f ∈ Ap satisfying
(
fn(z) + fn(z)

)
/zp 6= 0 in U and the subordination

1

p

2zf ′(z)

fn(z) + fn(z)
≺ h(z).

Denote by ST Cnp,g(h) the class

ST Cnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ ST Cnp,g(h)

}
.

Similarly, CVCnp (h) consists of functions f ∈ Ap satisfying
(
f ′n(z) + f ′n(z)

)
/zp−1

6= 0 in U and the subordination

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(z)
≺ h(z),

and

CVCnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ CVCnp (h)

}
.

For n = 1, we adopt the following notations: ST C1
p,g(h) =: ST Cp,g and CVC1

p,g(h) =:

CVCp,g(h).

Remark 3.3 Ravichandran [101] investigated these two classes for p = 1. These

classes reduced to the classes studied in [100] when n = 1 and g(z) = z/(1− z).
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Lemma 3.4 Let g be a fixed function in Ap, and h a convex univalent function

with positive real part satisfying h(0) = 1.

(i) If f ∈ ST Cnp,g(h) and F (z) :=
(
f(z) + f(z)

)
/2, then Fn ∈ ST p,g(h).

(ii) If f ∈ ST Cnp,g(h), then fn ∈ ST Cp,g(h).

(iii) The function f ∈ CVCnp,g(h) if and only if zf
′
/p ∈ ST Cnp,g(h).

(iv) The inclusion CVCnp,g(h) ⊂ ST Cnp,g(h) holds.

Proof. Again it is enough to prove the results when g(z) = zp/(1− z).

(i) Since Fn(z) = (fn(z) + fn(z))/2, if f ∈ ST Cnp (h), then

1

p

zf ′(z)

Fn(z)
∈ h(U)

for any fixed z ∈ U . Thus

1

2p

(
zf ′(z)

Fn(z)
+

(
zf ′(z)

Fn(z)

))
=

1

p

zF ′(z)

Fn(z)
∈ h(U).

This shows that the function F ∈ ST np (h) and by Lemma 3.1 (i) it follows that

Fn ∈ ST p(h).

(ii) Replacing z by εkz in

1

p

2zf ′(z)

fn(z) + fn(z)
∈ h(U),

and using (3.3) and (3.5), it follows from the convexity of h(U) that

1

p

2zf ′n(z)

fn(z) + fn(z)
=

1

n

n−1∑
k=0

1

p

2εkzf ′(εkz)

fn(εkz) + fn(ε−kz)
∈ h(U).

Thus fn ∈ ST Cp(h).
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(iii) Since (
1

p
zf ′
)
n

(z) =
1

p
zf ′n(z),

it follows that

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(z)
=

1

p

2z(1
pzf
′)′(z)

(1
pzf
′)n(z) + (1

pzf
′)n(z)

.

Thus f ∈ CVCnp,g(h) if and only if zf ′/p ∈ ST Cnp,g(h).

(iv) If f ∈ CVCnp (h), then part (iii) gives zf
′
/p ∈ ST Cnp (h). With F (z) = (f(z) +

f(z))/2, it follows from part (i) that

(
1

p
zF ′
)
n

=

(
1
pzf
′
)
n

+

((
1
pzf
′
)

(z)

)
n

2

=

1
pzf

′
n + 1

pzf
′
n(z)

2

=
1

p
zF
′
n ∈ ST p(h).

Lemma 3.1(ii) now gives Fn ∈ CVp(h), and so Fn ∈ ST p(h). Thus Fn is starlike.

Next let T (z) := zf ′(z)/p and S(z) := (fn(z) + fn(z))/2 = Fn(z). Since

T ′(z)

S′(z)
=

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(z)
≺ h(z),

and S is starlike, Theorem 3.1 shows that

1

p

2zf ′(z)

fn(z) + f ′n(z)
=
T (z)

S(z)
≺ h(z),

whence f ∈ ST Cnp,g(h).

Theorem 3.7 Let h and φ satisfy the conditions of Theorem 3.4 and φ has real

coefficients.
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(i) If f ∈ ST Cnp,g, then φ∗f ∈ ST Cnp,g(h).Equivalently, ST Cnp,g(h) ⊂ ST Cnp,g∗φ(h).

(ii) If f ∈ CVCnp,g(h), then φ ∗ f ∈ CVCnp,g(h), and CVCnp,g(h) ⊂ CVCnp,g∗φ(h).

Proof. (i) Let f ∈ ST Cnp (h).Define the functions F (z) and H(z) by

F (z) =
f(z) + f(z̄)

2
and H(z) =

1

p

zf ′(z)

Fn(z)
.

Using Lemma 3.4, and proceeding similarly as in the proof of Theorem 3.6, it

can be shown that the function Fn(z)/zp−1 is starlike of order α, where Fn(z) =

(fn(z) + fn(z̄))/2.

Since H(z) ≺ h(z) and because φ has real coefficients, Theorem 3.3 yields

1

p

2z(φ ∗ f)′(z)

(φ ∗ f)n(z) + (φ ∗ f)n(z)
=

φ(z) ∗ 1
pzf
′(z)

φ(z) ∗
(
fn(z) + fn(z)

)
/2

=
(φ ∗HFn)(z)

(φ ∗ Fn)(z)
≺ h(z),

or φ ∗ f ∈ ST Cnp (h).

(ii) If f ∈ CVCnp,g(h), it follows from Lemma 3.4 (iii) that zf ′/p ∈ ST Cnp,g(h). By

part (i), it is now evident that

φ ∗ 1

p
zf ′ =

1

p
z(φ ∗ f)′ ∈ ST Cnp,g(h),

and thus we deduce that φ ∗ f ∈ CVCnp,g(h) from Lemma 3.4 (iii).

3.5 Multivalent Functions with Respect to n-ply Symmetric Conjugate

Points

Definition 3.6 For odd positive integer p , the class ST SCnp (h) consists of func-

tions f ∈ Ap satisfying
(
fn(z)− fn(−z)

)
/zp 6= 0 in U and the subordination

1

p

2zf ′(z)

fn(z)− fn(−z)
≺ h(z).

65



Denote by ST SCnp,g(h) the class

ST SCnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ ST SCnp (h)

}
.

Similarly, CVSCnp (h) consists of functions f ∈ Ap satisfying
(
f ′n(z) + f ′n(−z)

)
/zp−1

6= 0 in U and the subordination

1

p

2
(
zf ′
)′

(z)

f ′n(z) + f ′n(−z)
≺ h(z),

and

CVSCnp,g(h) :=
{
f ∈ Ap : f ∗ g ∈ CVSCnp (h)

}
.

The following usual notations ST SC1
p,g(h) := ST SCp,g(h) and CVSC1

p,g(h) :=

CVSCp,g(h) are used for the case n = 1.

Remark 3.4 The above two classes were investigated by Ravichandran [101] for

p = 1. Evidently, these classes reduced to the classes studied in [100] when n = 1

and g(z) = z/(1− z).

The following two results can readily be established by proceeding analogously

as in the proofs of Lemmas 3.3 and 3.4, and Theorems 3.6 and 3.7. We omit these

proofs.

Lemma 3.5 Let g be a fixed function in Ap, and h a convex univalent function

with positive real part satisfying h(0) = 1.

(i) If f ∈ ST SCnp,g(h) and F (z) := (f(z)− f(−z))/2, then Fn ∈ ST p,g(h).

(ii) If f ∈ ST SCnp,g(h), then fn ∈ ST SCp,g(h).

(iii) The function f ∈ CVSCnp,g(h) if and only if zf ′/p ∈ ST SCnp,g(h).

(iv) The inclusion CVSCnp,g(h) ⊂ ST SCnp,g(h) holds.
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Theorem 3.8 Let h and φ satisfy the conditions of Theorem 3.4 and φ has real

coefficients.

(i) If f ∈ ST SCnp,g, then φ ∗ f ∈ ST SCnp,g(h).

(ii) If f ∈ CVSCnp,g(h), then φ ∗ f ∈ CVSCnp,g(h).
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CHAPTER 4

CLOSURE PROPERTIES OF OPERATORS ON MA-MINDA TYPE

STARLIKE AND CONVEX FUNCTIONS

4.1 Two Operators

As mentioned in Section 1.5, p. 26, Chandra and Singh [36] proved that the

integral ∫ z

0

f(eiµζ)− f(eiψζ)

(eiµ − eiψ)ζ
dζ (µ 6= ψ, 0 ≤ µ, ψ < 2π)

preserves membership in the classes of starlike, convex and close-to-convex func-

tions. This integral operator has been generalized in the following manner:

Definition 4.1 For αj ≥ 0 and fj ∈ A, define the operators F : An × U2 → A

and G : An × U2 → A by

F (z) = Ff1,··· ,fn;z1,z2(z) =

∫ z

0

n∏
j=1

(
fj(z2ζ)− fj(z1ζ)

(z2 − z1)ζ

)αj
dζ (z1, z2 ∈ U),

(4.1)

G(z) = Gf1,··· ,fn;z1,z2(z) = z
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
(z1, z2 ∈ U). (4.2)

Here the powers are chosen to be principal. It is clear that G(z) = zF ′(z). With

F and G as above, define the classes Fn and Gn respectively by

Fn(f1, ..., fn) :=
{
Ff1,··· ,fn;z1,z2 : fj ∈ A, z1, z2 ∈ U

}
, (4.3)

and

Gn(f1, ..., fn) :=
{
Gf1,··· ,fn;z1,z2 : fj ∈ A, z1, z2 ∈ U

}
. (4.4)

In the case n = 1, it is assumed that α1 = 1 in (4.1) and (4.2), and we write

F(f) := F1(f) and G(f) := G1(f) respectively.
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Ponnusamy and Singh [97] introduced the operator F in (4.1) and investigated

its univalence. In this chapter, membership preservation properties of the opera-

tors F and G on the subclasses of starlike, convex and close-to-convex functions

will be investigated. We shall also make connections with various earlier works.

The following lemma will be required.

Lemma 4.1 [72] Let G be analytic, and H convex univalent in U . If the range

of the function G′/H ′ is contained in a convex set ∆, then so do the values

(G(z2)−G(z1)) / (H(z2)−H(z1)) for z1, z2 ∈ U .

This lemma yields the following immediate result:

Lemma 4.2 Let ϕ be a convex function with ϕ(0) = 1 and z1, z2 ∈ U. If f ∈ A

satisfies the subordination f ′(z)/g′(z) ≺ ϕ(z) for some g ∈ CV, then

f(z2z)− f(z1z)

g(z2z)− g(z1z)
≺ ϕ(z).

4.2 Operators on Subclasses of Convex Functions

Theorem 4.1 For j = 1, 2, . . . , n, let αj ≥ 0, 0 ≤ βj < 1 and γ := 1 −∑n
j=1 αj(1 − βj). For fj ∈ A, let F and G be given by (4.1) and (4.2) re-

spectively. If fj ∈ CV(βj), then F ∈ CV(γ) and G ∈ ST (γ). In particular, if∑n
j=1 αj(1− βj) ≤ 1, then F ∈ CV and G ∈ ST .

Proof. Let fj ∈ CV(βj) so that

(zf ′j(z))′

f ′j(z)
= 1 +

zf ′′j (z)

f ′j(z)
≺ ϕβj (z), (4.5)

where ϕβj : U → C is the convex function defined by

ϕβj (z) =
1 + (1− 2βj)z

1− z
.
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For 0 ≤ βj < 1, ϕβj (U) is the half-plane Rew > βj and hence ϕβj (U) is a convex

domain. Since fj is a convex function, Lemma 4.2 applied to the subordination

(4.5) yields
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)
≺ ϕβj (z),

or equivalently,

Re

(
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)

)
> βj . (4.6)

A differentiation of (4.1) yields

F ′(z) =
n∏
j=1

(
fj(z2z)− fj(z1z)

(z2 − z1)z

)αj
,

and differentiating logarithmically shows that

1 +
zF ′′(z)

F ′(z)
= (1−

n∑
j=1

αj) +
n∑
j=1

αj

(
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)

)
. (4.7)

It follows from (4.7) by using the inequality (4.6) that F ∈ CV(γ):

1 + Re
zF ′′(z)

F ′(z)
= (1−

n∑
j=1

αj) +
n∑
j=1

αj Re

(
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)

)

> (1−
n∑
j=1

αj) +
n∑
j=1

αjβj

= γ.

The result that G ∈ ST (γ) follows from the fact that zF ′(z) = G(z) and that

F ∈ CV(γ).

Interesting special cases of Theorem 4.1 are obtained in the following results.

Corollary 4.1 Let 0 ≤ β < 1. For j = 1, 2, . . . , n, let αj ≥ 0 and γ := 1 − (1 −

β)
∑n
j=1 αj. For fj ∈ A, let F be given by (4.1). If fj ∈ CV(β), then F ∈ CV(γ)

70



and G ∈ ST (γ). In particular, if
∑n
j=1 αj ≤ 1, then F ∈ CV(β) and G ∈ ST (β).

Corollary 4.2 For j = 1, 2, ..., n, let αj ≥ 0, 0 ≤ βj < 1 and γ := 1−
n∑
j=1

αj(1−

βj). For fj ∈ A, let Fn(f1, ..., fn) and Gn(f1, ..., fn) be given by (4.3) and (4.4)

respectively. If fj ∈ CV(βj), then

Fn(f1, ..., fn) ⊂ CV(γ) and Gn(f1, ..., fn) ⊂ ST (γ).

In particular, if
n∑
j=1

αj(1− βj) ≤ 1, then

Fn(f1, ..., fn) ⊂ CV and Gn(f1, ..., fn) ⊂ ST .

Also if f ∈ CV(α), 0 ≤ α < 1, then F(f) ⊂ CV(α) and G(f) ⊂ ST (α).

Corollary 4.3 [36, Theorem 2.1, p. 1271 and Theorem 2.4 p. 1273] Let 0 ≤ α < 1.

If f(z) ∈ CV(α), then G(f) ⊂ ST (α) and F(f) ⊂ CV(α).

Corollary 4.4 [121] If f ∈ CV, then
∫ z

0 (f(t)− f(−t))/(2t)dt ∈ CV.

4.3 Operators on Subclasses of Ma-Minda Convex Functions

For j = 1, 2, . . . , n, let αj ≥ 0, 0 ≤ β < 1 and
∑n
j=1 αj = 1. For fj ∈ A, let F be

given by (4.1). By Corollary 4.1, if fj ∈ CV(β), then F ∈ CV(β). This result is

next proved in a more general setting:

Theorem 4.2 For j = 1, 2, . . . , n, let αj ≥ 0 and
∑n
j=1 αj ≤ 1. Let ϕ be convex

in U with positive real part, and normalized by ϕ(0) = 1. If fj ∈ CV(ϕ), then F

given by (4.1) satisfies F ∈ CV(ϕ), and G given by (4.2) satifies G ∈ ST (ϕ).

Proof. Let fj ∈ CV(ϕ) so that

1 +
zf ′′j (z)

f ′j(z)
≺ ϕ(z).
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Since ϕ is a function with positive real part, it follows that

1 + Re
zf ′′j (z)

f ′j(z)
> 0,

and hence fj is a convex function. As shown in the proof of Theorem 4.1,

Lemma 4.2 yields
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)
≺ ϕ(z),

or for any fixed z ∈ U ,

z2zf
′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)
∈ ϕ(U).

Since ϕ is convex, and 1 = ϕ(0) ∈ ϕ(U), the convex combination of n+ 1 complex

numbers

1;
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)
(j = 1, 2, . . . , n),

is again in ϕ(U):

(1−
n∑
j=1

αj)(1) +
n∑
j=1

αj

(
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)

)
∈ ϕ(U).

Thus it follows that

(1−
n∑
j=1

αj) +
n∑
j=1

αj

(
z2zf

′
j(z2z)− z1zf

′
j(z1z)

fj(z2z)− fj(z1z)

)
≺ ϕ(z).

In view of (4.7), the above subordination becomes

1 +
zF ′′(z)

F ′(z)
≺ ϕ(z),

which proves F ∈ CV(ϕ).

Corollary 4.5 Let ϕ be convex in U with positive real part, and normalized by
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ϕ(0) = 1. If f ∈ CV(ϕ), then

∫ z

0

f(z2ζ)− f(z1ζ)

(z2 − z1)ζ
dζ ∈ CV(ϕ) and

f(z2z)− f(z1z)

z2 − z1
∈ ST (ϕ).

Corollary 4.6 For j = 1, 2, ..., n, let αj ≥ 0 and
∑n
j=1 αj ≤ 1. Let ϕ be convex

in U with positive real part, and normalized by ϕ(0) = 1. If fj ∈ CV(ϕ), then

Fn(f1, ..., fn) ⊂ CV(ϕ) and Gn(f1, ..., fn) ⊂ ST (ϕ). In particular, if f ∈ CV(ϕ),

then F(f) ⊂ CV(ϕ) and G(f) ⊂ ST (ϕ).

4.4 Operators on Subclasses of Starlike and Close-to-Convex Functions

In this section, we shall devote attention to the following special case of the oper-

ator F :

F1(z) :=

∫ z

0

f(z2ζ)− f(z1ζ)

(z2 − z1)ζ
dζ.

Theorem 4.3 Let ϕ be convex in U with positive real part, and normalized by

ϕ(0) = 1. If f ∈ ST (ϕ), then F1 ∈ ST (ϕ).

Proof. Since f ∈ ST (ϕ), there exists a function g ∈ CV(ϕ) such that f(z) =

zg′(z). In fact, such a function g satisfies

g(αz) =

∫ z

0

f(αζ)

ζ
dζ (|α| ≤ 1).

Using this identity, it follows that

F1(z) =

∫ z

0

f(z2ζ)− f(z1ζ)

(z2 − z1)ζ
dζ =

g(z2z)− g(z1z)

z2 − z1
.

Since g ∈ CV(ϕ), Corollary 4.5 shows that

g(z2z)− g(z1z)

z2 − z1
∈ ST (ϕ),
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and hence F1 ∈ ST (ϕ).

Corollary 4.7 Let ϕ be convex in U with positive real part, and normalized by

ϕ(0) = 1. If f ∈ ST (ϕ), then F(f) ⊂ ST (ϕ).

Corollary 4.8 [36, Theorem 2.3, p. 1273] Let 0 ≤ α < 1. If f(z) ∈ ST (α), then

F(f) ⊂ ST (α).

Corollary 4.9 [121] If f ∈ ST , then
∫ z

0 (f(t)− f(−t))/(2t)dt ∈ ST .

Definition 4.2 Let ϕ and ψ be convex functions with positive real part and nor-

malized respectively by φ(0) = 1 and ψ(0) = 1. The class CCV(ϕ, ψ) consists of

functions f ∈ A satisfying the subordination

f ′(z)

h′(z)
≺ ϕ(z)

where h ∈ CV(ψ).

For 0 ≤ α, τ < 1, let ϕα : U → C and ψτ : U → C be defined by

ϕα(z) =
1 + (1− 2α)z

1− z
, ψα(z) =

1 + (1− 2τ)z

1− z
.

In this case, the class CCV(ϕ, ψ) reduces to the familiar class of univalent close-

to-convex functions of order α and type τ :

CCV(α, τ) :=

{
f ∈ A : Re

(
f ′(z)

h′(z)

)
> α, h ∈ CV(τ)

}
.

In this form, the class CCVα investigated by Pommerenke [92] becomes a special

case of CCV(ϕ, ψ), that is,

CCVα = CCV
((

1 + z

1− z

)α
,

1 + z

1− z

)
.
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The following closure property for the class CCV(ϕ, ψ) contains a result of Pom-

merenke [92].

Theorem 4.4 If f ∈ CCV(ϕ, ψ), then F1 ∈ CCV(ϕ, ψ).

Proof. If f ∈ CCV(ϕ, ψ), then there exists a function h ∈ CV(ψ) such that

f ′(z)

h′(z)
≺ ϕ(z).

Corollary 4.5 yields

H1(z) :=

∫ z

0

h(z2ζ)− h(z1ζ)

(z2 − z1)ζ
dζ ∈ CV(ψ).

Since Reψ(z) > 0, the function h is convex. It follows from Lemma 4.2 that

f(z2z)− f(z1z)

h(z2z)− h(z1z)
≺ ϕ(z).

Since

F ′1(z)

H ′1(z)
=
f(z2z)− f(z1z)

h(z2z)− h(z1z)
,

we deduce that F1 ∈ CCV(ϕ, ψ).

Corollary 4.10 If f ∈ CC(ϕ, ψ), then F(f) ⊂ CC(ϕ, ψ). In particular, for 0 ≤

α, τ < 1, if f ∈ CC(α, τ) , then F(f) ⊂ CC(α, τ).

Corollary 4.11 [36, Theorem 2.6, p. 1274] Let 0 ≤ α, τ < 1, if f ∈ CC(α, τ),

then F(f) ⊂ CC(α, τ).

Corollary 4.12 [121] If f ∈ CCV with respect to the convex function h, then

F (f) =
∫ z

0 (f(t)−f(−t))/(2t)dt ∈ CCV with respect to the convex function H(f) =∫ z
0 (h(t)− h(−t))/(2t)dt.
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CHAPTER 5

STARLIKENESS OF INTEGRAL TRANSFORMS VIA DUALITY

5.1 Duality Technique

For β < 1, the class R(β) defined in Section 1.6, p. 29, consists of functions f

satisfying

Re (f ′(z) + zf ′′(z)) > β (z ∈ U).

Ali [6] conjectured that for β0 = −(2 log 2 − 1)/2(1 − log 2) = −0.629, the class

R(β0) ⊂ ST , and that β0 is the best estimate. Fournier and Ruscheweyh [48]

proved that Ali’s conjecture was true. As the implication

Re (f ′(z) + zf ′′(z)) > β ⇒ f ∈ ST

is equivalent to V (f) ∈ ST whenever Re (f ′(z)) > β, where V : A → A is given

by

V (f)(z) =

∫ 1

0

f(tz)

t
dt,

Fournier and Ruscheweyh [48] introduced a more general operator Vλ : A → A

given by

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt, (5.1)

where λ is a non-negative real-valued integrable function satisfying the condition∫ 1
0 λ(t)dt = 1. Using the Duality Principle [110, 113], they proved starlikeness of

the linear integral transform Vλ over functions f in the class

P(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z)− β

)
> 0, z ∈ U

}
.
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In a recent paper, Miller and Mocanu [76] determined conditions on the kernel

function W so that the function f defined by

f(z) =

∫ 1

0

∫ 1

0
W (r, s, z)drds

is starlike. Ali et al. in [7] considered a different kernel W . They considered

functions f ∈ A given by the double integral operator of the form

f(z) =

∫ 1

0

∫ 1

0
G (ztµsν) t−µs−νdsdt.

Under this instance, it follows that

f ′(z) =

∫ 1

0

∫ 1

0
g (ztµsν) dsdt,

where G′ = g. Furthermore, this function f satisfies a third-order differential

equation of the form

f ′(z) + αzf ′′(z) + γz2f ′′′(z) = g(z)

for appropriate α and γ. For particular cases of a convex function h, Ali et al. [7]

investigated starlikeness properties of functions f belonging to the class R(α, γ, h)

defined by

R(α, γ, h) =
{
f ∈ A : f ′(z) + αzf ′′(z) + γz2f ′′′(z) ≺ h(z), z ∈ U

}
.

In the special case when the function h given by

h(z) := hβ(z) = 1 +
(1− 2β)z

1− z
(β < 1),
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the class R(α, γ, hβ) reduces to the class

R(α, γ, β) =
{
f ∈ A : Re

(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β, z ∈ U

}
.

For α ≥ 0, γ ≥ 0 and β < 1, let

Wβ(α, γ) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α + 2γ)

f(z)

z

+(α− 2γ)f ′(z) + γzf ′′(z)− β
)
> 0, z ∈ U

}
.

(5.2)

The class Wβ(α, γ) is closely related to the class R(α, γ, β). It is evident that

f ∈ R(α, γ, β) if and only if zf ′ lies in a subclass of Wβ(α, γ) where φ = 0.

Recently, Kim and Rønning [63] investigated starlikeness property of the integral

transform (5.1) for functions f in the class

Pα(β) :=Wβ(α, 0) = {f ∈ A : ∃φ ∈ R with

Re eiφ
(

(1− α)
f(z)

z
+ αf ′(z)− β

)
> 0, z ∈ U

}
.

In 2008, Ponnusamy and Rønning [96] discussed this problem for functions f in

the class

Rγ(β) :=Wβ(1 + 2γ, γ) = {f ∈ A : ∃φ ∈ R with

Re eiφ
(
f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ U

}
.

In this chapter, the Duality Principle is used to investigate the starlikeness of

the integral transform Vλ(f) over the class Wβ(α, γ). The results obtained ex-

tend earlier works of Fournier and Ruscheweyh [48], Kim and Rønning [63], and

Ponnusamy and Rønning [96].

Interestingly the general integral transform Vλ(f) in (5.1) reduces to various
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well-known integral operators for specific choices of λ. For example,

λ(t) := (1 + c)tc (c > −1),

gives the Bernardi integral operator, while the choice

λ(t) :=
(a+ 1)p

Γ(p)
ta(log

1

t
)p−1 (a > −1, p ≥ 0),

gives the Komatu operator [66]. Clearly for p = 1 the Komatu operator is in fact

the Bernardi operator.

For a certain choice of λ, the integral operator Vλ is the convolution between a

function f and the Gaussian hypergeometric function F (a, b; c; z) := 2F1(a, b; c; z),

which is related to the general Hohlov operator [49] given by

Ha,b,c(f) := zF (a, b; c; z) ∗ f(z).

In the special case a = 1, the operator reduces to the Carlson-Shaffer operator [33].

Here 2F1(a, b; c; z) is the Gaussian hypergeometric function given by the series

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (z ∈ U),

where the Pochhammer symbol is used to indicate (a)n = a(a + 1)n−1, (a)0 = 1,

and where a, b, c are real parameters with c 6= 0,−1,−2 · · · .

In Section 5.2, the best value of β < 1 is determined that ensures Vλ(f)

maps Wβ(α, γ) into the class of normalized univalent functions S. Additionally,

necessary and sufficient conditions are determined that ensure Vλ(f) is starlike

univalent over the class Wβ(α, γ). In Section 5.3, easier sufficient conditions for

Vλ(f) to be starlike is found, and Section 5.4 is devoted to several applications

of results obtained for specific choices of the admissible function λ. In partic-
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ular, the smallest value β < 1 is obtained that ensures a function f satisfying

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β in the unit disk is starlike.

5.2 Univalence and Starlikeness of Integral Transforms

First we introduce two constants µ ≥ 0 and ν ≥ 0 satisfying

µ+ ν = α− γ and µν = γ. (5.3)

When γ = 0, then µ is chosen to be 0, in which case, ν = α ≥ 0. When α = 1+2γ,

(5.3) yields µ+ ν = 1 + γ = 1 + µν, or (µ− 1)(1− ν) = 0.

(i) For γ > 0, then choosing µ = 1 gives ν = γ.

(ii) For γ = 0, then µ = 0 and ν = α = 1.

In the sequel, whenever the particular case α = 1 + 2γ is considered, the values of

µ and ν for γ > 0 will be taken as µ = 1 and ν = γ respectively, while µ = 0 and

ν = 1 = α in the case γ = 0.

Next we introduce two auxiliary functions. Let

φµ,ν(z) = 1 +
∞∑
n=1

(nν + 1)(nµ+ 1)

n+ 1
zn, (5.4)

and

ψµ,ν(z) = φ−1
µ,ν(z) = 1 +

∞∑
n=1

n+ 1

(nν + 1)(nµ+ 1)
zn,

=

∫ 1

0

∫ 1

0

dsdt

(1− tνsµz)2 . (5.5)
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Here φ−1
µ,ν denotes the convolution inverse of φµ,ν such that φµ,ν ∗φ−1

µ,ν = z/(1−z).

If γ = 0, then µ = 0, ν = α, and it is clear that

ψ0,α(z) = 1 +
∞∑
n=1

n+ 1

nα + 1
zn =

∫ 1

0

dt

(1− tαz)2 .

If γ > 0, then ν > 0, µ > 0, and making the change of variables u = tν , v = sµ

results in

ψµ,ν(z) =
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvz)2 dudv.

Thus the function ψ can be written as

ψµ,ν(z) =



1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvz)2 dudv (γ > 0),

∫ 1

0

dt

(1− tαz)2 (γ = 0, α ≥ 0).

(5.6)

Now let g be the solution of the initial value-problem

d

dt
t1/ν(1 + g(t)) =



2

µν
t1/ν−1

∫ 1

0

s1/µ−1

(1 + st)2ds (γ > 0),

2

α

t1/α−1

(1 + t)2 (γ = 0, α > 0),

(5.7)

satisfying g(0) = 1. It is easily seen that the solution is given by

g(t) =
2

µν

∫ 1

0

∫ 1

0

s1/µ−1w1/ν−1

(1 + swt)2 dsdw − 1 = 2
∞∑
n=0

(n+ 1)(−1)ntn

(1 + µn)(1 + νn)
− 1. (5.8)
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In particular,

gγ(t) =
1

γ

∫ 1

0
s1/γ−1 1− st

1 + st
ds (γ > 0, α = 1 + 2γ),

gα(t) =
2

α
t−1/α

∫ t

0

τ1/α−1

(1 + τ)2dτ − 1 (γ = 0, α > 0). (5.9)

Functions in the class Wβ(α, γ) generally are not starlike; indeed, they may

not even be univalent. Our central result below provides conditions for univalence

and starlikeness.

Theorem 5.1 Let µ ≥ 0, ν ≥ 0 satisfy (5.3), and let β < 1 satisfy

β

1− β
= −

∫ 1

0
λ(t)g(t)dt, (5.10)

where g is the solution of the initial-value problem (5.7) given by (5.8). If f ∈

Wβ(α, γ), then F = Vλ(f) ∈ W0(1, 0) ⊂ S.

Further let

Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx (ν > 0), (5.11)

Πµ,ν(t) =



∫ 1

t
Λν(x)x1/ν−1−1/µdx (γ > 0 (µ > 0, ν > 0)),

Λα(t) (γ = 0 (µ = 0, ν = α > 0)),

(5.12)

and assume that t1/νΛν(t)→ 0, and t1/µΠµ,ν(t)→ 0 as t→ 0+. Let

h(z) =
z(1 + ε−1

2 z)

(1− z)2 , |ε| = 1. (5.13)
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Then 

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0 (γ > 0)

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0 (γ = 0).

(5.14)

if and only if F (z) = Vλ(f)(z) is in ST . This conclusion does not hold for smaller

values of β.

Proof. Since the case γ = 0 (µ = 0 and ν = α) corresponds to [63, Theorem 2.1],

it is sufficient to consider only the case γ > 0.

Let

H(z) = (1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z).

Since ν + µ = α− γ and µν = γ, then

H(z) = (1 + γ − (α− γ))
f(z)

z
+ (α− γ − γ) f ′(z) + γzf ′′(z)

= (1 + µν − ν − µ)
f(z)

z
+ (ν + µ− µν) f ′(z) + µνzf ′′(z)

= µν

(
1

ν
− 1

)(
1

µ
− 1

)
z−1f(z) + µν

(
1

ν
− 1

)
f ′(z) + νf ′(z) + µνzf ′′(z)

= µνz1−1/µ d

dz

(
z1/µ−1/ν+1

((
1

ν
− 1

)
z1/ν−2f(z) + z1/ν−1f ′(z)

))
= µνz1−1/µ d

dz

(
z1/µ−1/ν+1 d

dz

(
z1/ν−1f(z)

))
.

With f(z) = z +
∑∞
n=2 anz

n, it follows from (5.4) that

H(z) = 1 +
∞∑
n=1

an+1(nν + 1)(nµ+ 1)zn = f ′(z) ∗ φµ,ν , (5.15)

and (5.5) yields

f ′(z) = H(z) ∗ ψµ,ν(z). (5.16)

83



Let g be given by

g(z) =
H(z)− β

1− β
.

Since Re eiφg(z) > 0, from Theorem 1.23, without loss of generality, we may

assume that

g(z) =
1 + xz

1 + yz
, |x| = 1, |y| = 1. (5.17)

Now (5.16) implies that f ′(z) = [(1− β)g(z) + β] ∗ ψµ,ν , and (5.17) readily gives

f(z)

z
=

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z), (5.18)

where for convenience, we write ψ := ψµ,ν .

To show that F ∈ S, the Noshiro-Warschawski Theorem asserts it is sufficient

to prove that F ′(U) is contained in a half-plane not containing the origin. Now

F ′(z) =

∫ 1

0

λ(t)

1− tz
dt ∗ f ′(z) =

∫ 1

0

λ(t)

1− tz
dt ∗

(
(1− β)

1 + xz

1 + yz
+ β

)
∗ ψ(z)

=

∫ 1

0
λ(t)ψ(tz)dt ∗

(
(1− β)

1 + xz

1 + yz
+ β

)
=

(∫ 1

0
λ(t) ((1− β)ψ(tz) + β) dt

)
∗ 1 + xz

1 + yz
.

It is known [113, p. 23] that the dual set of functions g given by (5.17) consists of

analytic functions q satisfying q(0) = 1 and Re q(z) > 1/2 in U . Thus

F ′ 6= 0⇐⇒ Re

∫ 1

0
λ(t) ((1− β)ψ(tz) + β) dt >

1

2

⇐⇒ Re (1− β)

(∫ 1

0
λ(t)ψ(tz)dt+

β

1− β
− 1

2(1− β)

)
> 0.

It follows from (5.10) and (5.6) that the latter condition is equivalent to

Re

∫ 1

0
λ(t)

((
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvtz)2 dudv

)
−
(

1 + g(t)

2

))
dt > 0. (5.19)
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Now

Re

∫ 1

0
λ(t)

((
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvtz)2 dudv

)
−
(

1 + g(t)

2

))
dt

≥ Re

∫ 1

0
λ(t)

((
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1 + uvt)2 dudv

)
−
(

1 + g(t)

2

))
dt. (5.20)

The condition (5.8) implies that

1 + g(t)

2
=

1

µν

∫ 1

0

∫ 1

0

w1/ν−1s1/µ−1

(1 + swt)2 dsdw.

Substituting this value into (5.20) makes the integrand vanishes, and so condition

(5.19) holds. Consequently F ′(U) ⊂ co g(U) with g given by (5.17) [113, p. 23],

[123, Lemma 4, p. 146], which gives Re eiθF ′(z) > 0 for z ∈ U . Hence F is

close-to-convex, and thus univalent.

If f ∈ Wβ(α, γ), a well-known result in [113, p. 94] states that

F ∈ ST ⇐⇒ 1

z
(F ∗ h)(z) 6= 0 (z ∈ U),

where

h(z) =
z(1 + ε−1

2 z)

(1− z)2 , |ε| = 1.

Hence F ∈ ST if and only if

0 6= 1

z
(Vλ(f)(z) ∗ h(z)) =

1

z

(∫ 1

0
λ(t)

f(tz)

t
dt ∗ h(z)

)
=

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ h(z)

z
.
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From (5.18), it follows that

0 6=
∫ 1

0

λ(t)

1− tz
dt ∗

(
1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

)
∗ h(z)

z

=

∫ 1

0

λ(t)

1− tz
dt ∗ h(z)

z
∗
(

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw

)
∗ ψ(z)

=

∫ 1

0
λ(t)

h(tz)

tz
dt ∗ (1− β)

(
1

z

∫ z

0

1 + xw

1 + yw
dw +

β

1− β

)
∗ ψ(z)

= (1− β)

(∫ 1

0
λ(t)

h(tz)

tz
dt+

β

1− β

)
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z).

Hence

0 6= (1− β)

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

β

1− β

)
∗ 1 + xz

1 + yz
∗ ψ(z)

⇐⇒Re (1− β)

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

β

1− β

)
∗ ψ(z) >

1

2

⇐⇒Re (1− β)

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

β

1− β
− 1

2(1− β)

)
∗ ψ(z) > 0

⇐⇒Re

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

β

1− β
− 1

2(1− β)

)
∗ ψ(z) > 0.

Using (5.10), the latter condition is equivalent to

Re

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw − 1 + g(t)

2

)
dt

)
∗ ψ(z) > 0.
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From (5.5), the above inequality is equivalent to

0 < Re

∫ 1

0
λ(t)

( ∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

dηdζ

1− zηνζµ
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

h(tzηνζµ)

tzηνζµ
dηdζ − 1 + g(t)

2

)
dt,

which reduces to

Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

1

µν

h(tzuv)

tzuv
u1/ν−1v1/µ−1dvdu− 1 + g(t)

2

)
dt > 0.

A change of variable w = tu leads to

Re

∫ 1

0

λ(t)

t1/ν

(∫ t

0

∫ 1

0

h(wzv)

wzv
w1/ν−1v1/µ−1dvdw − µνt1/ν 1 + g(t)

2

)
dt > 0.

Integrating by parts with respect to t and using (5.7) gives the equivalent form

Re

∫ 1

0
Λν(t)

(∫ 1

0

h(tzv)

tzv
t1/ν−1v1/µ−1dv − t1/ν−1

∫ 1

0

s1/µ−1

(1 + st)2ds

)
dt ≥ 0.

Making the variable change w = vt and η = st reduces the above inequality to

Re

∫ 1

0
Λν(t)t1/ν−1/µ−1

(∫ t

0

h(wz)

wz
w1/µ−1dw −

∫ t

0

η1/µ−1

(1 + η)2dη

)
dt ≥ 0,

which after integrating by parts with respect to t yields

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0.

Thus F ∈ ST if and only if condition (5.14) holds.
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To verify sharpness, let β0 satisfy

β0
1− β0

= −
∫ 1

0
λ(t)g(t)dt.

Assume that β < β0 and let f ∈ Wβ(α, γ) be the solution of the differential

equation

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z) = β + (1− β)

1 + z

1− z
.

From (5.15), it follows that

f(z) = z +
∞∑
n=1

2(1− β)

(nν + 1)(nµ+ 1)
zn+1.

Thus

G(z) = Vλ(f)(z) = z +
∞∑
n=1

2(1− β)τn
(nν + 1)(nµ+ 1)

zn+1,

where τn =
∫ 1

0 λ(t)tndt. Now (5.8) implies that

β0
1− β0

= −
∫ 1

0
λ(t)g(t)dt = −1− 2

∞∑
n=1

(n+ 1)(−1)nτn
(1 + µn)(1 + νn)

.

This means that

G′(−1) = 1 + 2(1− β)
∞∑
n=1

(n+ 1)(−1)nτn
(1 + µn)(1 + νn)

= 1− 1− β
1− β0

< 0.

Hence G′(z) = 0 for some z ∈ U , and so G is not even locally univalent in U .

Therefore the value of β in (5.10) is sharp.

Taking γ = 0 then µ = 0 and ν = α, the particular case Wβ(α, 0) = Pα(β) is

given by Kim and Ronning [63]. Hence the following corollary can be obtained as

a special case.
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Corollary 5.1 [63, Theorem2.1] Let f ∈ Wβ(α, 0) = Pα(β), α > 0 and β < 1,

with β satisfying (5.10) where

gα(t) =
2

α
t−1/α

∫ t

0

τ1/α−1

(1 + τ)2dτ − 1,

and assume that t1/αΛ(t)→ 0 as t→ 0+. Let for any α > 0

Λα(t) =

∫ 1

t

λ(x)

x1/α
dx.

Then

Re

∫ 1

0
Λα(t)t1/α−1(t)

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0,

where h(z) as defined in (5.13), if and only if F (z) = Vλ(f)(z) is in ST . The

conclusion does not hold for smaller values of β.

Taking α = 1 in the above result the following corollary is obtained whereWβ(1, 0) =

P is the class considered by Fournier and Ruscheweyh [48].

Corollary 5.2 [48, Theorem2] Let f ∈ Wβ(1, 0) = Pβ and β < 1, with

β

1− β
= −

∫ 1

0
λ(t)

1− t
1 + t

dt.

and

Λ(t) =

∫ 1

t

λ(s)

s
ds,

satisfies tΛ→ 0 as t→ 0+. Then

Re

∫ 1

0
Λ(t)

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0,
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where h(z) as defined in (5.13) if and only if F (z) = Vλ(f)(z) is in ST . The

conclusion does not hold for smaller values of β.

Note that µ+ ν = α− γ = 1 + 2γ − γ = 1 + γ and µν = γ, hence µ+ ν = 1 + µν,

or (µ− 1)(1− ν) = 0.

For γ > 0, we have either µ or ν equal to 1, choosing µ = 1 gives ν = γ and

For γ = 0, we have either µ or ν equal to 0, choosing µ = 0 gives ν = α = 1.

Hence the following corollary is obtained for the class Wβ(1 + 2γ, γ) = Rγ(β)

considered by Ponnusamy and Ronning [96].

Corollary 5.3 [96, Theorem2.2] Let f ∈ Wβ(1 + 2γ, γ) = Rγ(β), γ ≥ 0 and

β < 1, with

β

1− β
= −

∫ 1

0
λ(t)gγ(t)dt

where

gγ(t) =


1
γ

∫ 1
0 s

1/γ−1 1−st
1+stds (γ > 0)

1−t
1+t (γ = 0).

Let

Λγ(t) =

∫ 1

t

λ(s)

s1/γ
ds (γ > 0)

and

Πγ(t) =


∫ 1
t Λγ(s)s1/γ−2ds (γ > 0)

Λ1(t) =
∫ 1
t
λ(s)
s ds (γ = 0).
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Then

Re

∫ 1

0
Πγ(t)

(
h(tz)

tz
− 1

(1 + t)2

)
dt ≥ 0,

where h(z) as defined in (5.13), if and only if F (z) = Vλ(f)(z) is in ST . The

conclusion does not hold for smaller values of β.

5.3 Sufficient Conditions for Starlikeness of Integral Transforms

An easier sufficient condition for starlikeness of the integral operator (5.1) is given

in the following theorem.

Theorem 5.2 Let Πµ,ν and Λν be as given in Theorem 5.1. Assume that both

Πµ,ν and Λν are integrable on [0, 1] and positive on (0, 1). Assume further that

µ ≥ 1 and

Πµ,ν(t)

1− t2
is decreasing on (0, 1). (5.21)

If β satisfies (5.10), and f ∈ Wβ(α, γ), then Vλ(f) ∈ ST .

Proof. The function t1/µ−1 is decreasing on (0, 1) when µ ≥ 1. Thus the condition

(5.21) along with Theorem 1.26 yield

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h(tz)

tz
− 1

(1 + t2)

)
dt ≥ 0.

The desired conclusion now follows from Theorem 5.1.

Let us scrutinize Theorem 5.2 for helpful conditions to ensure starlikeness of

Vλ(f). Recall that for γ > 0,

Πµ,ν(t) =

∫ 1

t
Λν(y)y1/ν−1−1/µdy and Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx.
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To apply Theorem 5.2, it is sufficient to show that the function

p(t) =
Πµ,ν(t)

1− t2

is decreasing in the interval (0, 1). Note that p(t) > 0 and

p′(t)
p(t)

= − Λν(t)

t1+1/µ−1/νΠµ,ν(t)
+

2t

1− t2
.

So it remains to show that q′(t) ≥ 0 over (0, 1), where

q(t) := Πµ,ν(t)− 1− t2

2
Λν(t)t1/ν−2−1/µ.

Since q(1) = 0, this will imply that p′(t) ≤ 0, and p is decreasing on (0, 1). Now

q′(t) = Π′µ,ν(t)− 1

2

(
(1− t2)Λ′ν(t)t1/ν−2−1/µ

+ Λν(t)(−2t)t1/ν−2−1/µ + Λν(t)(1− t2)

(
1

ν
− 2− 1

µ

)
t1/ν−3−1/µ

)
=

1− t2

2
t1/ν−3−1/µ

(
λ(t)t1−1/ν −

(
1

ν
− 2− 1

µ

)
Λν(t)

)
.

So q′(t) ≥ 0 is equivalent to the condition

∆(t) := −λ(t)t1−1/ν +

(
1

ν
− 2− 1

µ

)
Λν(t) ≤ 0. (5.22)

Since λ(t) ≥ 0 gives Λν(t) ≥ 0 for t ∈ (0, 1), condition (5.22) holds whenever

1/ν − 2− 1/µ ≤ 0, or ν ≥ µ/(2µ+ 1).

These observations will be used to prove the following theorem.

Theorem 5.3 Let λ be a non-negative real-valued integrable function on [0, 1].

Assume that Λν and Πµ,ν given respectively by (5.11) and (5.12) are both integrable

on [0, 1], and positive on (0, 1). Under the assumptions stated in Theorem 5.1, if
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λ satisfies

tλ′(t)
λ(t)

≤


1 +

1

µ
(µ ≥ 1 (γ > 0)),

3− 1
α (γ = 0, α ∈ (0, 1/3] ∪ [1,∞)),

(5.23)

then F (z) = Vλ(f)(z) ∈ ST . The conclusion does not hold for smaller values of

β.

Proof. Suppose µ ≥ 1. In view of (5.22) and Theorem 5.2, the integral transform

Vλ(f)(z) ∈ ST for ν ≥ µ/(2µ + 1). It remains to find conditions on µ and ν in

the range 0 ≤ ν < µ/(2µ + 1) such that for each choice of λ, condition (5.22) is

satisfied.

Now ∆(t) at t = 1 in (5.22) reduces to

∆(1) = −λ(1) +

(
1

ν
− 2− 1

µ

)
Λν(1) = −λ(1) ≤ 0.

Hence to prove condition (5.22), it is enough to show that ∆ is an increasing

function in (0, 1). Now

∆′(t) = −λ′(t)t1−1/ν −
(

1− 1

ν

)
λ(t)t−1/ν −

(
1

ν
− 2− 1

µ

)
λ(t)

t1/ν

= −λ(t)t−1/ν
(
tλ′(t)
λ(t)

−
(

1 +
1

µ

))
,

and this is non-negative when tλ′(t)/λ(t) ≤ 1 + 1/µ.

In the case γ = 0, then µ = 0, ν = α > 0. Let

k(t) := Λα(t)t1/α−1, where Λα(t) =

∫ 1

t

λ(x)

x1/α
dx.

To apply Theorem 1 in [48] along with Theorem 5.1 the function p(t) = k(t)/(1−t2)
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must be shown to be decreasing on the interval (0, 1). This will hold provided

q(t) := k(t) +
1− t2

2
t−1k′(t) ≤ 0.

Since q(1) = 0, this will certainly hold if q is increasing on (0, 1). Now

q′(t) =
(1− t2)

2
t−2 (tk′′(t)− k′(t)) ,

and

tk′′(t)− k′(t) = Λ′′α(t)t1/α + 2

(
1

α
− 1

)
Λ′α(t)t1/α−1+(

1

α
− 1

)(
1

α
− 2

)
Λα(t)t1/α−2

− Λ′α(t)t1/α−1 −
(

1

α
− 1

)
Λα(t)t1/α−2

= t1/α−2
(

Λ′′α(t)t2 + Λ′α(t)t

(
2

α
− 3

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t)

)
.

Thus tk′′(t)− k′(t) is non-negative if

Λ′′α(t)t2 + Λ′α(t)t

(
2

α
− 3

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t) ≥ 0.

The latter condition is equivalent to

−λ′(t)t2−1/α + λ(t)t1−1/α
(

3− 1

α

)
+

(
1

α
− 1

)(
1

α
− 3

)
Λα(t) ≥ 0. (5.24)

Since Λα(t) ≥ 0 and (1/α−1)(1/α−3) ≥ 0 for α ∈ (0, 1/3]∪ [1,∞), then q′(t) ≥ 0

is equivalent to

−λ′(t)t2−1/α + λ(t)t1−1/α
(

3− 1

α

)
≥ 0⇐⇒ tλ′(t)

λ(t)
≤ 3− 1

α
.
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Thus (5.22) is satisfied and the proof is complete.

Remark 5.1 For µ < 1, the conditions obtained will generally be complicated,

and for µ ≥ 1, the conditions coincide with those given in [96].

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 5.3 the following corollary can

be obtained.

Corollary 5.4 [14, Corollary 3.1] [96, Theorem 3.1] Let λ be a nonnegative real-

valued integrable function on [0, 1]. Let f ∈ Wβ(1 + 2γ, γ), γ > 0 β < 1 with

β

1− β
= −

∫ 1

0
λ(t)gγ(t)dt,

where gγ is defined by

gγ(t) =
1

γ

∫ 1

0
s1/γ−1 1− st

1 + st
ds.

Assume further that Πγ,1 and Λγ are integrable on [0, 1] and positive on (0, 1). If

λ satisfies

tλ′(t)
λ(t)

≤ 2,

then F (z) = Vλ(f)(z) ∈ ST . The conclusion does not hold for smaller values of

β.

5.4 Applications to Certain Integral Transforms

In this section, various well-known integral operators are considered, and condi-

tions for starlikeness for f ∈ Wβ(α, γ) under these integral operators are obtained.

First let λ be defined by

λ(t) = (1 + c)tc, c > −1.
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Then the integral transform

Fc(z) = Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt, c > −1, (5.25)

is the Bernardi integral operator. The classical Alexander and Libera transforms

are special cases of (5.25) with c = 0 and c = 1 respectively. For this special case

of λ, the following result holds.

Theorem 5.4 Let c > −1, and β < 1 satisfy

β

1− β
= −(c+ 1)

∫ 1

0
tcg(t)dt,

where g is given by (5.8). If f ∈ Wβ(α, γ), then the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to ST if

c ≤


1 +

1

µ
(µ ≥ 1 (γ > 0)),

3− 1
α (γ = 0, α ∈ (0, 1/3] ∪ [1,∞)).

The value of β is sharp.

Proof. With λ(t) = (1 + c)tc, then

tλ′(t)
λ(t)

= t
c(1 + c)tc−1

(1 + c)tc
= c,

and the result now follows from Theorem 5.3.

Taking γ = 0, α > 0 in Theorem 5.4 leads to the following corollary:
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Corollary 5.5 Let −1 < c ≤ 3− 1/α, α ∈ (0, 1/3] ∪ [1,∞), and β < 1 satisfy

β

1− β
= −(c+ 1)

∫ 1

0
tcgα(t)dt,

where gα is given by (5.9). If f ∈ Wβ(α, 0) = Pα(β), then the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to ST . The value of β is sharp.

Taking α = 1 in Corollary 5.5 the following result can be obtained.

Corollary 5.6 [48, Corollary 1] Let −1 < c ≤ 2 and β < 1 be given by

β

1− β
= −(c+ 1)

∫ 1

0
tc

1− t
1 + t

dt,

Then for f ∈ Wβ(1, 0) = Pβ the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to ST . The value of β is sharp.

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 5.4 the following result is

obtained:

Corollary 5.7 [96, Corollary 3.2] Let −1 < c ≤ 2, γ > 0 and β < 1 given by

β

1− β
= −(c+ 1)

∫ 1

0
tcgγ(t)dt,

where

gγ(t) =
1

γ

∫ 1

0
s1/γ−1 1− st

1 + st
ds.
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Then for f ∈ Wβ(1 + 2γ, γ) = Pγ(β), the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to ST . The value of β is sharp.

The case c = 0 in Theorem 5.4 yields the following interesting result, which

we state as a theorem.

Theorem 5.5 Let α ≥ γ > 0, or γ = 0, α ≥ 1/3. If F ∈ A satisfies

Re
(
F ′(z) + αzF ′′(z) + γz2F ′′′(z)

)
> β

in U , and β < 1 satisfies

β

1− β
= −

∫ 1

0
g(t)dt,

where g is given by (5.8), then F is starlike. The value of β is sharp.

Proof. It is evident that the function f = zF ′ belongs to the class

Wβ,0(α, γ) =

{
f ∈ A : Re

(
(1− α + 2γ)

f(z)

z
+ (α− 2γ)f ′(z)

+ γzf ′′(z)
)
> β, z ∈ U

}
.

Thus

F (z) =

∫ 1

0

f(tz)

t
dt,

and the result follows from Theorem 5.4 with c = 0 for the ranges α ≥ γ > 0,

or γ = 0, α ≥ 1. Simple computations show that in fact (5.24) is satisfied in the

larger range γ = 0, α ≥ 1/3. It is also evident from the proof of sharpness in

Theorem 5.1 that indeed the extremal function in Wβ(α, γ) also belongs to the

class Wβ,0(α, γ).
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Remark 5.2 We list two interesting special cases.

1. If γ = 0, α ≥ 1/3, and β = κ/(1 + κ), where (5.8) yields

κ = −
∫ 1

0
g(t)dt = −1− 2

∞∑
n=1

(−1)n
1

1 + nα
= − 1

α

∫ 1

0
t1/α−1 1− t

1 + t
dt,

then

Re
(
f ′(z) + αzf ′′(z)

)
> β ⇒ f ∈ ST .

This reduces to a result of Fournier and Ruscheweyh [48]. In particular, if

β = (1− 2 ln 2)/(2(1− ln 2)) = −0.629445, then

Re
(
f ′(z) + zf ′′(z)

)
> β ⇒ f ∈ ST .

2. If γ = 1, α = 3, then µ = 1 = ν. In this case, (5.8) yields β = (6−π2)/(12−

π2) = −1.816378. Thus

Re
(
f ′(z) + 3zf ′′(z) + z2f ′′′(z)

)
> β ⇒ f ∈ ST .

This sharp estimate of β improves a result of Ali et al. [7].

Theorem 5.6 Let b > −1, a > −1, and α > 0. Let β < 1 satisfy

β

1− β
= −

∫ 1

0
λ(t)g(t)dt,

where g is given by (5.8) and

λ(t) =


(a+ 1)(b+ 1)

ta(1−tb−a)
b−a (b 6= a),

(a+ 1)2ta log(1/t) (b = a).
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If f ∈ Wβ(α, γ), then

Gf (a, b; z) =



(a+1)(b+1)
b−a

∫ 1
0 t

a−1(1− tb−a)f(tz)dt (b 6= a),

(a+ 1)2 ∫ 1
0 t

a−1 log(1/t)f(tz)dt (b = a),

belongs to ST if

a ≤


1 +

1

µ
(γ > 0 (µ ≥ 1))

3− 1
α (γ = 0, α ∈ (0, 1/3] ∪ [1,∞)).

(5.26)

The value of β is sharp.

Proof. It is easily seen that
∫ 1

0 λ(t)dt = 1. There are two cases to consider. When

b 6= a, then

tλ′(t)
λ(t)

= a− (b− a)tb−a

1− tb−a
.

The function λ satisfies (5.23) if

a− (b− a)tb−a

1− tb−a
≤


1 +

1

µ
(γ > 0),

3− 1
α (γ = 0, α ∈ (0, 1/3] ∪ [1,∞)).

(5.27)

Since t ∈ (0, 1), the condition b > a implies (b − a)tb−a/(1 − tb−a) > 0, and

so inequality (5.27) holds true whenever a satisfies (5.26). When b < a, then

(a− b)/(ta−b− 1) < b− a, and hence a− (b− a)tb−a/(1− tb−a) < b < a, and thus

inequality (5.27) holds true whenever a satisfies (5.26).
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For the case b = a, it is seen that

tλ′(t)
λ(t)

= a− 1

log(1/t)
.

Since t < 1 implies 1/ log(1/t) ≥ 0, condition (5.23) is satisfied whenever a satisfies

(5.26). This completes the proof.

Taking γ = 0, α > 0 in Theorem 5.6 the following corollary can be obtained.

Corollary 5.8 Let −1 < a ≤ 3− 1/α, α ∈ (0, 1/3]
⋃

[1,∞) and b > −1. If β < 1

given by

β

1− β
= −

∫ 1

0
λ(t)gα(t)dt.

where λ is defined by

λ(t) =

 (a+ 1)(b+ 1)
ta(1−tb−a)

b−a (b 6= a, b > −1, a > −1),

(a+ 1)2ta log(1/t) (b = a, a > −1),

and

gα(t) =
2

α
t−1/α

∫ t

0

τ1/α−1

(1 + τ)2dτ − 1.

Then for f ∈ Wβ(α, 0), the function Gf (a, b; z) defined by

Gf (a, b; z) =


(a+1)(b+1)

b−a
∫ 1

0 t
a−1(1− tb−a)f(tz)dt (b 6= a, b > −1, a > −1),

(a+ 1)2 ∫ 1
0 t

a−1 log(1/t)f(tz)dt (b = a, a > −1).

belongs to ST . The value of β is sharp.

Remark 5.3 Corollary 5.8 similar to Theorem 2.4 (i) and (ii) obtained in [13]
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for the case α ∈ [1/2, 1]. The condition b > a there resulted in a ∈ (−1, 1/α − 1].

When α = 1, the range of a obtained in [13] lies in the interval (−1, 0], whereas the

range of a obtained in Corollary 5.8 lies in (−1, 2], and with the condition b > a

removed.

Taking α = 1 in Corollary 5.8 following result can be deduced.

Corollary 5.9 Let −1 < a ≤ 2 and b > −1. If β < 1 given by

β

1− β
= −

∫ 1

0
λ(t)

1− t
1 + t

dt.

where λ is defined by

λ(t) =


(a+ 1)(b+ 1)

ta(1−tb−a)
b−a (b 6= a, b > −1, a > −1),

(a+ 1)2ta log(1/t) (b = a, a > −1),

then for f ∈ Wβ(1, 0), the function Gf (a, b; z) defined by

Gf (a, b; z) =


(a+1)(b+1)

b−a
∫ 1

0 t
a−1(1− tb−a)f(tz)dt (b 6= a, b > −1, a > −1),

(a+ 1)2 ∫ 1
0 t

a−1 log(1/t)f(tz)dt (b = a, a > −1),

belongs to ST . The value of β is sharp.

Remark 5.4 Corollary 5.9 improves Corollary 3.13 (i) obtained in [15] and Corol-

lary 3.1 in [95]. Indeed, there the conditions on a and b were b > a > −1, whereas

in the present situation, it is only require that b > −1, a > −1.

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 5.6 we got the following

corollary:
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Corollary 5.10 Let −1 < a < 2, γ > 0and b > −1. Suppose that gγ(t) defined as

gγ(t) =
1

γ

∫ 1

0
s1/γ−1 1− st

1 + st
ds.

If β < 1 given by

β

1− β
= −

∫ 1

0
λ(t)gγ(t)dt.

where λ is defined by

λ(t) =


(a+ 1)(b+ 1)

ta(1−tb−a)
b−a (b 6= a, b > −1, a > −1),

(a+ 1)2ta log(1/t) (b = a, a > −1),

then for f ∈ Wβ(1 + 2γ, γ), the function Gf (a, b; z) defined by

Gf (a, b; z) =


(a+1)(b+1)

b−a
∫ 1

0 t
a−1(1− tb−a)f(tz)dt (b 6= a, b > −1, a > −1),

(a+ 1)2 ∫ 1
0 t

a−1 log(1/t)f(tz)dt (b = a, a > −1).

belongs to ST . The value of β is sharp.

Remark 5.5 Corollary 5.10 improves Theorem 4.1 in [14] in the sense that the

condition b > a > −1 is now replaced by b > −1, a > −1.

For another choice of λ, let it now be given by

λ(t) =
(1 + a)p

Γ(p)
ta(log(1/t))p−1 (a > −1, p ≥ 0).
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The integral transform Vλ in this case takes the form

Vλ(f)(z) =
(1 + a)p

Γ(p)

∫ 1

0
(log

(
1

t

)
)p−1ta−1f(tz)dt (a > −1, p ≥ 0).

This is the Komatu operator, which reduces to the Bernardi integral operator if

p = 1. For this λ, the following result holds.

Theorem 5.7 Let −1 < a, α > 0, p ≥ 1, and β < 1 satisfy

β

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta(log(1/t))p−1g(t)dt,

where g is given by (5.8). If f ∈ Wβ(α, γ), then the function

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0
(log(1/t))p−1ta−1f(tz)dt

belongs to ST if

a ≤


1 +

1

µ
(γ > 0 (µ ≥ 1)),

3− 1
α (γ = 0, α ∈ (0, 1/3] ∪ [1,∞)).

(5.28)

The value of β is sharp.

Proof. It is evident that

tλ′(t)
λ(t)

= a− (p− 1)

log(1/t)
.

Since log(1/t) > 0 for t ∈ (0, 1), and p ≥ 1, condition (5.23) is satisfied whenever

a satisfies (5.28).

Taking γ = 0, α > 0 in Theorem 5.7 the following corollary can be obtained.
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Corollary 5.11 Let −1 < a ≤ 3− 1/α, α ∈ (0, 1/3]
⋃

[1,∞) and p ≥ 1. If β < 1

given by

β

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta(log(1/t))p−1gα(t)dt,

where

gα(t) =
2

α
t−1/α

∫ t

0

τ1/α−1

(1 + τ)2dτ − 1.

Then for f ∈ Wβ(0, γ), the function Φp(a; z) ∗ f(z) defined by

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0
(log(1/t))p−1ta−1f(tz)dt

belongs to ST . The value of β is sharp.

Remark 5.6 Corollary 5.11 similar to Theorem 2.1 in [13] and Theorem 2.3 in

[63] for the case α ∈ [1/2, 1]. When α = 1, the range of a obtained in [13] and [63]

lies in the interval (−1, 0], whereas the range of a obtained in Corollary 5.8 lies in

(−1, 2].

Taking α = 1 in Corollary 5.11 the following corollary can be obtained.

Corollary 5.12 [15, Corollary 3.12 (i)] Let −1 < a ≤ 2, and p ≥ 1. If β < 1

given by

β

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta(log(1/t))p−1 1− t

1 + t
dt.

Then for f ∈ Wβ(1, 0), the function Φp(a; z) ∗ f(z) defined by

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0
(log(1/t))p−1ta−1f(tz)dt
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belongs to ST . The value of β is sharp.

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 5.7 the following result can

be deduced.

Corollary 5.13 [14, Theorem 4.2 (µ = 0)] Let −1 < a ≤ 2, γ > 0 and p ≥ 1. If

β < 1 given by

β

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta(log(1/t))p−1gγ(t)dt.

where

gγ(t) =
1

γ

∫ 1

0
s1/γ−1 1− st

1 + st
ds.

Then for f ∈ Wβ(1 + 2γ, γ), the function Φp(a; z) ∗ f(z) defined by

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0
(log(1/t))p−1ta−1f(tz)dt

belongs to ST . The value of β is sharp.

Let Φ be defined by Φ(1− t) = 1 + Σ∞n=1bn(1− t)n, bn ≥ 0 for n ≥ 1, and

λ(t) = Ktb−1(1− t)c−a−bΦ(1− t), (5.29)

where K is a constant chosen such that
∫ 1

0 λ(t)dt = 1. The following result holds

in this instance.

Theorem 5.8 Let a, b, c, α > 0, and β < 1 satisfy

β

1− β
= −K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)g(t)dt,

where g is given by (5.8) and K is a constant such that K
∫ 1

0 t
b−1(1−t)c−a−bΦ(1−
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t) = 1. If f ∈ Wβ(α, γ), then the function

Vλ(f)(z) = K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)f(tz)

t
dt

belongs to ST provided one of the following conditions hold:

(i) c < a+ b and 0 < b ≤ 1,

(ii) c ≥ a+ b and b ≤


2 +

1

µ
(γ > 0, (µ ≥ 1))

4− 1
α (γ = 0, α ∈ (1/4, 1/3] ∪ [1,∞)).

(5.30)

The value of β is sharp.

Proof. For λ given by (5.29),

tλ′(t)
λ(t)

= (b− 1)− (c− a− b)t
1− t

− tΦ′(1− t)
Φ(1− t)

.

For the case c < a + b, computing (b − 1) − ((c − a − b)t)/(1 − t)) and using the

fact that tΦ′(1 − t)/Φ(1 − t) > 0 implies condition (5.23) is satisfied whenever

0 < b ≤ 1. For c ≥ a+ b, a similar computation shows that the condition (5.23) is

satisfied whenever b satisfies (5.30). Now the result follows by applying Theorem

5.3 for this special λ.

Taking γ = 0, α > 0 in Theorem 5.8 leads to the following corollary:

Corollary 5.14 Let a, b, c, α > 0, and β < 1 satisfy

β

1− β
= −K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)gα(t)dt,

where gα is given by (5.9), and K is a constant such that K
∫ 1

0 t
b−1(1−t)c−a−bΦ(1−
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t) = 1. If f ∈ Wβ(α, 0) = Pα(β), then the function

Vλ(f)(z) = K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)f(tz)

t
dt

belongs to ST whenever a, b, c are related by either (i) c ≤ a+ b and 0 < b ≤ 1, or

(ii) c ≥ a+ b and b ≤ 4− 1/α, α ∈ (1/4, 1/3]∪ [1,∞), for all t ∈ (0, 1). The value

of β is sharp.

Remark 5.7 For α = 1, Corollary 5.14 improves Theorem 3.8 (i) in [15] in the

sense that the result now holds not only for c ≥ a + b and 0 < b ≤ 3, but also to

the range c ≤ a+ b, 0 < b ≤ 1.

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 5.8 reduces to the following

corollary:

Corollary 5.15 Let a, b, c > 0, and let β < 1 satisfy

β

1− β
= −K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)gγ(t)dt,

where gγ is given by (5.9), and K is a constant such that K
∫ 1

0 t
b−1(1−t)c−a−bΦ(1−

t) = 1. If f ∈ Wβ(1 + 2γ, γ), then the function

Vλ(f)(z) = K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)f(tz)

t
dt

belongs to ST whenever a, b, c are related by either (i) c ≤ a+ b and 0 < b ≤ 1, or

(ii) c ≥ a+ b and 0 < b ≤ 3, for all t ∈ (0, 1) and γ > 0. The value of β is sharp.

Remark 5.8 Choosing Φ(1−t) = F (c− a, 1− a, c− a− b+ 1; 1− t) in Theorem

5.8(ii) gives

K =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
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whenever c − a − b + 1 > 0. In this case, the function Vλ(f)(z) reduces to the

Hohlov operator given by

Vλ(f)(z) = Ha,b,c(f)(z) = zF (a, b; c; z) ∗ f(z)

= K

∫ 1

0
tb−1(1− t)c−a−bF (c− a, 1− a, c− a− b+ 1; 1− t) f(tz)

t
dt,

where a > 0, b > 0, c − a − b + 1 > 0. This case of Corollary 5.14 was treated

in [13, Theorem 2.2(i), (µ = 0)] and [63, Theorem 2.4], but the range of b provided

by Corollary 5.14(ii) yields 0 < b ≤ 3, which is larger than the range given in [13]

and [63] of 0 < b ≤ 1.
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CHAPTER 6

MULTIVALENT STARLIKE AND CONVEX FUNCTIONS

ASSOCIATED WITH A PARABOLIC REGION

6.1 Motivation and Preliminaries

For δ ≥ 0, Rusheweyh [112] introduced the δ-neighborhood Nδ(f) of a function

(cf. Section 1.7, p. 31) f(z) = z +
∑∞
k=2 akz

k (z ∈ U) to be the set consisting

of all functions g(z) = z +
∑∞
k=2 bkz

k satisfying

∞∑
k=2

k|ak − bk| ≤ δ.

He proved among other results that N1/4(f) ⊂ ST for f ∈ CV . In geometric func-

tion theory, several authors have investigated the neighborhood characterizations

for functions belonging to certain subclasses. For example, Padmanabhan [84] de-

termined the δ-neighborhood of functions in the class UCV . This class consists of

uniformly convex functions f satisfying

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U),

while the analogous class of parabolic starlike functions PST consists of functions

f satisfying

Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ U).

It is clear that f ∈ UCV if and only if zf ′ ∈ PST (see pp. 8–9). For a function

Fε defined by

Fε =
f(z) + εz

1 + ε
, f ∈ A

Padmanabhan [84] proved that Nδ/2(f) ⊂ PST whenever Fε ∈ PST and |ε| <

δ < 1. Furthermore, he showed that for f ∈ UCV , the 1/8-neighborhood N1/8(f) ⊂
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PST .

The δ-neighborhood concept is extended to p-valent functions. For δ ≥ 0,

and f ∈ Ap, the δ-neighborhood Nδ,p(f) is defined to be the set consisting of all

functions g(z) = zp +
∑∞
k=1 bp+kz

p+k satisfying

∞∑
k=1

(p+ k)

p

∣∣ap+k − bp+k∣∣ ≤ δ.

This chapter investigates the δ-neighborhood of p-valent functions belonging

to general subclasses of p-valent parabolic starlike and p-valent parabolic convex

functions. For α > 0, and 0 < λ ≤ 1, the subclass of p-valent parabolic starlike

functions of order α and type λ, SPp(α, λ), consists of functions f ∈ Ap satisfying

Re

(
1

p

zf ′(z)

(1− λ)zp + λf(z)

)
+ α >

∣∣∣∣∣1p zf ′(z)

(1− λ)zp + λf(z)
− α

∣∣∣∣∣ (z ∈ U). (6.1)

By writing fλ(z) := (1− λ)zp + λf(z), the inequality (6.1) can be written as

Re

(
1

p

zf ′(z)

fλ(z)

)
+ α >

∣∣∣∣∣1p zf ′(z)

fλ(z)
− α

∣∣∣∣∣. (6.2)

The corresponding subclass of p-valent parabolic convex functions of order α and

type λ, CPp(α, λ), consists of functions f ∈ Ap satisfying

Re

(
1

p

(
zf ′(z)

)′
f ′λ(z)

)
+ α >

∣∣∣∣∣
(
zf ′(z)

)′
f ′λ(z)

− α

∣∣∣∣∣ (z ∈ U).

Observe that f ∈ CPp(α, λ) if and only if (1/p)(zf ′) ∈ SPp(α, λ).

The geometric interpretation of the relation (6.2) is that the class SPp(α, λ)

consists of functions f for which (1/p)
(
zf ′/fλ

)
lies in the parabolic region Ω given
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by

Ω := {w : |w − α| < Rew + α} = {w = u+ iv : v2 < 4αu}. (6.3)

When p = 1, the classes SPp(α, λ) and CPp(α, λ) reduce respectively to the classes

SP(α, λ) := SP1(α, λ) and CP1(α, λ) := CP(α, λ) introduced recently by Ali et

al. in [9]. The authors in [9] investigated the δ-neighborhood for functions in

CP(α, λ). In addition, if λ = 1, these classes reduce respectively to the classes

SP(α) := SP(α, 1) and CP(α) := CP(α, 1) investigated in [125] and [138].

This chapter studies neighborhood problems for the two classes SPp(α, λ) and

CPp(α, λ). Motivated by Ruscheweyh [112], and using the notion of convolution, a

new inclusion criterion for the class SPp(α, λ) will be derived. It will be shown that

the classes SPp(α, λ) and CP(α, λ) are closed under convolution with prestarlike

functions in U . A δ-neighborhood description will also be obtained for functions

belonging to the class CPp(α, λ). In particular, it is shown that, under certain

conditions, the δ-neighborhood of a p-valent parabolic convex function consists of

p-valent parabolic starlike functions for an appropriate positive δ.

6.2 Multivalent Starlike and Convex Functions Associated with a Parabolic

Region

For a fixed α > 0, 0 < λ ≤ 1 and t ≥ 0, let HSPp(α, λ) be the class consisting of

functions Hp,t,λ of the form

Hp,t,λ(z) :=
1

1− (t± 2
√
αti)

(
zp(1− z + 1

pz)

(1− z)2 − (t± 2
√
αti)

zp(1− (1− λ)z)

(1− z)

)

=
zp

1− T

(
1

1− z
+

1

p

z

(1− z)2 − T
(

1 +
λz

1− z

))
,
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where T = t± 2
√
αti. It is easily seen that

Hp,t,λ(z) =
zp

1− T

(
1 +

∞∑
k=1

zk
(

1 +
k

p
− λT

)
− T

)
= zp +

∞∑
k=1

(
p+k
p − λT

)
1− T

zp+k.

(6.4)

Thus the function Hp,t,λ(z) belongs to Ap. Also,

Hp,t,λ(z) =
1

1− T
(F1(z)− TF2(z)) , (6.5)

where

F1(z) =
zp(1− z + 1

pz)

(1− z)2 = zp +
∞∑
k=1

p+ k

p
zp+k,

and

F2(z) =
zp(1− (1− λ)z)

(1− z)
= zp + λ

∞∑
k=1

zp+k.

Thus for f(z) = zp +
∑∞
k=1 ap+kz

p+k,

(F1 ∗ f)(z) = zp +
∞∑
k=1

p+ k

p
ap+kz

p+k =
1

p
zf ′(z), (6.6)

and

(F2 ∗ f)(z) = zp + λ

∞∑
k=1

ap+kz
p+k = fλ(z). (6.7)

The following result yields a new criterion for p-valent functions f to be in the

class SPp(α, λ).
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Theorem 6.1 Let α > 0 and 0 < λ ≤ 1. A function f ∈ SPp(α, λ) if and only if

1

zp
(
f ∗ Hp,t,λ

)
(z) 6= 0 (z ∈ U)

for all Hp,t,λ ∈ HSPp(α, λ).

Proof. Let f ∈ SPp(α, λ). Then the image of U under w = (1/p)
(
zf ′/fλ

)
lies

in the parabolic region Ω given by (6.3). Since v2 < 4αu, this implies that v <

±2
√
αu (u ≥ 0), and hence

w 6= t± 2
√
αti (t ≥ 0),

or

1

p

zf ′(z)

fλ(z)
6= t± 2

√
αti.

Thus f ∈ SPp(α, λ) if and only if

1
pzf
′(z)− Tfλ(z)

zp(1− T )
6= 0,

where T = t± 2
√
αti, or

1

zp(1− T )
((F1 ∗ f)(z)− T (F2 ∗ f)(z)) 6= 0.

Using (6.5), (6.6) and (6.7), it follows that

f ∈ SPp(α, λ) if and only if
1

zp

(
f(z) ∗ F1(z)− TF2(z)

1− T

)
6= 0,

or equivalently,

1

zp
(
f ∗ Hp,t,λ

)
(z) 6= 0 (z ∈ U , t ≥ 0),

for all Hp,t,λ ∈ HSPp(α, λ).
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In order to establish the δ-neighborhood of functions belonging to the class

SPp(α, λ), the following two lemmas are needed.

Lemma 6.1 Let α ≥ 0 and 0 < λ ≤ 1. If

Hp,t,λ(z) := zp +
∞∑
k=1

Cp+k,λ(t)zp+k ∈ HSPp(α, λ), (6.8)

then

|Cp+k,λ(t)| ≤


k+p

2p
√
α(1−α)

(0 < α ≤ 1
2),

1
p(k + p) (α ≥ 1

2),

for all t ≥ 0.

Proof. Comparing (6.4) and (6.8)

Cp+k,λ(t) =

p+k
p − λT
1− T

,

where T = t± 2
√
αti. Thus for t ≥ 0 and 0 < λ ≤ 1,

∣∣Cp+k,λ(t)
∣∣2 =

(
1
p(k + p)− λt

)2
+ 4αtλ2

(1− t)2 + 4αt

= λ2 +

(
1
p(k + p) + λ− 2λt

)(
1
p(k + p)− λ

)
(1− t)2 + 4αt

≤ λ2 +

(
1
p(k + p) + λ

)(
1
p(k + p)− λ

)
(1− t)2 + 4αt

≤ λ2 +

(
1
p(k + p)

)2
− λ2

(1− t)2 + 4αt
.

For any t ≥ 0,

(1− t)2 + 4αt ≥

 4α(1− α) (0 < α ≤ 1
2),

1 (α ≥ 1
2).
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For 0 < α ≤ 1
2 and 0 < λ ≤ 1,

∣∣Cp+k,λ(t)
∣∣2 ≤ λ2 +

(
1
p(k + p)

)2
− λ2

4α(1− α)
.

Since

λ2 − λ2

4α(1− α)
=
−λ2(2α− 1)2

4α(1− α)
< 0,

it follows that ∣∣Cp+k,λ(t)
∣∣2 ≤

(
1
p(k + p)

)2

4α(1− α)
.

For α ≥ 1
2 and 0 < λ ≤ 1, evidently

∣∣Cp+k,λ(t)
∣∣2 ≤ λ2 +

(
1
p(k + p)

)2
− λ2

1
≤
(

1

p
(k + p)

)2
.

This completes the proof.

For each complex number ε and f ∈ Ap, define the function Fε,p by

Fε,p :=
f(z) + εzp

1 + ε
. (6.9)

Lemma 6.2 Let α > 0, 0 < λ ≤ 1 and for some δ > 0, let Fε,p defined by (6.9)

belong to the class SPp(α, λ) for |ε| < δ. Then

∣∣∣∣ 1

zp
(
f ∗ Hp,t,λ

)
(z)

∣∣∣∣ > δ (z ∈ U)

for every Hp,t,λ ∈ HSPp(α, λ).
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Proof. If Fε,p ∈ SPp(α, λ) for |ε| < δ, it follows from Theorem 6.1 that

1

zp
(
Fε,p ∗ Hp,t,λ

)
(z) 6= 0 (z ∈ U),

which is equivalent to

1

zp

((
f ∗ Hp,t,λ

)
(z) + εzp

1 + ε

)
6= 0,

and hence

1

zp
(
f ∗ Hp,t,λ

)
(z) 6= −ε,

for every |ε| < δ. Therefore

∣∣∣∣ 1

zp
(
f ∗ Hp,t,λ

)
(z)

∣∣∣∣ > δ.

Theorem 6.2 Let α ≥ 0, 0 < λ ≤ 1, f ∈ Ap and δ > 0. For a complex number

ε with |ε| < δ, let Fε,p defined by (6.9) belong to SPp(α, λ). Then Nδ′,p(f) ⊂

SPp(α, λ) for

δ′ :=

 2δ
√
α(1− α) (0 < α ≤ 1

2),

δ (α ≥ 1
2).

Proof. Let g(z) = zp +
∑∞
k=1 bp+kz

p+k ∈ Nδ′,p(f). For any Hp,t,λ ∈ HSPp(α, λ)

∣∣∣∣ 1

zp
(
g ∗ Hp,t,λ

)
(z)

∣∣∣∣ =

∣∣∣∣ 1

zp
(
(g − f + f) ∗ Hp,t,λ

)
(z)

∣∣∣∣
≥
∣∣∣∣ 1

zp
(
f ∗ Hp,t,λ

)
(z)

∣∣∣∣− ∣∣∣∣ 1

zp
(
(g − f) ∗ Hp,t,λ

)
(z)

∣∣∣∣ .
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Lemma 6.2 now gives

∣∣∣∣ 1

zp
(
g ∗ Hp,t,λ

)
(z)

∣∣∣∣ > δ −

∣∣∣∣∣ 1

zp

∞∑
k=1

(
bp+k − ap+k

)
Cp+k(t)zp+k

∣∣∣∣∣
> δ −

∞∑
k=1

∣∣bp+k − ap+k∣∣ ∣∣Cp+k(t)
∣∣ .

Since g ∈ Nδ′,p, using Lemma 6.1, it follows that

∣∣∣∣ 1

zp
(
g ∗ Hp,t,λ

)
(z)

∣∣∣∣ > δ −
∞∑
k=1

(p+ k)

p

∣∣bp+k − ap+k∣∣
∣∣Cp+k,λ(t)

∣∣
p+ k

p

>


δ − δ′

2
√
α(1−α)

(0 < α ≤ 1
2),

δ − δ′ (α ≥ 1
2).

Hence
∣∣∣ 1
zp
(
g ∗ Hp,t,λ

)
(z)
∣∣∣ 6= 0 for all Hp,t,λ ∈ HSPp(α, λ) provided that

δ′ :=

 2δ
√
α(1− α) (0 < α ≤ 1

2),

δ (α ≥ 1
2).

Using Theorem 6.1, g ∈ SPp(α, λ) and therefore Nδ′,p(f) ⊂ SPp(α, λ).

The following result shows that the class SPp(α, λ) is closed under convolution

with prestarlike functions belonging to the class Rγ defined on p. 15.

Theorem 6.3 Let f, g ∈ Ap. If f/zp−1 ∈ Rγ , 0 ≤ γ ≤ 1, g ∈ SPp(α, λ) and

gλ/z
p−1 ∈ ST (γ), then f ∗ g ∈ SPp(α, λ).

Proof. It is evident that (f(z) ∗ g(z))λ = f(z) ∗ gλ(z), hence

1
pz (f(z) ∗ g(z))′

(f(z) ∗ g(z))λ
=

f(z)
zp−1 ∗

gλ(z)
zp−1 .

1
p
zg′(z)
gλ(z)

f(z)
zp−1 ∗

gλ(z)
zp−1

.

Taking F = (1/p)(zg′/gλ), and taking into account that f/zp−1 ∈ Rγ and
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gλ/z
p−1 ∈ ST (γ), Theorem 3.3, page 50, gives

f(z)
zp−1 ∗

gλ(z)
zp−1 .F (z)

f(z)
zp−1 ∗

gλ(z)
zp−1

⊂ coF (U) = co

(
1

p

zg′(z)

gλ(z)

)
,

or
1
pz (f(z) ∗ g(z))′

(f(z) ∗ g(z))λ
⊂ co

(
1

p

zg′(z)

gλ(z)

)
.

Since g ∈ SPp(α, λ), it follows that (1/p)
(
zg′/gλ

)
lies in the parabolic region

Ω given by (6.3), and hence so does (1/p)
(
z(f ∗ g)′/(f ∗ g)λ

)
. Thus f ∗ g ∈

SPp(α, λ).

To obtain a similar result for the class CPp(α, λ), the following lemma will be

required.

Lemma 6.3 Let f ∈ Ap and f ∈ ST p (1− (1− γ)/p) . Then f/zp−1 ∈ ST (γ).

Proof. Now f ∈ ST p (1− (1− γ)/p) yields

Re

(
1

p

zf ′(z)

f(z)

)
> 1− (1− γ)

p
.

If G(z) = f(z)/zp−1, then

Re
zG′(z)

G(z)
= Re

zf ′(z)

f(z)
− p+ 1 > p− (1− γ)− p+ 1 > γ,

and hence G ∈ ST (γ).

Using the above lemma, the following result shows that the class CPp(α, λ) is

closed under convolution with prestarlike functions.

Theorem 6.4 Let f, g ∈ Ap. If f/zp−1 ∈ Rγ , 0 ≤ γ ≤ 1, g ∈ CPp(α, λ) and

gλ ∈ CVp (1− (1− γ)/p) , then f ∗ g ∈ CPp(α, λ).
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Proof. Using Alexander’s relation, gλ ∈ CVp (1− (1− γ)/p) if and only if (1/p)(zg′λ) ∈

ST p (1− (1− γ)/p) , and hence Lemma 6.3 gives (1/p)
(
zg′λ/z

p−1) ∈ ST (γ). Also

g ∈ CPp(α, λ)⇔ 1

p
zg′(z) ∈ SPp(α, λ),

and since f/zp−1 ∈ Rγ , Theorem 6.3 yields

f(z) ∗ 1

p
zg′(z) ∈ SPp(α, λ).

This is equivalent to

1

p
z(f ∗ g)′(z) ∈ SPp(α, λ),

and hence f ∗ g ∈ CPp(α, λ).

To investigate the δ-neighborhood of functions belonging to the class CPp(α, λ),

the following result will be required. First we recall the class of p-valent prestarlike

functions of order β as given on p. 18. This class Rp(β) consists of functions

h ∈ Ap satisfying

h(z) ∗ zp

(1− z)2p(1−β)
∈ ST p(β).

Theorem 6.5 Let 0 ≤ γ ≤ 1, 0 < λ ≤ 1 and α ≥ 0. Further assume that the

function hp(z) = zp(1 − ρz)/(1 − z) ∈ Rp(β) where ρ = ε/(1 + ε), and β =

1−(1−γ)/p. If f ∈ CPp(α, λ) and fλ ∈ CVp (1− (1− γ)/p) , then Fε,p(z) defined

by (6.9) belongs to the class SPp(α, λ) for every complex number ε.
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Proof. If f ∈ CPp(α, λ), then

Fε,p(z) =
f(z) + εzp

1 + ε

= zp +
ap+1
1 + ε

zp+1 + . . .

= f(z) ∗
(
zp +

(
1− ε

1 + ε

)
zp+1 + . . .

)
= f(z) ∗

(
zp + (1− ρ) zp+1 + . . .

)
= f(z) ∗ hp(z),

where

hp(z) = zp + (1− ρ)zp+1 + . . . =
zp(1− ρz)

1− z
(z ∈ U).

Let g ∈ Ap be given by

g(z) = zp +
p

p+ 1
zp+1 +

p

p+ 2
zp+2 + . . . .

It is evident that

p

∫ z

0

hp(t)

t
dt = hp(z) ∗ g(z), (6.10)

and

1

p
zf ′(z) ∗ g(z) = f(z).

Thus

Fε,p(z) = f(z) ∗ hp(z) =
1

p
zf ′(z) ∗ g(z) ∗ hp(z).

Since f ∈ CPp(α, λ), it follows that (1/p)(zf ′) ∈ SPp(α, λ).Also fλ ∈ CVp (1− (1− γ)/p)

yields (1/p)(zf ′λ) ∈ ST p (1− (1− γ)/p) . The relation (1/p)
(
zf ′
)
λ = (1/p)

(
zf ′λ
)

and Lemma 6.3 implies that (1/p)
(
zf ′(z)

)
λ /z

p−1 ∈ ST (γ). Now, to use Theorem
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6.3, it remains to show that
(
g ∗ hp

)
/zp−1 ∈ Rγ .

The function hp ∈ Rp(β) if and only if

hp(z) ∗ zp

(1− z)2p(1−β)
∈ ST p(β).

Since the class ST p(β) is closed under Alexander’s transform it follows that

p

∫ z

0

(
hp(t)

t
∗ tp−1

(1− t)2p(1−β)

)
dt ∈ ST p(β).

For any two p-valent functions f(z) = zp +
∑∞
k=1 ap+kz

k and g(z) = zp +∑∞
k=1 bp+kz

k, it is evident that

p

∫ z

0
(f ∗ g)(t)dt = p

∫ z

0
f(t)dt ∗ zg(z).

Hence

p

∫ z

0

hp(t)

t
dt ∗ zp

(1− z)2p(1−β)
∈ ST p(β).

Equation (6.10) now gives

g(z) ∗ hp(z) ∗ zp

(1− z)2p(1−β)
∈ ST p(β).

Using Lemma 6.3, and taking β = 1− (1−γ)/p, or 2p(1−β) = 2(1−γ), it follows

that

g(z) ∗ hp(z)

zp−1 ∗ z

(1− z)2(1−γ)
∈ ST (γ),

and hence

g(z) ∗ hp(z)

zp−1 ∈ Rγ .

Now it follows from Theorem 6.3 that Fε,p(z) = (1/p)(zf ′)∗g ∗hp ∈ SPp(α, λ).

Combining Theorem 6.5 and Theorem 6.2 yield the following δ-neighborhood de-
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scription for functions in the class CPp(α, λ).

Theorem 6.6 Let 0 ≤ γ ≤ 1, 0 < λ ≤ 1 and α ≥ 0. Further assume that for every

complex number ε, the function hp(z) = zp(1 − ρz)/(1 − z) ∈ Rp(β), where ρ =

ε/(1 + ε), and β = 1− (1− γ)/p. If f ∈ CPp(α, λ) and fλ ∈ CVp (1− (1− γ)/p) ,

then Nδ′,p(f) ⊂ SPp(α, λ) for

δ′ :=

 2δ
√
α(1− α) (0 < α ≤ 1

2),

δ (α ≥ 1
2).
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[83] M. Obradovič, N. Tuneski, On the starlike criteria defined Silverman, Zesz.

Nauk. Politech. Rzesz., Mat. 181(24) (2000), 59–64.

[84] K. S. Padmanabhan, On uniformly convex functions in the unit disk, J. Anal.

2 (1994), 87–96.

[85] K. S. Padmanabhan and J. Thangamani, The effect of certain integral oper-

ators on some classes of starlike functions with respect to symmetric points,

Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 26(74) (1982), no. 4,

355–360.

[86] R. Parvatham, M. Premabai, On the neighbourhood of Pascu class of α-

convex functions, Yokohama Math. J. 43 (1995), no. 2, 89–93.

[87] N. N. Pascu and V. Pescar, On the integral operators of Kim-Merkes and

Pfaltzgraff, Mathematica (Cluj) 32(55) (1990), no. 2, 185–192.

[88] D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-

valent starlike and convex classes with applications, Bull. Math. Soc. Sci.

Math. R. S. Roumanie (N.S.) 27(75) (1983), no. 2, 145–160.
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[90] Y. Polatoǧlu and M. Bolcal, The radius of convexity for the class of Janowski

convex functions of complex order, Mat. Vesnik 54(1-2) (2002), 9–12. .
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