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SIFAT-SIFAT RANGKUMAN PENGOPERASIAN LINEAR DAN
FUNGSI ANALISIS

ABSTRAK

Tesis ini mengkaji kelas A terdiri daripada fungsi analisis ternormalkan di

dalam cakera unit terbuka U pada satah kompleks. Kelas fungsi meromorfi di

dalam cakera unit berliang tidak termasuk titik asalan turut dikaji. Secara ke-

seluruhannya, tesis ini merangkumi enam permasalahan kajian. Pertama, sub-

kelas fungsi-fungsi bak-bintang, cembung, hampir cembung dan kuasi cembung

diitlakkan dengan memperkenalkan subkelas baru fungsi-fungsi analisis dan mero-

morfi. Sifat tutupan kelas-kelas baru ini akan dikaji dan akan dibuktikan bahawa

konvolusi kelas-kelas ini dengan fungsi pra bak-bintang dan pengoperasi kamiran

Bernardi-Libera-Livingston adalah bersifat tertutup.

Keunivalenan fungsi f(z) = z +
∑∞
n=2 anz

n ∈ A dikaji dengan menyarankan

terbitan Schwarzian S(f, z) dan pekali kedua a2 fungsi f memenuhi ketaksamaan

tertentu. Kriteria baru untuk fungsi analisis menjadi α-Bazilevič kuat tertib tak

negatif dibangunkan dalam sebutan terbitan Schwarzian dan pekali kedua. Juga

syarat-syarat serupa untuk pekali kedua dan terbitan Schwarzian S(f, z) bagi f

diperoleh yang menjamin fungsi f tersebut terkandung di dalam subkelas tertentu

untuk S. Untuk suatu fungsi analisis f(z) = z +
∑∞
n=2 anz

n ∈ A yang memenuhi

ketaksamaan
∑∞
n=2 n(n − 1)|an| ≤ β, batas tajam β diperoleh supaya f sama

ada bak-bintang atau cembung tertib α. Batas tajam untuk η juga diperoleh

agar fungsi f yang memenuhi
∑∞
n=2

(
αn2 + (1 − α)n − β

)
|an| ≤ 1 − β adalah

bak bintang atau cembung tertib α. Beberapa ketaksamaan pekali lain berkaitan

dengan subkelas-subkelas tertentu juga dikaji. Andaikan f(z) = z +
∑∞
n=2 anz

n

analisis pada U dengan pekali kedua a2 memenuhi |a2| = 2b, 0 ≤ b ≤ 1, dan

katakan f memenuhi sama ada |an| ≤ cn + d (c, d ≥ 0) atau |an| ≤ c/n (c > 0)

x



untuk n ≥ 3. Jejari tajam bak-bintang Janowski dan beberapa jejari berkaitan

untuk fungsi sedemikian juga diperoleh.

Sifat kecembungan pengoperasi kamiran umum Vλ(f)(z) :=
∫ 1

0 λ(t)f(tz)/tdt

pada suatu subkelas fungsi analisis yang mengandung beberapa subkelas terso-

hor akan dikaji. Beberapa aplikasi menarik dengan pilihan λ berbeza akan dibin-

cang. Sifat-sifat geometrik untuk pengoperasi kamiran teritlak berbentuk Vλ(f) =

ρz+(1−ρ)Vλ(f), ρ < 1 akan juga diterangkan. Akhir sekali, sifat subordinasi dan

superordinasi untuk pengoperasi linear teritlak yang memenuhi suatu hubungan

jadi semula pembeza peringkat pertama telah dikaji. Suatu kelas fungsi teraku

yang sesuai telah dipertimbangkan untuk mendapatkan syarat cukup bagi do-

mainan dan subordinan terbaik. Keputusan yang diperoleh menyatukann hasil

kajian terdahulu.
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INCLUSION PROPERTIES OF LINEAR OPERATORS AND
ANALYTIC FUNCTIONS

ABSTRACT

This thesis studies the classA of normalized analytic functions in the open unit

disk U of the complex plane. The class of meromorphic functions in the punctured

unit disk which does not include the origin is also studied. This thesis investigates

six research problems. First, the classical subclasses of starlike, convex, close-to-

convex and quasi-convex functions are extended by introducing new subclasses

of analytic and meromorphic functions. The closure properties of these newly

defined classes are investigated and it is shown that these classes are closed under

convolution with prestarlike functions and the Bernardi-Libera-Livingston integral

operator.

The univalence of functions f(z) = z +
∑∞
n=2 anz

n ∈ A is investigated by

requiring the Schwarzian derivative S(f, z) and the second coefficient a2 of f to

satisfy certain inequalities. New criterion for analytic functions to be strongly α-

Bazilevič of nonnegative order is established in terms of the Schwarzian derivatives

and the second coefficients. Also, similar conditions on the second coefficient

of f and its Schwarzian derivative S(f, z) are obtained that would ensure the

function f belongs to particular subclasses of S. For an analytic function f(z) =

z+
∑∞
n=2 anz

n ∈ A satisfying the inequality
∑∞
n=2 n(n−1)|an| ≤ β, a sharp bound

on β is determined so that f is either starlike or convex of order α. A sharp bound

on η is obtained that ensures functions f satisfying
∑∞
n=2

(
αn2+(1−α)n−β

)
|an| ≤

1 − β is either starlike or convex of order η. Several other coefficient inequalities

related to certain subclasses are also investigated. Let f(z) = z +
∑∞
n=2 anz

n

be analytic in the unit disk U with the second coefficient a2 satisfying |a2| = 2b,

0 ≤ b ≤ 1, and let f satisfy either |an| ≤ cn + d (c, d ≥ 0) or |an| ≤ c/n (c > 0)

xii



for n ≥ 3. Sharp radius of Janowski starlikeness for such functions is obtained.

Several related radii are also obtained.

The convexity property of a general integral operator Vλ(f)(z) :=
∫ 1

0 λ(t)f(tz)/tdt

on a new class of analytic functions which includes several well-known classes is

investigated. Several interesting applications for different choices of λ are dis-

cussed. The geometric properties of the generalized integral operator of the form

Vλ(f) = ρz+ (1−ρ)Vλ(f), ρ < 1 are also inquired. Finally, subordination and su-

perordination properties of general linear operators satisfying a certain first-order

differential recurrence relation are investigated. An appropriate class of admissible

functions is considered to determine sufficient conditions for best dominant and

best subordinant. The results obtained unify earlier works.

xiii



CHAPTER 1

INTRODUCTION

Geometric function theory is a remarkable area in complex analysis. This field is

more often associated with geometric properties of analytic functions. Geometric

function theory has raised the interest of many researchers since the beginning

of the 20th century. The purpose of this chapter is to review and assemble for

references, relevant definitions and known results in geometric function theory

which underlie the theory of univalent functions.

1.1 Univalent Functions

A function f is analytic at z0 in a domain D if it is differentiable in some neigh-

borhood of z0, and it is analytic on a domain D if it is analytic at all points in

D. An analytic function f is said to be univalent in a domain D of the complex

plane C if it is one-to-one in D. It is locally univalent in D if f is univalent in

some neighborhood of each point z0 ∈ D. It is known that a function f is locally

univalent in D provided f ′(z) 6= 0 for any z ∈ D [48, p. 5]. In 1851, Riemann

proved that any simply connected domain which is not the entire plane and the

unit disk U := {z ∈ C : |z| < 1} are conformally equivalent.

Theorem 1.1 (Riemann Mapping Theorem) [48, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D

onto the unit disk U satisfying f(ζ) = 0 and f ′(ζ) > 0.

Therefore, the study of conformal mappings on simply connected domains

may be confined to the study of functions that are univalent on the unit disk U .

The Riemann Mapping Theorem shows that there is a one-to-one correspondence

between proper simply connected domains (geometric objects) and suitably nor-

1



malized univalent functions (analytic objects).

Let H(U) denote the set of all analytic functions defined in the unit disk U .

Let A be the class of normalized analytic functions f defined in U of the form

f(z) = z +
∞∑
n=2

anz
n. (1.1)

More generally, let Am denote the subclass of A consisting of normalized analytic

functions f of the form

f(z) = zm +
∞∑

k=m+1

akz
k (m ∈ N := {1, 2, · · · }).

Denote by S the subclass of A consisting of univalent functions. The class S are

treated extensively in the books [48,61,151]. Bernardi [33] provided a comprehen-

sive list of papers on univalent functions theory published before 1981.

The Koebe function defined by

k(z) =
z

(1− z)2
=
∞∑
n=1

nzn,

and its rotations e−iβk(eiβz), play an important role in the class S. The Koebe

function maps U in a one-to-one manner onto a domain D consisting of the entire

complex plane except for a slit along the negative real axis from w = −∞ to

w = −1/4. A significant problem in the theory of univalent functions is the

Bieberbach’s conjecture which asserts that the Koebe function has the largest

coefficients in S.

Theorem 1.2 (Bieberbach’s Conjecture) [48] If f =
∑∞
n=1 anz

n ∈ S, then

|an| ≤ n (n ≥ 2).

2



Equality occurs only for the Koebe function and its rotations.

In 1916, Bieberbach [36] proved the inequality for n = 2, and conjectured

that it is true for any n. In 1985, de Branges [37] proved this conjecture for

all coefficients n ≥ 2. Before de Branges’s proof, the Bieberbach’s conjecture

was known for n ≤ 6. Löwner [101] developed parametric representation of slit

mapping and used it to prove the Bieberbach’s conjecture for n = 3. The cases

n = 4, 5, 6 were proved by Garabedian and Schiffer [57], Pederson and Schiffer

[147], and Pederson [146]. In 1925, Littlewood [95] showed that the coefficients of

each function f ∈ S satisfy |an| ≤ en (n ≥ 2). Duren [48], Goodman [61] and

Pommerenke [151] provided the history of this problem.

As an application, a famous covering theorem due to Koebe can be proved

by Bieberbach’s conjecture for the second coefficient. This theorem states that if

f ∈ S, then the image of U under f must cover an open disk centered at the origin

with radius 1/4.

Theorem 1.3 (Koebe One-Quarter Theorem) [61, p. 62] The range of ev-

ery function f ∈ S contains the disk {w : |w| < 1/4}.

The Koebe function and its rotations are the only functions in S which omit

a value of modulus 1/4. The sharp upper and lower bounds for |f(z)| and |f ′(z)|

where f ∈ S are a consequence of the Bieberbach’s conjecture for the second

coefficient.

Theorem 1.4 (Distortion and Growth Theorem) [61] Let f ∈ S. Then for

each z = reiθ ∈ U ,

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3
,

and

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
.

3



The above inequalities are sharp with equality occurring for the Koebe function and

its rotations.

1.2 Subclasses of Univalent Functions

The long gap between the formulation of the Bieberbach’s conjecture (1916) and

its proof by de Branges (1985) motivated researchers to investigate its validity on

several subclasses of S. These classes are defined by geometric conditions, and

include the class of starlike functions, convex functions, close-to-convex functions,

and quasi-convex functions. A set D in the plane is said to be starlike with respect

to an interior point w0 in D if the line segment joining w0 to every other point w

in D lies entirely in D. A set D in the plane is convex if it is starlike with respect

to each of its points; that is, if the line segment joining any two points of D lies

entirely in D. The closed convex hull of a set D in C is the closure of intersection

of all convex sets containing D. It is the smallest closed convex set containing D

and is denoted by co(D).

A function f ∈ A is starlike if f(U) is a starlike domain with respect to

the origin, and f is convex if f(U) is a convex domain. Analytically, these are

respectively equivalent to the conditions

Re
zf ′(z)

f(z)
> 0 and Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U).

In 1915, Alexander [4] showed that there is a close connection between convex

and starlike functions.

Theorem 1.5 (Alexander Theorem) [4] Suppose that f ′(z) 6= 0 in U . Then

f is convex in U if and only if zf ′ is starlike in U .

Denote the classes of starlike and convex functions by ST and CV respectively.

More generally, for α < 1, let ST (α) and CV(α) be subclasses of A consisting
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respectively of starlike functions of order α and convex functions of order α. For

0 ≤ α < 1, these functions are known to be univalent [48, p. 40], and are defined

analytically by

ST (α) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α

}
, (1.2)

and

CV(α) :=

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

}
. (1.3)

Clearly, ST = ST (0) and CV = CV(0).

In 1952, Kaplan [77] introduced the class of close-to-convex functions. A func-

tion f ∈ A is close-to-convex in U if there is a starlike function ψ and a real

number α such that

Re eiα
zf ′(z)

ψ(z)
> 0 (z ∈ U). (1.4)

The class of all such functions is denoted by CCV . Geometrically, f is close-to-

convex if and only if the image of |z| = r has no large hairpin turns; that is,

there is no sections of the curve f(Cr) in which the tangent vector turns backward

through an angle greater than π. Starlike functions are evidently close-to-convex.

Another subclass of S is the class of quasi-convex functions. A function f ∈ A

is said to be quasi-convex in U if there is a function φ in CV such that

Re
(zf ′(z))′

φ′(z)
> 0 (z ∈ U).

This set of functions denoted by QCV was introduced by Noor and Thomas [129].

Note that CV ⊂ QCV where φ(z) ≡ f(z). Every close-to-convex function is

univalent. This can be inferred from the following simple but important criterion

for univalence proved by Noshiro [130] and Warschawski [207].

Theorem 1.6 (Noshiro-Warschawski Theorem) [61, p. 47] If f is analytic
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in a convex domain D and Re f ′(z) > 0 there, then f is univalent in D.

The subclasses of S consisting of starlike, convex and close-to-convex functions

satisfy the following chain:

CV ⊂ ST ⊂ CCV ⊂ S.

There are many criteria for functions to be univalent. In 1949, Nehari [123]

obtained univalence criterion which involves the Schwarzian derivative. Let S(f, z)

denote the Schwarzian derivative of a locally univalent analytic function f defined

by

S(f, z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

. (1.5)

A Möbius transformation M is defined by

M(z) =
az + b

cz + d
(ad− bc 6= 0). (1.6)

The functionM is univalent on the closed complex plane containing the point at∞.

A function of the form (1.6) always maps ”circles” onto ”circles” where a ”circle”

means a straight line or a circle [61, p. 10]. It can be shown that the Schwarzian

derivative is invariant under Möbius transformations, that is, S(M◦f, z) = S(f, z).

Also, the Schwarzian derivative of an analytic function f is identically zero if and

only if it is a Möbius transformation [48, p. 259].

The following univalence criterion was given by Nehari.

Theorem 1.7 [123] If f ∈ S, then

|S(f, z)| ≤ 6

(1− |z|2)2
. (1.7)
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Conversely, if an analytic function f in U satisfies

|S(f, z)| ≤ 2

(1− |z|2)2
, (1.8)

then f is univalent in U . The results are sharp.

The preceding result was first proved by Kraus [85] but had been forgotten for

a long time. Nehari re-discovered and proved Theorem 1.7. The Koebe function

satisfies (1.7) and shows that the constant 6 is sharp. Also, the function

L(z) =
1

2
log

(
1 + z

1− z

)
(1.9)

which maps U univalently onto the parallel strip | Imw| < π/2 satisfies (1.8) and

shows that the constant 2 is sharp. Nehari [125] also showed that inequality (1.8)

holds if f is convex and this result is sharp for the function L defined by (1.9).

By considering two particular positive functions, Nehari [123] obtained a bound

on the Schwarzian derivative that ensures univalence of an analytic function in A.

In fact, the following theorem was proved.

Theorem 1.8 [123, Theorem II, p. 549] If f ∈ A satisfies

|S(f, z)| ≤ π2

2
(z ∈ U),

then f ∈ S. The result is sharp for the function f given by f(z) = (exp(iπz) −

1)/iπ.

The problem of finding similar bounds on the Schwarzian derivatives that

would imply univalence, starlikeness or convexity of functions was investigated

by a number of authors including Gabriel [55], Friedland and Nehari [54], and
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Ozaki and Nunokawa [139]. Chiang [41] investigated convexity of functions f

by requiring the Schwarzian derivative S(f, z) and the second coefficient a2 of

f to satisfy certain inequalities. In Chapter 3, it is assumed that the second

coefficient of an analytic function f is small enough and that the Schwarzian

derivative S(f, z) satisfies a certain inequality. Under these assumptions, it is

shown that f is univalent. Also, similar conditions on the second coefficient of f

and its Schwarzian derivative S(f, z) are obtained that would ensure the function

f belongs to particular subclasses of S.

Various subclasses of ST and CV were later introduced that possess certain

geometric features. Goodman [62] introduced the class of uniformly convex func-

tions UCV . Geometrically, a function f ∈ S is uniformly convex if it maps every

circular arc γ contained in U with center ζ ∈ U onto a convex arc. Goodman [62]

gave a two-variable analytic characterization for the class UCV , that is,

UCV :=

{
f ∈ S : Re

(
1 +

(z − ζ)f ′′(z)

f ′(z)

)
> 0, ζ, z ∈ U

}
,

while Rønning [167], and Ma and Minda [103] independently gave a one-variable

characterization for f ∈ UCV by using the minimum principle for harmonic func-

tions:

f ∈ UCV ⇔
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < Re

(
1 +

zf ′′(z)

f ′(z)

)
(z ∈ U). (1.10)

For 0 ≤ α < 1, let Ωα be the parabolic region in the right-half plane defined

by

Ωα = {w = u+ iv : v2 < 4(1− α)(u− α)} = {w : |w − 1| < 1− 2α + Rew}.

The class PST (α) of parabolic starlike functions of order α is the subclass of A

consisting of functions f such that zf ′(z)/f(z) ∈ Ωα, z ∈ U . Thus f ∈ PST (α)
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if and only if

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− 2α + Re

(
zf ′(z)

f(z)

)
(z ∈ U). (1.11)

The class PST , called parabolic starlike functions, was introduced by Rønning

[167]. Analytically, f ∈ PST if

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < Re

(
zf ′(z)

f(z)

)
(z ∈ U).

Rønning [167] also showed that

f ∈ UCV ⇔ zf ′ ∈ PST (1/2) = PST .

Closely related is the class UST of uniformly starlike functions introduced by

Goodman [63]. A function f ∈ S is uniformly starlike if it maps every circular arc

γ contained in U with center ζ ∈ U onto a starlike domain with respect to f(ζ).

A two-variable analytic characterization of the class UST is given by

UST :=

{
f ∈ S : Re

(
(z − ζ)f ′(z)

f(z)− f(ζ)

)
> 0, ζ, z ∈ U

}
. (1.12)

Goodman [62] showed that the classical Alexander relation (Theorem 1.5) does

not hold between UST and UCV . Such a question between UST and UCV is in

fact equivalent to UST = PST , and it was shown in [62, 168] that there is no

inclusion between UST and PST :

UST 6⊂ PST , PST 6⊂ UST .

Several authors have studied the above classes, amongst which include the works

of [62,102–104,165,179]; surveys on the classes UCV , UST and PST can be found
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in [14] by Ali and Ravichandran, and in [166] by Rønning.

The class of meromorphic functions is yet another subclass of univalent func-

tions that will be discussed in the thesis. Let Σ denote the class of normalized

meromorphic functions f of the form

f(z) =
1

z
+
∞∑
n=0

anz
n, (1.13)

that are analytic in the punctured unit disk U∗ := {z : 0 < |z| < 1} except for a

simple pole at 0. In 1914, Gronwall [65] proved the following Area Theorem.

Theorem 1.9 (Area Theorem) If f is univalent function of the form

f(ξ) = ξ + b0 +
∞∑
n=1

bn
ξn

(|ξ| > 1), (1.14)

then
∑∞
n=1 n|bn|2 ≤ 1.

The interest of the class Σ arose from an application of the Area Theorem in

the proof of the Bieberbach’s conjecture for the second coefficient. A function f

of the form (1.14) and g ∈ Σ are related by the transformation f(1/z) = g(z).

The transformation

f(ξ) =
1

g(1/ξ)
(|ξ| > 1) (1.15)

takes each g in S into a function f of the form (1.14). By the transformation

(1.15), the Koebe function takes a particularly simple form

φ(ξ) =
1

k(1/ξ)
= ξ − 2 +

1

ξ

which maps the exterior of unit disk {ξ ∈ C : 1 < |ξ| < ∞} onto the domain

consisting of the entire complex plane minus the slit −4 ≤ w ≤ 0.
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A function f ∈ Σ is said to be starlike if it is univalent and the complement

of f(U) is a starlike domain with respect to the origin where f(z) 6= 0 for z ∈ U∗.

Denote by Σst the class of meromorphically starlike functions. Analytically, it is

known that f ∈ Σst if and only if

Re
zf ′(z)

f(z)
< 0 (z ∈ U∗).

Note that f ∈ Σst implies f(z) 6= 0 for z ∈ U∗. Similarly, a function f ∈ Σ is

convex, denoted by f ∈ Σcv, if it is univalent and the complement of f(U) is a

convex domain. Analytically, f ∈ Σcv if and only if

Re
(zf ′(z))′

f ′(z)
< 0 (z ∈ U∗).

In general, for 0 ≤ α < 1, the classes of meromorphic starlike functions of

order α and meromorphic convex functions of order α respectively are defined by

Σst(α) :=

{
f ∈ Σ : Re

zf ′(z)

f(z)
< α

}
,

Σcv(α) :=

{
f ∈ Σ : Re

(zf ′(z))′

f ′(z)
< α

}
.

These classes have been studied by several authors [23, 24, 88, 116, 117, 191, 192,

205]. We assembled geometric features and analytic expressions of the well-known

subclasses of univalent functions to apply for future convenience.

1.3 Function with Negative Coefficients

The following simple result follows from an application of the Noshiro-Warschawski

Theorem (Theorem 1.6).

Theorem 1.10 Let f(z) = z +
∑∞
n=2 anz

n ∈ U , and
∑∞
n=2 |an| ≤ 1. Then

f ∈ S.
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If an ≤ 0 for all n, then the condition above is also a necessary condition for

f to be univalent. In 1961, Merkes et al. [105] obtained a sufficient condition for

f ∈ A to be starlike of order α, which is also necessary in the event an ≤ 0.

Theorem 1.11 [105, Thorem 2, p. 961] Let 0 ≤ α < 1, and f(z) = z +∑∞
n=2 anz

n ∈ A. Then f ∈ ST (α) if

∞∑
n=2

(n− α)|an| ≤ 1− α. (1.16)

If an ≤ 0 for all n, then (1.16) is a necessary condition for f ∈ ST (α).

This motivated the investigation of functions whose coefficients are negative. The

class of functions with negative coefficients in A, denoted by T , consists of func-

tions f of the form

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0). (1.17)

Denote by T ST (α) and T CV(α) the respective subclasses of functions with

negative coefficients in ST (α) and CV(α). For starlike and convex functions of or-

der α with negative coefficients, Silverman [182] determined the distortion theorem,

covering theorem, and coefficients inequalities and extreme points. Silverman [182]

also provided a survey, some open problems, and conjectures on analytic functions

with negative coefficients. In 2003, the classes T ST and T CV were generalized in

terms of subordination by Ravichandran [158]. The subordination concept and its

applications will be treated in Section 1.8.

As in the case with the Bieberbach’s conjecture, there are several easily stated

questions related to the class T that appear difficult to solve. Related works to

analytic functions with negative coefficients include [10,11,26,89,118,119,136,155,

156, 175]. Merkes et al. [105] proved Theorem 1.11 based on a method used by

Clunie and Keogh [46], which was later applied to obtain sufficient conditions for
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functions f to be in certain subclasses of analytic functions. For instance, the

following lemma is a sufficient coefficient condition for functions f ∈ A to satisfy

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> β (α ≥ 0, β < 1, z ∈ U). (1.18)

Lemma 1.1 [97] Let β < 1, and α ≥ 0. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies

the inequality
∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤ 1− β, (1.19)

then f satisfies (1.18). If an ≤ 0 for all n, then (1.19) is a necessary condition

for functions f to satisfy (1.18).

Geometric properties of analytic functions satisfying (1.18) will be investigated

in Chapters 5. Sălăgean [176] obtained several interesting implications for analytic

functions with negative coefficients. Motivated by the investigation of Sălăgean

[176], several implications are investigated for functions f ∈ A satisfying (1.18).

The largest bound β for analytic functions f(z) = z +
∑∞
n=2 anz

n satisfying the

inequality
∑∞
n=2 n(n − 1)|an| ≤ β are determined that will ensure f to be either

starlike or convex of some positive order. For f ∈ T ST (α), and f ∈ T CV(α),

the largest value is obtained that bounds each coefficient inequality of the form∑
nan,

∑
n(n − 1)an,

∑
(n − 1)an and

∑
n2an. The results obtained will be

applied to ensure the hypergeometric functions zF (a, b; c; z) satisfy (1.18). The

hypergeometric functions will be treated in Section 1.9.

1.4 Univalent Functions with Fixed Second Coefficient

Certain properties of analytic functions are influenced by their second coefficient.

In 1920, Gronwall [66] extended the distortion and growth theorems for an ana-

lytic function f(z) = z +
∑∞
n=2 anz

n with a pre-assigned second coefficient. Cor-

responding results for convex functions with a pre-assigned second coefficient were
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also obtained [66].

Let the class Ab consist of functions f ∈ A with a fixed second coefficient a2

with |a2| = 2b, 0 ≤ b ≤ 1. Each f ∈ Ab has the form

f(z) = z +
∞∑
n=2

anz
n (|a2| = 2b).

Let CVb(α) denote the class of convex functions of order α and ST b(α) denote the

class of starlike functions of order α where f ∈ Ab. Also denote by ST b := ST b(0)

and CVb := CVb(0) the class of starlike functions and the class of convex functions

with |a2| = 2b respectively. Finkelstein [52] obtained distortion and growth theo-

rems for the classes ST b and CVb. The results obtained in [52] were generalized

to the class ST b(α) by Tepper [199] and the class CVb(α) by Padmanabhan [140].

Later in 2001, Padmanabhan [141] investigated the problem for general classes of

functions defined by subordination.

Silverman [181] investigated the influence of the second coefficient on the class

of close-to-convex functions. Here, a function f ∈ Ab is close-to-convex of order

β and type α, denoted by f ∈ CCVb(α, β), if there is a function ψ ∈ CVb(α) such

that

Re
f ′(z)

ψ′(z)
> β (β ≥ 0).

Silverman [181] proved distortion and covering theorems for f ∈ CCVb(α, β). The

theory of differential subordination for functions f ∈ Ab was discussed in [13,122].

Ali et al. provided a brief history of these works in [9].

Lewandowski et al. [92] proved that an analytic function f satisfying

Re

(
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> 0 (z ∈ U) (1.20)
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is starlike. The class of such functions was extended to the form (1.18) and has

subsequently been investigated by Ramesha et al. [157], Nunokawa et al. [133],

Obradović and Joshi [134], Padmanabhan [142], Ravichandran [160,162], and Liu

et al. [97]. For −α/2 ≤ β < 1, Li and Owa [93] proved that functions satisfying

(1.18) are starlike. In 2002, the class of analytic functions satisfying

Re
zf ′(z)

f(z)
< β (β > 1, z ∈ U)

was considered by Owa and Nishiwaki [128], while its subclasses were earlier in-

vestigated by Uralegaddi et al. [204,206], Owa and Srivastava [138]. Liu et al. [96]

investigated the class of functions satisfying

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
< β (α ≥ 0, β > 1, z ∈ U). (1.21)

In Chapter 7, the class of functions satisfying (1.18) and (1.21) will be put in

a generl form

L(α, β)∩Ab :=

{
f ∈ Ab : α

z2f ′′(z)

f(z)
+
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, β ∈ R \ {1}, α ≥ 0

}
.

(1.22)

Also, the well-known class of analytic functions introduced by Janowski [73] defined

by

ST [A,B] ∩ Ab =

{
f ∈ Ab :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
,−1 ≤ B < A ≤ 1

}
will be considered. The radius properties for functions f ∈ L(α, β) ∩ Ab and

f ∈ ST [A,B] ∩ Ab are investigated in Chapter 7. The radius problems will be

treated in the next section.
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1.5 Radius Problems

Let M be a set of functions and P be a property which functions in M may or

may not possess in a disk |z| < r. The least upper bound of all numbers r such

that every function f ∈ M has the property P in the disk Ur = {z : |z| < r}

is the radius for the property P in the set M. Every univalent analytic function

is univalent, but every univalent function is not always convex. However, every

univalent analytic mapping maps a sufficiently small disk into a convex domain.

The largest radius of the disk with this property is the radius of convexity. It is

known that the radius of convexity for the set S is 2−
√

3 and is attained by the

Koebe function [127]. Grunsky [67] proved that the radius of starlikeness for the

set S is tanh(π/4). The radius of close-to-convexity for the set S was determined by

Krzyż [87]. A list of such radius problems was provided by Goodman [61, Chapter

13].

For f(z) = z +
∑∞
n=2 anz

n ∈ S, de Branges [37] proved the Bieberbach’s

conjecture that |an| ≤ n (n ≥ 2) (Theorem 1.2). However, the inequality |an| ≤

n (n ≥ 2) does not imply f is univalent; for example, f(z) = z + 2z2 satisfies

the coefficient inequality but f is not a member of S as f ′(−1/4) = 0. In view of

this, it is interesting to investigate the radius of univalence, starlikeness, and other

geometric properties of f(z) = z +
∑∞
n=2 anz

n ∈ A when the Taylor coefficients

of f satisfy |an| ≤ cn+ d (n ≥ 2).

The inequality |an| ≤ M holds for functions f(z) = z +
∑∞
n=2 anz

n ∈ A

satisfying |f(z)| ≤M , and for these functions, Landau [90] proved that the radius

of univalence is M−
√
M2 − 1. For functions f(z) = z+

∑∞
n=2 anz

n ∈ A satisfying

the inequality |an| ≤ n (n ≥ 2), Gavrilov [58] showed that the radius of univalence

is the real root r0 ≈ 0.1648 of the equation 2(1−r)3−(1+r) = 0, and for functions

f(z) = z+
∑∞
n=2 anz

n ∈ A satisfying |an| ≤M (n ≥ 2), the radius of univalence is

1−
√
M/(1 +M). Yamashita [209] showed that the radius of univalence obtained
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by Gavrilov is the radius of starlikeness as well. Indeed, Gavrilov [58, Theorem 1]

estimated the radius of univalence to be 0.125 < r0 < 0.130, while Yamashita [209]

obtained r0 ≈ 0.1648. Yamashita also determined the radius of convexity for

functions f(z) = z +
∑∞
n=2 anz

n ∈ A satisfying |an| ≤ n (n ≥ 2) to be the real

root of (M + 1) (1− r)3 −M(1 + r) = 0.

Recently Kalaj et al. [74] obtained the radii of univalence, starlikeness, and

convexity for harmonic mappings satisfying similar coefficient inequalities.

In [161], Ravichandran obtained the sharp radii of starlikeness and convexity of

order α for functions f ∈ Ab satisfying |an| ≤ n or |an| ≤M (M > 0), n ≥ 3. The

radius constants for uniform convexity and parabolic starlikeness for functions f ∈

Ab satisfying |an| ≤ n, n ≥ 3 were also obtained. Ravichandran [161] determined

the radius of positivity for the real part of the functions p(z) = 1+c1z+c2z
2 + · · ·

satisfying the inequality |cn| ≤ 2M (M > 0), n ≥ 3 with |c2| = 2b, 0 ≤ b ≤ 1.

Let f = z +
∑∞
n=2 anz

n ∈ Ab satisfy either |an| ≤ cn + d (c, d ≥ 0) or

|an| ≤ c/n (c > 0) for n ≥ 3. In Chapter 7, sharp L(α, β)-radius and sharp

ST [A,B]- radius for these classes are obtained. The radius constants obtained

by Ravichandran [161] and Yamashita [209] are shown to be special cases of the

results obtained in Chapter 7.

1.6 Convolution

Let f(z) =
∑∞
n=0 anz

n , and g(z) =
∑∞
n=0 bnz

n be analytic in the unit disk U .

The Hadamard product of f and g is defined by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n (z ∈ U).
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The alternative representation as a convolution integral

(f ∗ g)(z) =
1

2πi

∫
|ζ|=ρ

f

(
z

ζ

)
g(ζ)

dζ

ζ
(|z| < ρ < 1),

is the reason f ∗ g is also called the convolution of f and g where Rf and Rg are

the radii of convergence for f and g respectively [172, p. 11]. Since f and g are

analytic in U , Rf ≥ 1 and Rg ≥ 1. Thus,

1

Rf∗g
= lim sup |anbn|

1
n ≤

(
lim sup |an|

1
n

)(
lim sup |bn|

1
n

)
=

1

Rf

1

Rg
≤ 1,

where Rf∗g is the radius of convergence for f ∗ g. Hence f ∗ g is analytic in

|z| < RfRg. Mandelbrojt and Schiffer [150] conjectured univalence is preserved

under integral convolution; namely if f, g ∈ S , then

G(z) =

∫ z

0

(f ∗ g)(t)

t
dt ∈ S.

Epstein and Schöenberg [50], Hayman [70], and Loewner and Netanyahu [100]

proved counterexamples to the Mandelbrojt and Schiffer conjecture. In 1958, Pólya

and Schöenberg [150] conjectured that

CV ∗ CV ⊂ CV .

Suffridge [195] proved that the convolution of every pair of convex functions is

close-to-convex. In 1973, the Polya and Schöenberg’s conjecture was proved by

Ruscheweyh and Sheil-Small [173]. They also proved that the class of starlike

functions and close-to-convex functions are closed under convolution with convex

functions. However, it turns out that the class of univalent functions is not closed

under convolution. In fact, ST ∗ ST is not even contained in the family S. For

example, let f = g = k ∈ ST , where k is the Koebe function. Then f ∗ g 6∈ S
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because an = n2 > n. Further details about related works can be found in [48].

A subclass of analytic functions considered by Ruscheweyh [172] known as

prestarlike functions was applied to the basic convolution results.

For α < 1, the class Rα of prestarlike functions of order α is defined by

Rα :=

{
f ∈ A : f ∗ z

(1− z)2−2α
∈ S∗(α)

}
,

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2. In particular,

f ∈ R1/2 ⇔ Re
zf ′(z)

f(z)
>

1

2
(z ∈ U),

f ∈ R0 ⇔ Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U). (1.23)

Therefore, R1/2 = ST 1/2 and R0 = CV . It is a known result [172] that the classes

of starlike functions of order α and convex functions of order α are closed under

convolution with prestarlike functions of order α. Prestarlike functions have a num-

ber of interesting geometric properties. Ruscheweyh [172] and Sheil-Small [180]

investigated the significance of prestarlike functions. The results and techniques of

Ruscheweyh and Sheil-Small developed in [173] in connection with their proof of

the Polya-Schöenberg conjecture have been applied in many convolution articles.

The convex hull method is based on the following convolution result for prestarlike

and starlike functions.

Theorem 1.12 [172, Theorem 2.4] Let α ≤ 1, φ ∈ Rα and f ∈ ST (α). Then

φ ∗ (Hf)

φ ∗ f
(U) ⊂ co(H(U)),

for any analytic function H ∈ H(U), where co(H(U)) denotes the closed convex
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hull of H(U).

In Chapter 2, the classical subclasses of starlike, convex, close-to-convex and

quasi-convex functions are extended to new subclasses of analytic functions. Using

the method of convex hull and the theory of differential subordinations discussed

later in Section 1.8, convolution properties of these newly defined subclasses of

analytic functions are investigated. It is shown that these classes are closed un-

der convolution with prestarlike functions. Also, new subclasses for meromor-

phic functions are similarly introduced, and the convolution features of these

subclasses are investigated. It is proved that these classes are also closed un-

der convolution with prestarlike functions. It is shown that the Bernardi-Libera-

Livingston integral operator preserve all these subclasses of analytic and meromor-

phic functions. It would be evident that various earlier works, for example those

of [3, 35,44,120,148,159], are special instances of the results obtained.

1.7 Dual Set and Duality for Convolution

Let A0 be the set of all functions f ∈ H(U) satisfying f(0) = 1. For V ⊂ A0,

define the dual set

V ∗ :=
{
f ∈ A0 : (f ∗ g)(z) 6= 0 for all g ∈ V, z ∈ U

}
.

The second dual V ∗∗ is defined as V ∗∗ = (V ∗)∗. It is of interest to investigate

the relations between V and V ∗∗. In general, V ∗∗ is much bigger than V , but

many properties of V remain valid in V ∗∗. Let Λ be the set of continuous linear

functionals on H(U) and λ(V ) := {λ(f) : f ∈ V }. In 1975, Ruscheweyh [170]

proved the following fundamental result, known as the Duality Principle.

Theorem 1.13 (Duality Principle) [170] Let V ⊂ A0 have the following prop-

erties:
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(1) V is compact,

(2) f ∈ V implies f(xz) ∈ V for all |x| ≤ 1.

Then λ(V ) = λ(V ∗∗) for all λ ∈ Λ on A, and co(V ) = co(V ∗∗).

The Duality Principle has numerous applications to the class of functions pos-

sessing certain geometric properties like bounded real part, convexity, starlikeness,

close-to-convexity and univalence. The monograph of Ruscheweyh [172], and also

the paper [170] in which many of the results of this topic were first published have

become basic references for duality theory. As an application of Duality Principle,

the following corollary was shown by Ruscheweyh [172]. The result is false with

V ∗∗ replaced by co(V ).

Corollary 1.1 [172, Corollary 1.1. p. 17] Let V ⊂ A0 satisfy the conditions in

Theorem 1.13. Let λ1, λ2 ∈ Λ with 0 6∈ λ2(V ). Then for any f ∈ V ∗∗ there exists

a function g ∈ V such that

λ1(f)

λ2(f)
=
λ1(g)

λ2(g)
.

Ruscheweyh determined a big class of sets in A0 in which the above result was

applicable.

Theorem 1.14 [170, Theorem 1, p. 68] If

Vβ =

{
(1− β)

1 + xz

1 + yz
+ β : |x| = |y| = 1, β ∈ R, β 6= 1

}
,

then

V ∗β =

{
f ∈ A0 : Re f(z) >

1− 2β

2(1− β)

}
,

and

V ∗∗β =
{
f ∈ A0 : ∃φ ∈ R with Re eiφ(f(z)− β) > 0, z ∈ U

}
.
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Singh and Singh [187] proved the Bernardi integral operator

Fc(z) = (c+ 1)

∫ 1

0
tc−1f(tz)dt (c > −1)

is starlike for −1 < c ≤ 0, where Re f ′(z) > 0 in U . In 1986, Mocanu proved that

Re f ′(z) > 0⇒ F1 ∈ ST ,

and the result was later improved by Nunokawa [131]. Singh and Singh [186] also

proved

Re f ′(z) > −1

4
⇒ F0(z) ∈ ST .

Such problems were earlier handled using the theory of subordination which

will be discussed in Section 1.8. In 1975, Fournier and Ruscheweyh [53] used the

Duality Principle [172] to find the sharp bound for β such that Fc(P(β)) ⊂ ST

where P(β) is given by

P(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z)− β

)
> 0, z ∈ U

}
, (1.24)

and −1 < c ≤ 2.

Indeed, Fournier and Ruscheweyh [53] investigated starlikeness properties of a

general operator

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt. (1.25)

over functions f in the class P(β) given by (1.24), where λ is a non-negative

real-valued integrable function satisfying the condition
∫ 1

0 λ(t)dt = 1. Ali and

Singh [21] found a sharp estimate of the parameter β that ensures Vλ(f) is convex

over P(β).
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The duality theory of convolutions developed by Ruscheweyh [172] is now

popularly used by several authors to discuss similar problems, among which include

the works of [27, 27–31, 45, 47, 83, 152–154]. As a consequence of these works,

several interesting results on integral operators for special choices of λ were derived.

A survey on integral transforms in geometric function theory was provided by

Kim [81]. Integral operators will be treated again in Section 1.9.

The class Wβ(α, γ) defined by

Wβ(α,γ) :=
{
f ∈ A : ∃φ ∈ R with

Re eiφ
(

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ U

}
,

(1.26)

for α ≥ 0, γ ≥ 0 and β < 1 was recently introduced by Ali et al. [12]. Ali et al. [7]

investigated the starlikeness of integral transform (4.1) over the class Wβ(α, γ) by

applying the Duality Principle.

In Chapter 4, the Duality Principle is used to determine the best value of

β < 1 that ensures the integral operator Vλ(f) in (1.25) maps the class Wβ(α, γ)

defined in (1.26) into the class of convex functions. Simple necessary and sufficient

condition for Vλ(f) to be convex are obtained. For specific choices of the admissible

function λ, several applications are investigated. As an important consequence, it

is shown that a function f satisfying the third-order differential equation

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

is convex in U where β > −0.629445. Also, the smallest value of β < 1 is obtained

such that the generalized integral operator of the form ρz + (1 − ρ)Vλ(f), ρ < 1,

over the class of Wβ(α, γ) is starlike. Corresponding result for ρz + (1− ρ)Vλ(f),

23



ρ < 1, to be convex is also derived.

1.8 Differential Subordination

In this section, the basic definitions and theorems in the theory of subordination

and certain applications of differential subordinations are described. A function

f is subordinate to an analytic function g, written f(z) ≺ g(z), if there exists

a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 satisfying

f(z) = g(w(z)). If g is univalent in U , then f(z) ≺ g(z) is equivalent to f(0) = g(0)

and f(U) ⊂ g(U). The following concepts and terminologies were introduced by

Miller and Mocanu in [111].

Let ψ(r, s, t; z) : C3×U → C, and h be univalent in U . If an analytic function

p satisfies the second-order differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.27)

then p is called a solution of the differential subordination. The univalent function

q is called a dominant of the solution of the differential subordination, or more

simply, dominant, if p(z) ≺ q(z) for all p satisfying (1.27). A dominant q1 satisfying

q1(z) ≺ q(z) for all dominants q of (1.27) is said to be the best dominant of (1.27).

The best dominant is unique up to a rotation of U . Miller and Mocano provided

a comprehensive discussion on differential subordination in [111].

Let ψ(r, s, t; z) : C3×U → C, and h(z) be analytic in U . Let p and ψ(p(z), zp′(z),

z2p′′(z); z) be univalent in U . If p satisfies the second-order differential superordi-

nation

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z), (1.28)

then p is called a solution of the differential superordination. An analytic function

q is called a subordinant of the solution of the differential superordination, or
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more simply, subordinant, if q(z) ≺ p(z) for all p satisfying (1.28). A univalent

subordinant q1 satisfying q(z) ≺ q1(z) for all subordinants q of (1.28) is said to be

the best subordinant of (1.28). The best subordinant is unique up to a rotation of

U . Further discussion on the differential superordination can be found in Miller

and Mocano [112].

In 1935, the simple first-order differential subordination

zp′(z) ≺ h(z)

was considered by Goluzin [60]. He showed that if h is convex, then

p(z) ≺ q(z) =

∫ z

0
h(t)t−1dt,

and this q is the best dominant. Suffridge [196, p. 777] proved that Goluzin’s result

even holds if h is starlike.

In 1947, Robinson [164, p. 22] considered the differential subordination

p(z) + zp′(z) ≺ h(z).

He proved that if h and q(z) = z−1
∫ z

0 h(t)dt are univalent, then q is the best

dominant, at least for |z| < 1/5. The differential subordination

p(z) +
zp′(z)

γ
≺ h(z) (γ 6= 0,Re γ ≥ 0),

was considered by Hallenbeck and Rusheweyh [69, p. 192] in 1975. They showed

that if h is convex, then

p(z) ≺ q(z) = γz−γ
∫ z

0
h(t)tγ−1dt,
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and this is the best dominant.

In 1978, Miller and Mocanu [109] reformulated the above mentioned results by

considering the differential subordination implication

{ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⊂ Ω⇒ p(U) ⊂ q(U),

where Ω ⊂ C, p ∈ H(U), q ∈ S, and ψ(r, s, t; z) an analytic function from C3 × U

to C.

Denote by Q the set of functions q that are analytic and injective on Ū\E(q),

where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) =∞}

and q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Let Q(a) be the subclass of Q for which q(0) = a.

Further, let Q0 := Q(0) and Q1 := Q(1).

The subordination methodology is applied to an appropriate class of admissible

functions. The following class of admissible functions was given by Miller and

Mocanu [111].

Definition 1.1 [111, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and m be

a positive integer. The class of admissible functions Ψm[Ω, q] consists of functions

ψ : C3 × U → C satisfying the admissibility condition ψ(r, s, t; z) 6∈ Ω whenever

r = q(ζ), s = kζq′(ζ) and

Re

(
t

s
+ 1

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U , ζ ∈ ∂U\E(q) and k ≥ m. Denote by Ψ[Ω, q] := Ψ1[Ω, q].

The next theorem is the foundation result in the theory of first and second-

order differential subordinations.
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Theorem 1.15 [111, Theorem 2.3b, p. 28] Let ψ ∈ Ψm[Ω, q] with q(0) = a. If

p(z) = a+ amz
m + am+1z

m+1 + · · · satisfies

ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω,

then p(z) ≺ q(z).

Analogous to the case of subordination, a suitable class of admissible functions

is required so that the differential superordination implication

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U} ⇒ ∆ ⊂ p(U), (1.29)

holds. In 2003, Miller and Mocanu [112] considered the following class of admissible

functions related to differential superordination.

Definition 1.2 [112, Definition 3, p. 817] Let Ω be a set in C and q(z) =

a + amz
m + am+1z

m+1 + · · · with q′(z) 6= 0. The class of admissible functions

Ψ′m[Ω, q] consists of functions ψ : C3×U → C satisfying the admissibility condition

ψ(r, s, t; ζ) ∈ Ω whenever r = q(z), s = zq′(z)/k and

Re

(
t

s
+ 1

)
≤ 1

k
Re

(
zq′′(z)

q′(z)
+ 1

)
,

z ∈ U , ζ ∈ ∂U and k ≥ m ≥ 1. Denote by Ψ′[Ω, q] := Ψ′1[Ω, q].

Theorem 1.16 [112, Theorem 1, p. 818] Let ψ ∈ Ψ′m[Ω, q] with q(0) = a. If

p ∈ Q(a) and ψ
(
p(z), zp′(z), z2p′′(z); z

)
is univalent in U , then

Ω ⊂ {ψ
(
p(z), zp′(z), z2p′′(z); z

)
, z ∈ U}

implies q(z) ≺ p(z).
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The monograph by Miller and Mocanu [111] gives a good introduction to the

theory of differential subordination, while the book by Bulboaca [39] investigates

both subordination and superordination. In recent years, the theory of differential

subordination was applied by various authors to deal with many important prob-

lems in the field. Works in this direction include those of [8, 16–20,22,43,208].

In Chapter 6, subordination and superordination results for general linear op-

erators satisfying a certain first-order differential recurrence relation are investi-

gated. By considering an appropriate class of admissible functions, sufficient con-

ditions for the best dominant and the best subordinant are determined. Several

sandwich-type results are obtained. As application of the results obtained, various

examples of differential inequalities and subordinations are presented. Addition-

ally, the admissibility conditions for functions with positive real part are studied.

The results obtained in Chapter 6 unify earlier works in this direction including

those of [8, 16–19,19,20,121].

1.9 Linear Operators

In the theory of univalent functions, a variety of linear and nonlinear integral

operators have been considered. The Alexander operator [4] is defined by

A(f)(z) =

∫ z

0

f(t)

t
dt,

while the Libera operator [94] is defined by

L(f)(z) =
2

z

∫ z

0
f(t)dt.
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The operator given by

Lγ(f)(z) =
1 + γ

zγ

∫ z

0
f(t)tγ−1dt (γ > −1), (1.30)

is called the generalized Bernardi-Libera-Livingston integral operator [98].

One interesting problem in geometric function theory is to determine operators

from A to A which map a given C ⊂ A into itself; in particular, the operators

that preserve the geometric properties of the domain. An example of such results

are those proved by Pascu [145], and Lewandowski et al. [92] as follows.

Theorem 1.17 [92,145] If Lγ : A → A is the integral operator defined by (1.30)

and Re γ ≥ 0, then

(1) Lγ [ST ] ⊂ ST ,

(2) Lγ [CV ] ⊂ CV ,

(3) Lγ [CCV ] ⊂ CCV .

In fact, there is a vast number of articles dealing with integral operators between

classes of analytic functions. Further general operators were studied in the survey

articles by Miller and Mocanu [110] and by Srivastava [189], where a long list of

other references can be found.

For a, b, c ∈ C with c 6= 0,−1,−2, · · · , the Gaussian hypergeometric function

is defined by

F (a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · ,

where the Pochhammer symbol (λ)n is given by (λ)n = λ(λ+1)n−1, (λ)0 = 1. The

series converges absolutely in U . It also converges on |z| = 1 when Re(c−a−b) > 0.
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For Re(c−a−b) > 0, the value of the hypergeometric function F (a, b; c; z) at z = 1

is related to the Gamma function by the Gauss summation formula

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(c 6= 0,−1,−2, · · · ).

The theory of hypergeometric functions developed with many applications and

generalizations after their use by de Branges [37] in the proof of the Bieberbach’s

conjecture. Hohlov [79] applied hypergeometric functions to define a generalized

integral operator by

Ha,b,c(f)(z) := zF (a, b; c; z) ∗ f(z).

Carlson and Shaffer [40] studied this operator in the special case a = 1.

The Hohlov operator reduces to the well-known operators as follows: A(f)(z) :=

H1,1,2(f)(z), L(f)(z) := H1,2,3(f)(z), and Lγ(f)(z) := H1,γ+1,γ+2(f)(z).

Let λ : [0, 1]→ R be a nonnegative function with

∫ 1

0
λ(t)dt = 1.

For f ∈ A, Fournier and Ruscheweyh [53] introduced the general operator Vλ given

by (1.25). Various known integral operators are of the form (1.25) for specific

choices of λ. For example,

λ(t) := (1 + c)tc (c > −1),

gives the Bernardi integral operator, while the choice

λ(t) :=
(a+ 1)p

Γ(p)
ta(log

1

t
)p−1 (a > −1, p ≥ 0),
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yields the Komatu operator [84]. Clearly for p = 1 the Komatu operator is the

Bernardi operator. For a certain choice of λ given by

λ(t) =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
tb−1(1−t)c−a−bF (c− a, 1− a; c− a− b+ 1; 1− t) ,

the integral operator Vλ in (4.1) is the convolution between a function f and

the Gaussian hypergeometric function F (a, b; c; z), which is related to the general

Hohlov operator.

In [21], Ali and Singh generalized the operator (1.25) to the case

Vλ(f)(z) := ρz + (1− ρ)Vλ(f) = z

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z) (ρ < 1).

The order of starlikeness and convexity of the operator Vλ(f) where f ∈ P(β)

defined by (1.24) were obtained by Ali and Singh [21].

In Chapter 4, convexity properties of the integral operator Vλ(f) is investi-

gated over the class Wβ(α, γ) defined by (1.26). As an application of the results

obtained, convexity of various known integral operators for different choices of λ

is investigated. Also, sufficient conditions are obtained that would ensure the in-

tegral operator Vλ(f) over the class Wβ(α, γ) is starlike or convex. The results

obtained extended and improved earlier works by several authors.

Linear operators on the class of normalized analytic functions satisfying a

certain first-order differential recurrence relation are yet another object that will

be discussed in this thesis. Let αk ∈ C (k = 1, 2, · · · , l) and βk ∈ C\Z−0 :=

{0,−1,−2, · · · } (k = 1, 2, · · · , j). The generalized hypergeometric function lFj(α1,
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· · · , αl; β1, · · · , βj ; z) is defined by

lFj(α1, · · · , αl; β1, · · · , βj ; z) :=
∞∑
n=0

(α1)n · · · (αl)n
(β1)n · · · (βj)n

zn

n!
(l ≤ j + 1). (1.31)

Note that the series in (1.31) converges absolutely for |z| <∞ if l < j+ 1, and for

z ∈ U if l = j + 1. Let

w =
m∑
k=1

βk −
l∑

k=1

αk.

The series in (1.31), with l = j+1, is absolutely convergent for |z| = 1 if Rew > 0,

and conditionally convergent for |z| = 1 if −1 < Rew ≤ 0 [193, p. 34].

Let

hm(α1, · · · , αl; β1, · · · , βj ; z) := zm lFj(α1, · · · , αl; β1, · · · , βj ; z).

The convolution operator H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z) : Am → Am was intro-

duced by Dziok and Srivastava [49,190] by means of Hadamard product involving

the generalized hypergeometric functions

H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z) := hm(α1, · · · , αl; β1, · · · , βj ; z) ∗ f(z)

= zm +
∞∑

k=m+1

(α1)k−m · · · (αl)k−m
(β1)k−m · · · (βj)k−m

akz
k

(k −m)!
.

(1.32)

It is known [49] that

α1H
l,j
m (α1 + 1, · · · , αl; β1, · · · , βj ; z)f(z) = z[H

l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z)]′

+(α1 −m)H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z).

(1.33)

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear
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operator [72], the Carlson-Shaffer linear operator [40], the Ruscheweyh derivative

operator [169], the generalized Bernardi-Libera-Livingston linear integral operator

[34,94,98], and the Srivastava-Owa fractional derivative operator [135,137].

The multiplier transformation Ip(n, λ) on Am defined by

Im(n, λ)f(z) := zm +
∞∑

k=m+1

(
k + λ

m+ λ

)n
akz

k (1.34)

satisfies

(m+ λ)Im(n+ 1, λ)f(z) = z[Im(n, λ)f(z)]′ + λIm(n, λ)f(z). (1.35)

Certain important properties of these linear operators depend on the differen-

tial recurrence relation, for example as that given by (1.33) and (1.35). In Chapter

6, a general class consisting of such operators satisfying a certain recurrence re-

lation is introduced. Differential subordination and superordination results for

multivalent functions defined by the general linear operator are obtained. Chapter

6 aims to show that the class of functions defined through each of the general lin-

ear operators can be given a unified treatment. The unified operator includes as

special cases the Dziok-Srivastava operator defined in (1.32) and multiplier trans-

form defined by (1.34) as well as several other operators introduced by various

authors [17–19].

1.10 Scope of the Thesis

This thesis will discuss six research problems. In Chapter 2, general classes of

analytic functions defined by convolution with a fixed analytic function are intro-

duced. Convolution properties of these classes which include the classical classes

of starlike, convex, close-to-convex, and quasi-convex analytic functions are inves-

tigated. These classes are shown to be closed under convolution with prestarlike
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functions and the Bernardi-Libera integral operator. Similar results are also ob-

tained for the classes consisting of meromorphic functions in the punctured unit

disk.

In Chapter 3, a normalized analytic function f is shown to be univalent in

the open unit disk U if its second coefficient is sufficiently small and relates to

its Schwarzian derivative through a certain inequality. New criteria for analytic

functions to be in certain subclasses of functions are established in terms of the

Schwarzian derivatives and the second coefficients. These include obtaining a

sufficient condition for functions to be strongly α-Bazilevič of order β.

In Chapter 4, for λ satisfying a certain admissibility criteria, sufficient condi-

tions are obtained for the integral transform

Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt

to map normalized analytic functions f satisfying

Re eiφ
(

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0

into the class of convex functions. Several interesting applications for different

choices of λ are discussed. In particular, the smallest value β < 1 is obtained that

ensures a function f satisfying Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β is convex.

The aim of Chapter 5 is to determine a sharp bound on β so that an analytic

function f(z) = z +
∑∞
n=2 anz

n satisfying the inequality
∑∞
n=2 n(n − 1)|an| ≤ β

is either starlike or convex of order α. Several other coefficient inequalities related

to certain subclasses are also investigated.

In Chapter 6, a general class consisting of the operators satisfying a certain

first-order differential recurrence relation is introduced. For any operator in this

class, certain second-order differential subordination and superordination impli-
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cations are investigated on analytic functions generated by the operator. Several

sandwich-type results are also obtained. The results obtained unify earlier works.

In the final chapter, radius properties of analytic functions f(z) = z+
∑∞
n=2 anz

n

with fixed second coefficient are investigated, where a2 satisfies |a2| = 2b, 0 ≤ b ≤

1. Sharp radius of Janowski starlikeness and radius constant of L(α, β) are ob-

tained when |an| ≤ cn+ d (c, d ≥ 0) or |an| ≤ c/n (c > 0) for n ≥ 3.
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CHAPTER 2

CONVOLUTION OF ANALYTIC AND MEROMORPHIC

FUNCTIONS

2.1 Introduction and Definitions

The theory of differential subordination has been applied in numerous areas of

univalent function theory. Ma and Minda [102] used differential subordination to

give a unified presentation of various subclasses of starlike and convex analytic

functions.

For 0 ≤ α < 1, let ST (α) and CV(α) be subclasses of A consisting respectively

of starlike functions of order α and convex functions of order α. These functions

are defined analytically by

ST (α) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α

}
,

and

CV(α) :=

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

}
.

Let h be an analytic function in U with positive real part, h(0) = 1, and

h′(0) > 0. Further let h map the unit disk U onto a region starlike with respect

to 1. Ma and Minda [102] introduced the classes

ST (h) =

{
f ∈ A :

zf ′(z)

f(z)
≺ h(z)

}
,

CV(h) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ h(z)

}
, (2.1)

and obtained growth, distortion and covering theorems. For h(z) = (1 + (1 −

2α)z)/(1 − z), 0 ≤ α < 1, ST (h) reduces to the familiar class ST (α) of starlike

functions and CV(h) to the class CV(α) of convex functions.

Let g be a fixed function in A and h be a convex function with positive real
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part in U normalized by h(0) = 1. By using the convex hull method and differential

subordination, Shanmugam [178] introduced and investigated the following classes.

ST (g, h) :=

{
f ∈ A :

z(f ∗ g)′(z)

(f ∗ g)(z)
≺ h(z)

}
,

CV(g, h) :=

{
f ∈ A : 1 +

z(f ∗ g)′′(z)

(f ∗ g)′(z)
≺ h(z)

}
,

CCV(g, h) :=

{
f ∈ A :

z(g ∗ f)′(z)

(g ∗ ψ)(z)
≺ h(z), ψ ∈ ST (g, h)

}
,

QCV(g, h) :=

{
f ∈ A :

z(g ∗ f)′(z)

(g ∗ φ)(z)
≺ h(z), φ ∈ CV(g, h)

}
.

Shanmugam [178] showed that the classes of ST (g, h), CV(g, h), CCV(g, h),

and QCV(g, h) are closed under convolution with convex functions. In particular,

these classes reduce to various subclasses of A for specific choices of g and h. For

instance, for g(z) = z/(1 − z), the classes ST (g, h) and CV(g, h) reduce to the

classes ST (h) and CV(h) defined by (2.1). If g = ka where

ka(z) :=
z

(1− z)a
(a > 0), (2.2)

then ST a(h) := ST (ka, h), CVa(h) := CV(ka, h) and CCVa(h) := CCV(ka, h).

Padmanabhan and Parvatham [144] introduced the classes ST a(h), CVa(h), and

CCVa(h) and investigated convolution properties of these classes. Some other

related studies were also made in [3, 15,35,44,120,121,148,159,198].

Let f , g ∈ A satisfy

Re
zf ′(z)

f(z) + g(z)
> 0, Re

zg′(z)

f(z) + g(z)
> 0.

By adding the two inequalities, it is seen that the function (f(z) + g(z))/2 is

starlike and hence both f and g are close-to-convex and hence univalent. This
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result motivates us to consider the following classes of functions.

It is assumed in the sequel that m ≥ 1 is a fixed integer, g a fixed function

in A, and h a convex univalent function with positive real part in U satisfying

h(0) = 1.

Definition 2.1 The class ST m(h) consists of f̂ := 〈f1, f2, · · · , fm〉, fk ∈ A,

1 ≤ k ≤ m, satisfying
∑m
j=1 fj(z)/z 6= 0 in U and the subordination

mzf ′k(z)∑m
j=1 fj(z)

≺ h(z) (k = 1, · · · ,m). (2.3)

The class ST m(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, · · · , fm ∗

g〉 ∈ ST m(h). The class CVm(h) consists of f̂ for which zf̂ ′ ∈ ST m(h) where

f̂ ′ := 〈f ′1, f
′
2, · · · , f

′
m〉 and zf̂ ′ := 〈zf ′1, zf

′
2, · · · , zf

′
m〉. Equivalently, f̂ ∈ CVm(h)

if f̂ satisfies the condition
∑m
j=1 f

′
j(z) 6= 0 in U and the subordination

m(zf ′k)′(z)∑m
j=1 f

′
j(z)

≺ h(z) (k = 1, · · · ,m).

The class CVm(g, h) consists of f̂ for which f̂ ∗ g ∈ CVm(h).

Now let f̂ ∈ ST m(h) and F (z) = (1/m)
∑m
j=1 fj(z). From (2.3), it follows

that
zf ′k(z)

F (z)
∈ h(U) (k = 1, · · · ,m).

The convexity of h(U) implies that

1

m

z
∑m
k=1 f

′
k(z)

F (z)
∈ h(U), (2.4)

which shows that the function F is starlike in U . Thus, it follows from (2.3)

that the component function fk of f̂ is close-to-convex in U , and hence univalent.

Similarly, the component function fk of f̂ ∈ CVm(h) is also univalent.
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If m = 1, then the classes ST m(g, h) and CVm(g, h) reduced respectively

to ST (g, h) and CV(g, h) introduced and investigated by Shanmugam [178]. If

g = ka where ka is given by (2.2), then the class ST m(g, h) coincides with the class

ST a(h) studied by Padmanabhan and Parvatham [144], and CVm(g, h) reduces

to the class CVa(h) introduced by Padmanabhan and Manjini [143]. It is evident

that the classes ST m(g, h) and CVm(g, h) extend the classical classes of starlike

and convex functions respectively.

Definition 2.2 The class CCVm(h) consists of f̂ := 〈f1, f2, · · · , fm〉, fk ∈ A,

1 ≤ k ≤ m, satisfying the subordination

mzf ′k(z)∑m
j=1 ψj(z)

≺ h(z) (k = 1, · · · ,m),

for some ψ̂ ∈ ST m(h). In this case, we say that f̂ ∈ CCVm(h) with respect

to ψ̂ ∈ ST m(h). The class CCVm(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗

g, f2 ∗ g, · · · , fm ∗ g〉 ∈ CCVm(h). The class QCVm(h) consists of f̂ for which

zf̂ ′ ∈ CCVm(h) or equivalently satisfying the subordination

m(zf ′k)′(z)∑m
j=1 ϕ

′
j(z)

≺ h(z) (k = 1, · · · ,m),

for some ϕ̂ ∈ CVm(h) with zϕ̂′ = ψ̂, ψ̂ ∈ ST m(h). In this case, we say that

f̂ ∈ QCVm(h) with respect to ϕ̂ ∈ CVm(h). The class QCVm(g, h) consists of f̂

for which f̂ ∗ g ∈ QCVm(h).

When m = 1, the class CCVm(g, h) and QCVm(g, h) reduces respectively to

Cg(h) and Qg(h) introduced and investigated by Shanmugam [178]. If g = ka

where ka is defined by (2.2), then the class CCVm(g, h) coincides with CCVa(h)

studied by Padmanabhan and Parvatham [144]. The classes CCVm(g, h) and

QCVm(g, h) extend the classical classes of close-to-convex and quasi convex func-
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tions respectively.

The class of prestarlike functions considered by Ruscheweyh [172] has seen

many applications in convolution results. For α < 1, the class Rα of prestarlike

functions of order α is defined by

Rα :=

{
f ∈ A : f ∗ z

(1− z)2−2α
∈ S∗(α)

}
,

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2.

The well-known result that the classes of starlike functions of order α and

convex functions of order α are closed under convolution with prestarlike functions

of order α follows from the following:

Theorem 2.1 (Theorem 1.12) Let α ≤ 1, φ ∈ Rα and f ∈ ST (α). Then

φ ∗ (Hf)

φ ∗ f
(U) ⊂ co(H(U))

for any analytic function H ∈ H(U), where co(H(U)) denotes the closed convex

hull of H(U).

The following basic theorem on prestarlike functions is required.

Theorem 2.2 [172, Theorem 2.1, p. 49]

(1) Let α ≤ 1. If f, g ∈ Rα, then f ∗ g ∈ Rα.

(2) If α < β ≤ 1, then Rα ⊂ Rβ.

Ruscheweyh [169] showed the following result for a special convex function

which has an interesting convolution property.

Lemma 2.1 [169, Theorem 5, p. 113] Let Re γ ≥ 0, and hγ be defined by

hγ(z) = z +
∞∑
n=2

γ + 1

γ + n
zn.
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If f ∈ CV, then f ∗ hγ ∈ CV. In particular, hγ ∈ CV.

In the following section, by using the methods of convex hull and differential

subordination, convolution properties of functions belonging to the four classes

ST m(g, h), CVm(g, h), CCVm(g, h) and QCVm(g, h) are investigated. It is seen

that various earlier works, for example [3], [35], [44], [120], [148] and [159], are

special instances of this study.

2.2 Convolution of Analytic Functions

The first result shows that the classes ST m(g, h) and CVm(g, h) are closed under

convolution with prestarlike functions.

Theorem 2.3 Let m ≥ 1 be a fixed integer and g be a fixed function in A. Let h

be a convex univalent function satisfying Reh(z) > α, 0 ≤ α < 1, h(0) = 1 and

φ ∈ Rα.

(1) If f̂ ∈ ST m(g, h), then f̂ ∗ φ ∈ ST m(g, h).

(2) If f̂ ∈ CVm(g, h), then f̂ ∗ φ ∈ CVm(g, h).

Proof. (1) It is sufficient to prove that f̂ ∗ φ ∈ ST m(h) whenever f̂ ∈ ST m(h).

Once this is established, the general result for f̂ ∈ ST m(g, h) follows from the fact

that

f̂ ∈ ST m(g, h)⇔ f̂ ∗ g ∈ ST m(h).

For k = 1, 2, · · · ,m, define the functions F and Hk by

F (z) =
1

m

m∑
j=1

fj(z), Hk(z) =
zf ′k(z)

F (z)
.

It will first be proved that F belongs to ST (α). If f̂ ∈ ST m(h) and z ∈ U , then
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by (2.4), F satisfies

zF ′(z)

F (z)
≺ h(z). (2.5)

Since Reh(z) > α, the subordination (2.5) yields

Re

(
zF ′(z)

F (z)

)
> α, (2.6)

and hence F ∈ ST (α).

A computation shows that

z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ fj)(z)

=
(φ ∗ zf ′k)(z)

(φ ∗ 1
m

∑m
j=1 fj)(z)

=
(φ ∗

zf ′k
F
F )(z)

(φ ∗ 1
m

∑m
j=1 fj)(z)

=
(φ ∗HkF )(z)

(φ ∗ F )(z)
.

Since φ ∈ Rα and F ∈ ST (α), Theorem 2.1 yields

(φ ∗HkF )(z)

(φ ∗ F )(z)
∈ co(Hk(U)),

and because Hk(z) ≺ h(z) , we deduce that

z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ fj)(z)

≺ h(z) (k = 1, · · · ,m).

Thus f̂ ∗ φ ∈ ST m(h).

(2) The function f̂ is in CVm(g, h) if and only if zf̂ ′ is in ST m(g, h) and

by the first part above, it follows that φ ∗ zf̂ ′ = z(φ ∗ f̂)′ ∈ ST m(g, h). Hence

φ ∗ f̂ ∈ CVm(g, h).

Remark 2.1 For φ ∈ Rα, the above theorem can be expressed in the following
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equivalent forms:

ST m(g, h) ⊂ ST m(φ ∗ g, h), CVm(g, h) ⊂ CVm(φ ∗ g, h).

When m = 1, various known results are obtained as special cases of Theorem

2.3. For instance, Theorem 3.3 and Corollary 3.1 in [178, p. 336] are easily deduced

from Theorem 2.3 as follows:

Corollary 2.1 Let g be a fixed function in A. Let h be a convex univalent function

satisfying Reh(z) > 0, h(0) = 1 and φ ∈ CV.

(1) If f ∈ ST (g, h), then φ ∗ f ∈ ST (g, h).

(2) If f ∈ CV(g, h), then φ ∗ f ∈ CV(g, h).

Proof. From (1.23) in page 19, it follows that CV = R0. By Theorem 2.2 (2),

for 0 ≤ α < 1, R0 ⊂ Rα, and hence CV ⊂ Rα. Then part (1) is deduced from

Theorem 2.3 (1), while part (2) follows from Theorem 2.3 (2) when m = 1.

For g(z) = ka where ka is defined by (2.2), then Theorem 2.3 reduces to

Theorem 4 and Corollary 4.1 in [143, pp. 110-111].

Corollary 2.2 Let h be a convex univalent function satisfying Reh(z) > 0, h(0) =

1, and φ ∈ CV.

(1) If f ∈ ST a(h), then φ ∗ f ∈ ST a(h).

(2) If f ∈ CVa(h), then φ ∗ f ∈ CVa(h).

Proof. If g(z) = ka where ka is defined by (2.2), then part (1) follows from Theorem

2.3 (1), and part (2) follows from Theorem 2.3 (2) when m = 1.
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Corollary 2.3 Let m ≥ 1 be a fixed integer and g be a fixed function in A. Let h

be a convex univalent function satisfying Reh(z) > α, 0 ≤ α < 1. Define

Fk(z) =
γ + 1

zγ

∫ z

0
tγ−1fk(t)dt (γ ∈ C, Re γ ≥ 0, k = 1, · · · ,m). (2.7)

If f̂ ∈ ST m(g, h), then F̂ = 〈F1, · · · , Fm〉 ∈ ST m(g, h). Similarly, if f̂ ∈

CVm(g, h), then F̂ ∈ CVm(g, h).

Proof. Define the function φ by

φ(z) = hγ(z) = z +
∞∑
n=2

γ + 1

γ + n
zn.

For Re γ ≥ 0, by Lemma 2.1, the function φ is a convex function. Since CV = R0

by (1.23), it follows that φ ∈ R0. Theorem 2.2 (2) shows that R0 ⊂ Rα for

0 ≤ α < 1, and hence φ ∈ Rα. It is evident from the definition of Fk that

Fk(z) =
γ + 1

zγ

∫ z

0
tγ−1fk(t)dt

=
γ + 1

zγ

∫ z

0
tγ−1

(
t+

∞∑
n=2

ant
n

)
dt

= z +
∞∑
n=2

γ + 1

n+ γ
anz

n

= fk(z) ∗

(
z +

∞∑
n=2

γ + 1

γ + n
zn

)

= (fk ∗ φ)(z) (γ ∈ C, Re γ ≥ 0, k = 1, · · · ,m),

so that F̂ = f̂ ∗ φ. By Theorem 2.3 (1), it follows that F̂ = f̂ ∗ φ ∈ ST m(g, h).

The second result is proved in a similar manner.

Corollary 2.4 [144, Theorem 2, p. 324] Let h be a convex univalent function

satisfying Reh(z) > 0, h(0) = 1. If f ∈ ST a(h), then F ∈ ST a(h) where F is

given by (2.7).
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Proof. With g(z) = ka(z) defined by (2.2), desired result follows from Corollary

2.3 when m = 1.

Theorem 2.4 Let m ≥ 1 be a fixed integer and g be a fixed function in A. Let h

be a convex univalent function satisfying Reh(z) > α, 0 ≤ α < 1, and φ ∈ Rα.

(1) If f̂ ∈ CCVm(g, h) with respect to ψ̂ ∈ ST m(g, h), then f̂ ∗ φ ∈ CCVm(g, h)

with respect to ψ̂ ∗ φ ∈ ST m(g, h).

(2) If f̂ ∈ QCVm(g, h) with respect to ϕ̂ ∈ CVm(g, h), then f̂ ∗ φ ∈ QCVm(g, h)

with respect to ϕ̂ ∗ φ ∈ CVm(g, h).

Proof. (1) In view of the fact that

f̂ ∈ CCVm(g, h)⇔ f̂ ∗ g ∈ CCVm(h),

we shall only prove that f̂ ∗ φ ∈ CCVm(h) when f̂ ∈ CCVm(h). Let f̂ ∈ CCVm(h).

For k = 1, 2, · · · ,m, define the functions F and Hk by

F (z) =
1

m

m∑
j=1

ψj(z), Hk(z) =
zf ′k(z)

F (z)
.

Since ψ̂ ∈ ST m(h), it is evident from (2.6) that F ∈ ST (α).

That ψ̂ ∗ φ ∈ ST m(h) follows from Theorem 2.3 (1). Now, a computation

shows that

z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ ψj)(z)

=
(φ ∗ zf ′k)(z)

(φ ∗ 1
m

∑m
j=1 ψj)(z)

=
(φ ∗HkF )(z)

(φ ∗ F )(z)
.

Since φ ∈ Rα and F ∈ ST (α), Theorem 2.1 yields

(φ ∗HkF )(z)

(φ ∗ F )(z)
∈ co(Hk(U)),
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and because Hk(z) ≺ h(z), it follows that

z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ ψj)(z)

≺ h(z) (k = 1, · · · ,m).

Thus f̂ ∗ φ ∈ CCVm(h).

(2) The function f̂ is in QCVm(g, h) if and only if zf̂ ′ is in CCVm(g, h) and by

the first part, clearly φ∗ zf̂ ′ = z(φ∗ f̂)′ ∈ CCVm(g, h). Hence φ∗ f̂ ∈ QCVm(g, h).

Again when m = 1, known results are obtained as special cases of Theorem 2.4.

For instance, [178, Theorem 3.5, p. 337] follows from Theorem 2.4 (1), and [178,

Theorem 3.9, p. 339] is a special case of Theorem 2.4 (2). Indeed, the following

result was proved by Shanmugam [178].

Corollary 2.5 Let g be a fixed function in A. Let h be a convex univalent function

satisfying Reh(z) > 0, h(0) = 1 and φ ∈ CV.

(1) If f̂ ∈ CCV(g, h) with respect to ψ̂ ∈ ST (g, h), then f̂ ∗ φ ∈ CCV(g, h) with

respect to ψ̂ ∗ φ ∈ ST g, h).

(2) If f̂ ∈ QCV(g, h) with respect to ϕ̂ ∈ CV(g, h), then f̂ ∗ φ ∈ QCV(g, h) with

respect to ϕ̂ ∗ φ ∈ CV(g, h).

Proof. In view of the fact that CV = R0, and by Theorem 2.2 (2), for 0 ≤ α < 1,

φ ∈ R0 ⊂ Rα. When m = 1, the first part follows from Theorem 2.4 (1), and the

second part is a special case of Theorem 2.4 (2).

As an application of Theorem 2.4, the following result shows that the class

CCVm(g, h) is closed under Bernardi-Libera-Livingston integral transform.

Corollary 2.6 Let m ≥ 1 be a fixed integer and g be a fixed function in A. Let

h be a convex univalent function satisfying Reh(z) > α, 0 ≤ α < 1. Let Fk

46



be the Bernardi-Libera-Livingston integral transform of fk defined by (2.7). If

f̂ ∈ CCVm(g, h), then F̂ = 〈F1, · · · , Fm〉 ∈ CCVm(g, h).

The proof is similar to the proof of Corollary 2.3, and is therefore omitted.

Corollary 2.7 [144, Theorem 4, p. 326] Let h be a convex univalent function

satisfying Reh(z) > 0, h(0) = 1. Let F be the Bernardi-Libera-Livingston integral

transform of f defined by (2.7). If f ∈ CCVa(h), then F ∈ CCVa(h).

Proof. Choose g(z) = ka(z) defined by (2.2) in Corollary 2.6.

2.3 Convolution of Meromorphic Functions

Let Σ denote the class of functions f of the form

f(z) =
1

z
+
∞∑
n=0

anz
n (2.8)

that are analytic in the punctured unit disk U∗ := {z : 0 < |z| < 1}. The

convolution of two meromorphic functions f and g, where f is given by (2.8) and

g(z) = 1
z +

∑∞
n=0 bnz

n, is given by

(f ∗ g)(z) :=
1

z
+
∞∑
n=0

anbnz
n.

In this section, several subclasses of meromorphic functions in the punctured

unit disk are introduced by means of convolution with a given fixed meromorphic

function. Convolution properties of these newly defined subclasses will be investi-

gated. Simple consequences of the results obtained will include the work of Bharati

and Rajagopal [35] involving the function ka(z) := 1/(z(1 − z)a), a > 0, as well

as the work of Al-Oboudi and Al-Zkeri [3] on the modified Salagean operator.

Motivated by the investigation of Shanmugam [178], Ravichandran [159], and

Ali et al. [15], several subclasses of meromorphic functions defined my means of
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the differential subordinations were introduced by Mohd et al. [120]. For instance,

the familiar classes of meromorphic starlike and convex functions and other related

subclasses of meromorphic functions can be put in the form

Σst(g, h) :=

{
f ∈ Σ : −z(f ∗ g)′(z)

(f ∗ g)(z)
≺ h(z)

}
,

Σcv(g, h) :=

{
f ∈ Σ : −(z(f ∗ g)′)′(z)

(f ∗ g)(z)
≺ h(z)

}
,

where g is a fixed function in Σ and h is a suitably normalized analytic function

with positive real part. The class of meromorphic starlike functions of order α,

0 ≤ α < 1, defined by

Σst :=

{
f ∈ Σ : −Re

zf ′(z)

f(z)
> α

}

is a particular case of Σst(g, h) with g(z) = 1/z(1 − z) and h(z) = (1 + (1 −

2α)z)/(1− z).

Let

pµ(z) :=
1

z(1− z)µ
, qβ,λ(z) :=

1

z
+
∞∑
k=0

(
λ

k + 1 + λ

)β
zk. (2.9)

Now for β ≥ 0, λ > 0, µ > 0, define the linear operator Iβλ,µ : Σ→ Σ by

Iβλ,µf(z) = (f ∗ pµ ∗ qβ,λ)(z),

where f is given by (2.8). The functions g1, g2, · · · , gm are in the class Σ
β
λ,µ(m,h)

if they satisfy the subordination condition

−
z(Iβλ,µgk(z))′

1
m

∑m
j=1 I

β
λ,µgj(z)

≺ h(z) ( z ∈ U∗, k = 1, 2, · · · ,m). (2.10)
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The class Σ
β
λ,µ(m,h) was investigated by Piejko and Sokó l [148].

Al-Oboudi generalized the known Sălăgean operator and defined the operator

Dn
λf for meromorphic functions as follows;

D0
λf(z) = f(z), D1

λf(z) = (1− λ)f(z) + λ
(z2f(z))′

z
, λ ≥ 0, and

Dn
λf(z) = DλD

n−1
λ f(z) = (1− λ)Dn−1

λ f(z) + λ
(z2Dn−1

λ f(z))′

z
(n ∈ N).

Al-Oboudi and Al-Zkeri [3] applied this operator and introduced the subclasses

Σ(m,n, λ, h) and Q(m,n, λ, h) of Σ. The function f = {f1, f2, · · · , fm}, fi ∈ Σ,

1 ≤ i ≤ m is in the class Σ(m,n, λ, h) if

−
z(Dn

λfi(z))′

1
m

∑m
j=1D

n
λfj(z)

≺ h(z) (z ∈ U∗, i = 1, · · · ,m) (2.11)

where h is convex univalent in U∗ with h(0) = 1. Let Q(m,n, λ, h) denote the

class of functions f ∈ Σ such that

−
z(Dn

λf(z))′

1
m

∑m
j=1D

n
λgj(z)

≺ h(z) (z ∈ U∗) (2.12)

where g = {g1, g2, · · · , gm} ∈ Σ(m,n, λ, h).

The class Σ(m, a, h) consists of functions g = {g1, g2, · · · , gm}, gi ∈ Σ, 1 ≤

i ≤ m satisfying

− z(ka ∗ gi)′(z)
1
m

∑m
j=1(ka ∗ gj)(z)

≺ h(z) (z ∈ U∗, i = 1, 2, · · · ,m) (2.13)

where
∑m
j=1(ka ∗ gj)(z) 6= 0 in U∗, h is convex univalent in U∗ with h(0) = 1, and

ka is given by

ka(z) :=
1

z(1− z)a
(a > 0). (2.14)
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Let C∗(m, a, h) denote the class of functions f ∈ Σ such that

− z(ka ∗ f)′(z)
1
m

∑m
j=1(ka ∗ gj)(z)

≺ h(z) (z ∈ U∗, i = 1, 2, · · · ,m) (2.15)

where g = {g1, g2, · · · , gm} ∈ Σ(m, a, h). The classes Σ(m, a, h) and C∗(m, a, h)

were studied by Bharati and Rajagopal [35].

Here four classes Σstm(g, h), Σcvm(g, h), Σccvm (g, h) and Σ
qcv
m (g, h) of meromorphic

functions are introduced. As before, it is assumed that m ≥ 1 is a fixed integer, g

a fixed function in Σ, and h a convex univalent function with positive real part in

U satisfying h(0) = 1.

Definition 2.3 The class Σstm(h) consists of f̂ := 〈f1, f2, · · · , fm〉, fk ∈ Σ, 1 ≤

k ≤ m, satisfying
∑m
j=1 fj(z) 6= 0 in U∗ and the subordination

−
mzf ′k(z)∑m
j=1 fj(z)

≺ h(z) (k = 1, · · · ,m).

The class Σstm(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, · · · , fm ∗ g〉 ∈

Σstm(h). The class Σcvm(h) consists of f̂ for which −zf̂ ′ ∈ Σstm(h) or equivalently

satisfying the condition
∑m
j=1 f

′
j(z) 6= 0 in U∗ and the subordination

−
m(zf ′k)′(z)∑m
j=1 f

′
j(z)

≺ h(z) (k = 1, · · · ,m).

The class Σcvm(g, h) consists of f̂ for which f̂ ∗ g ∈ Σcvm(h).

Various subclasses of meromorphic functions investigated in earlier works are

special instances of the above defined classes. For instance, if g(z) := 1/z(1− z),

then Σstm(g, h) coincides with Σstm(h). By putting g = pµ ∗ qβ,λ where pµ and qβ,λ

are given by (2.9), the class Σstm(g, h) reduces to the class Σ
β
λ,µ(m,h) given by
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(2.10) investigated in [148]. If g = kn where

kn(z) :=
1

z
+
∞∑
k=1

[1 + λ(k + 1)]nzk, (2.16)

then the class of Σstm(g, h) is the class Σ(m,n, λ, h) given by (2.11) studied in [3].

If g = ka is given by (2.14), then the class Σstm(g, h) coincides with Σ(m, a, h) given

by (2.13) investigated in [35].

Definition 2.4 The class Σccvm (h) consists of f̂ := 〈f1, f2, · · · , fm〉, fk ∈ Σ, 1 ≤

k ≤ m, satisfying the subordination

−
mzf ′k(z)∑m
j=1 ψj(z)

≺ h(z) (k = 1, · · · ,m),

for some ψ̂ ∈ Σstm(h). In this case, we say that f̂ ∈ Σccvm (h) with respect to

ψ̂ ∈ Σstm(h). The class Σccvm (g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗

g, · · · , fm∗g〉 ∈ Σccvm (h). The class Σ
qcv
m (h) consists of f̂ for which −zf̂ ′ ∈ Σccvm (h)

or equivalently satisfying the subordination

−
m(zf ′k)′(z)∑m
j=1 ϕ

′
j(z)

≺ h(z) (k = 1, · · · ,m),

for some ϕ̂ ∈ CVm(h) with −zϕ̂′ = ψ̂ and ψ̂ ∈ ST m(h). The class Σ
qcv
m (g, h)

consists of f̂ for which f̂ ∗ g ∈ Σ
qcv
m (h).

If g(z) := 1/z(1 − z), then Σccvm (g, h) coincides with Σccvm (h). If g(z) = kn(z)

is defined by (2.16), then Σccvm (g, h) reduces to Q(m,n, λ, h) defined by (2.12) and

investigated in [3]. If g(z) = ka(z) is defined by (2.14), then the class Σccvm (g, h) is

the class C∗(m, a, h) defined by (2.15) and studied in [35].

The following modification of Theorem 2.1 is required in the sequel.
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Theorem 2.5 Let α ≤ 1, f, φ ∈ Σ, z2φ ∈ Rα and z2f ∈ S∗(α). Then, for any

analytic function H ∈ H(U),

φ ∗ (Hf)

φ ∗ f
(U) ⊂ co(H(U)).

Theorem 2.6 Assume that m ≥ 1 is a fixed integer and g is a fixed function in

Σ. Let h be a convex univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1,

h(0) = 1, and φ ∈ Σ with z2φ ∈ Rα.

(1) If f̂ ∈ Σstm(g, h), then f̂ ∗ φ ∈ Σstm(g, h).

(2) If f̂ ∈ Σcvm(g, h), then f̂ ∗ φ ∈ Σcvm(g, h).

Proof. (1) Since

f̂ ∈ Σstm(g, h)⇔ f̂ ∗ g ∈ Σstm(h),

it suffices to prove the result for g(z) = 1/z(1− z). For k = 1, 2, · · · ,m, define the

functions F and Hk by

F (z) =
1

m

m∑
j=1

fj(z), Hk(z) = −
zf ′k(z)

F (z)
.

We show that F satisfies the condition z2F ∈ ST (α). For f̂ ∈ Σstm(h) and

z ∈ U , clearly

Hk(z) = −
zf ′k(z)

F (z)
∈ h(U) (k = 1, · · · ,m).

Since h(U) is a convex domain, it follows that

− 1

m

m∑
k=1

zf ′k(z)

F (z)
∈ h(U),

or

−zF
′(z)

F (z)
≺ h(z). (2.17)
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Since Reh(z) < 2− α, the subordination (2.17) yields

−Re

(
zF ′(z)

F (z)

)
< 2− α,

and thus

Re

(
z(z2F )′(z)

z2F (z)

)
= Re

zF ′(z)

F (z)
+ 2 > α. (2.18)

Inequality (2.18) shows that z2F ∈ ST (α).

A routine computation now gives

− z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ fj)(z)

=
(φ ∗ (−zf ′k))(z)

(φ ∗ 1
m

∑m
j=1 fj)(z)

=
(φ ∗HkF )(z)

(φ ∗ F )(z)
.

Since z2φ ∈ Rα and z2F ∈ ST (α), Theorem 2.5 yields

(φ ∗HkF )(z)

(φ ∗ F )(z)
∈ co(Hk(U)),

and because Hk(z) ≺ h(z), it is clear that

− z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ fj)(z)

≺ h(z) (k = 1, · · · ,m).

Thus f̂ ∗ φ ∈ Σstm(h).

(2) The function f̂ is in Σcvm(g, h) if and only if −zf̂ ′ is in Σstm(g, h) and the

result of part (1) shows that φ ∗ (−zf̂ ′) = −z(φ ∗ f̂)′ ∈ Σstm(g, h). Hence φ ∗ f̂ ∈

Σkm(g, h).

Remark 2.2 Let h be a convex univalent function satisfying Reh(z) < 2 − α,

0 ≤ α < 1, and φ ∈ Σ with z2φ ∈ Rα. The above theorem can be written in the
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following equivalent forms:

Σstm(g, h) ⊂ Σstm(φ ∗ g, h), Σcvm(g, h) ⊂ Σcvm(φ ∗ g, h).

Corollary 2.8 [148, Theorem 6, p. 1265] Let h be a convex univalent function

satisfying Reh(z) < 2, and φ ∈ Σ with z2φ ∈ CV. If f1, f2, · · · , fm ∈ Σ
β
λ,µ(m,h),

then f1 ∗ φ, f2 ∗ φ, · · · , fm ∗ φ ∈ Σ
β
λ,µ(m,h).

Proof. By Theorem 2.2 (2), for 0 ≤ α < 1, z2φ ∈ Rα. If g(z) = pµ ∗qβ,λ is defined

by (2.14), then the desired result follows from Theorem 2.6 (1).

Corollary 2.9 Assume that m ≥ 1 is a fixed integer and g is a fixed function in

Σ. Let h be a convex univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1.

Define

Fk(z) =
γ + 1

zγ+2

∫ z

0
tγ+1fk(t)dt (γ ∈ C, Re γ ≥ 0, k = 1, · · · ,m). (2.19)

If f̂ ∈ Σstm(g, h) , then F̂ = 〈F1, · · · , Fm〉 ∈ Σstm(g, h). Similarly, if f̂ ∈ Σcvm(g, h),

then F̂ ∈ Σcvm(g, h).

Proof. Define the function φ by

φ(z) =
1

z
+
∞∑
n=0

γ + 1

γ + 2 + n
zn.

For Re γ ≥ 0, by Lemma 2.1, the function z2φ(z) is a convex function. Since

CV = R0, and Theorem 2.2 (2) shows that R0 ⊂ Rα for 0 ≤ α < 1, hence
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z2φ(z) ∈ Rα. It is evident from the definition of Fk that

Fk(z) =
γ + 1

zγ+2

∫ z

0
tγ+1fk(t)dt

=
γ + 1

zγ+2

∫ z

0
tγ+1

(
1

t
+
∞∑
n=0

ant
n

)
dt

=
1

z
+
∞∑
n=0

γ + 1

γ + 2 + n
zn

= (fk ∗ φ)(z) (γ ∈ C, Re γ ≥ 0, k = 1, · · · ,m),

so that F̂ = f̂ ∗ φ. By Theorem 2.6 (1), it follows that F̂ = f̂ ∗ φ ∈ Σstm(g, h).

The second result is established analogously.

Again we take note of how our results extend various earlier works.

Corollary 2.10 [44, Proposition 2, p. 512] Let h be a convex univalent func-

tion satisfying Reh(z) < γ + 1, γ > 0. If f1, f2, · · · , fm ∈ Σ
β
λ,µ(m,h), then

F1, F2, · · · , Fm ∈ Σ
β
λ,µ(m,h) where Fk is given by (2.19).

Proof. Choose g(z) = pµ ∗ qβ,λ defined by (2.14), the result follows from Corollary

2.9.

Corollary 2.11 [35, Theorem 2, p. 11] Let h be a convex univalent function sat-

isfying Reh(z) < Re γ + 2. If f1, f2, · · · , fm ∈ Σ(m, a, h), then F1, F2, · · · , Fm ∈

Σ(m, a, h) where Fk is given by (2.19).

Proof. Choose g(z) = kn(z) defined by (2.16), Corollary 2.9 yields the desired

result.

Theorem 2.7 Assume that m ≥ 1 is a fixed integer and g is a fixed function in

Σ. Let h be a convex univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1,

and φ ∈ Σ with z2φ ∈ Rα.
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(1) If f̂ ∈ Σccvm (g, h) with respect to ψ̂ ∈ Σstm(g, h), then f̂ ∗ φ ∈ Σccvm (g, h) with

respect to ψ̂ ∗ φ ∈ Σstm(g, h).

(2) If f̂ ∈ Σ
qcv
m (g, h) with respect to ϕ̂ ∈ Σcvm(g, h), then f̂ ∗ φ ∈ Σ

qcv
m (g, h) with

respect to ϕ̂ ∗ φ ∈ Σcvm(g, h).

Proof. (1) By using

f̂ ∈ Σccvm (g, h)⇔ f̂ ∗ g ∈ Σccvm (h),

it is sufficient to prove that f̂ ∗ φ ∈ Σccvm (h) when f̂ ∈ Σccvm (h). Let f̂ ∈ Σccvm (h).

For k = 1, 2, · · · ,m, define the functions F and Hk by

F (z) =
1

m

m∑
j=1

ψj(z), Hk(z) = −
zf ′k(z)

F (z)
.

Inequality (2.18) shows that z2F ∈ ST (α).

It is seen that

− z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ ψj)(z)

=
(φ ∗ (−zf ′k))(z)

(φ ∗ 1
m

∑m
j=1 ψj)(z)

=
(φ ∗HkF )(z)

(φ ∗ F )(z)
.

Since z2φ ∈ Rα and z2F ∈ ST (α), Theorem 2.5 yields

(φ ∗HkF )(z)

(φ ∗ F )(z)
∈ co(Hk(U)),

and because Hk(z) ≺ h(z), it follows that

− z(φ ∗ fk)′(z)
1
m

∑m
j=1(φ ∗ ψj)(z)

≺ h(z) (k = 1, · · · ,m).

Thus f̂ ∗ φ ∈ Σccvm (h).
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(2) The function f̂ is in Σ
qcv
m (g, h) if and only if −zf̂ ′ is in Σccvm (g, h) and from

the first part above, it follows that φ ∗ (−zf̂ ′) = −z(φ ∗ f̂)′ ∈ Σccvm (g, h). Hence

φ ∗ f̂ ∈ Σ
qcv
m (g, h).

The following corollary shows that the class Σccvm (g, h) is closed under the

Bernardi-Libera-Livingston integral operator.

Corollary 2.12 Assume that m ≥ 1 is a fixed integer and g is a fixed function in

Σ. Let h be a convex univalent function satisfying Reh(z) < 2−α, 0 ≤ α < 1. Let

Fk be defined by (2.19). If f̂ ∈ Σccvm (g, h), then F̂ = 〈F1, · · · , Fm〉 ∈ Σccvm (g, h).

The proof is analogous to Corollary 2.3 and is omitted.

Corollary 2.13 [3, Theorem 3.1,p. 9] Let h be a convex univalent function sat-

isfying Reh(z) < Re γ + 2. Let F be defined by (2.19). If f ∈ Q(m,n, λ, h), then

F ∈ Q(m,n, λ, h).

Proof. Let g(z) = kn(z) be defined by (2.16). Then the desired result now follows

from Corollary 2.12.

Corollary 2.14 Let h be a convex univalent function satisfying Reh(z) < Re γ+2.

Let F be defined by (2.19). If f ∈ C∗(m, a, h), then F ∈ C∗(m, a, h).

Proof. By choosing g(z) = ka(z) defined by (2.14). Then the result follows from

Corollary 2.12.
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CHAPTER 3

GRONWALL’S INEQUALITY AND INCLUSION CRITERIA FOR

SUBCLASSES OF FUNCTIONS

3.1 Introduction

The Schwarzian derivative of analytic functions has important invariant properties.

We recall that the Schwarzian derivative S(f, z) of a locally univalent analytic

function f is defined by

S(f, z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

The Schwarzian derivative is invariant under Möbius transformations. Indeed, the

Schwarzian derivative of an analytic function f is identically zero if and only if it

is a Möbius transformation [48, p. 259].

Nehari showed that the univalence of an analytic function in U can be guaran-

teed if its Schwarzian derivative is dominated by a suitable positive function [124,

Theorem I, p. 700]. In [123], by considering two particular positive functions, a

bound on the Schwarzian derivative was obtained that would ensure univalence of

an analytic function in A. In fact, the following theorem was proved.

Theorem 3.1 [123, Theorem II, p. 549] If f ∈ A satisfies

|S(f, z)| ≤ π2

2
(z ∈ U),

then f ∈ S. The result is sharp for the function f given by f(z) = (exp(iπz) −

1)/iπ.

The problem of finding similar bounds on the Schwarzian derivatives that

would imply univalence, starlikeness or convexity of functions was investigated by
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a number of authors including Gabriel [55], Friedland and Nehari [54], and Ozaki

and Nunokawa [139]. Corresponding results related to meromorphic functions were

dealt with in [55,68,123,149]. For instance, Kim and Sugawa [80] found sufficient

conditions in terms of the Schwarzian derivative for locally univalent meromorphic

functions in the unit disk to possess specific geometric properties such as starlike-

ness and convexity. The method of proof in [80] was based on comparison theorems

in the theory of ordinary differential equations with real coefficients.

For 0 < α ≤ 1, let SST (α) be the subclass of A consisting of functions f

satisfying the inequality

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ απ

2
.

Functions in SST (α) are called strongly starlike functions of order α. Chiang [41]

investigated strong-starlikeness of order α and convexity of functions f by requiring

the Schwarzian derivative S(f, z) and the second coefficient a2 of f to satisfy

certain inequalities. The following results were proved:

Theorem 3.2 [41, Theorem 1, pp. 108-109] Let f ∈ A, 0 < α ≤ 1 and |a2| =

η < sin(απ/2). Suppose

sup
z∈U
|S(f, z)| = 2δ(η), (3.1)

where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
.

Then f ∈ SST (α). Further, | arg(f(z)/z)| ≤ απ/2.

Theorem 3.3 [41, Theorem 2, p. 109] Let f ∈ A, and |a2| = η < 1/3. Suppose
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(3.1) holds where δ(η) satisfies the inequality

6η + 5(1 + η)δeδ/2 < 2.

Then

f ∈ CV

(
2− 6η − 5(1 + η)δeδ/2

2− 2η − (1 + η)δeδ/2

)
.

In particular, if a2 = 0 and 2δ ≤ 0.6712, then f ∈ CV.

Chiang’s proofs in [41] rely on Gronwall’s inequality (see Lemma 3.1 below). In

this chapter, Gronwall’s inequality is used to obtain sufficient conditions for ana-

lytic functions to be univalent. Also, certain inequalities related to the Schwarzian

derivative and the second coefficient will be formulated that ensure analytic func-

tions possess certain geometric properties. The sufficient conditions for convexity

obtained by Chiang [41] will be seen to be a special case of our result. A suffi-

cient condition in terms of the Schwarzian derivative and the second coefficient for

function f to be starlike will also be obtained.

3.2 Consequences of Gronwall’s Inequality

Gronwall’s inequality and certain relationships between the Schwarzian derivative

of f and the solution of the linear second-order differential equation y′′+A(z)y = 0

with A(z) := S(f ; z)/2 will be revisited in this section. We first state Gronwall’s

inequality.

Lemma 3.1 [71, p. 19] Suppose A and g are non-negative continuous real func-

tions for t ≥ 0. Let k > 0 be a constant. Then the inequality

g(t) ≤ k +

∫ t

0
g(s)A(s)ds
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implies

g(t) ≤ k exp

(∫ t

0
A(s)ds

)
(t > 0).

For the linear second-order differential equation

y′′ + A(z)y = 0 (3.2)

where A(z) := S(f ; z)/2 is an analytic function, suppose that u and v are two

linearly independent solutions with initial conditions u(0) = v′(0) = 0 and u′(0) =

v(0) = 1. Such solutions always exist, and y1(z) = au(z) + bv(z) and y2(z) =

cu(z) + dv(z) with ad − bc 6= 0 and the ratio f(z) = y1(z)/y2(z) satisfy (3.2).

Indeed, the logarithmic derivative of

f ′(z) =
y′1(z)y2(z)− y′2(z)y1(z)

y2
2(z)

=
1

y2
2(z)

is

f ′′(z)

f ′(z)
= −

2y′2(z)

y2(z)
.

Hence,

S(f ; z) =

(
−

2y′2(z)

y2(z)

)′
− 1

2

(
−

2y′2(z)

y2(z)

)2

= 2A(z).

Thus, f can be defined by

f(z) =
au(z) + bv(z)

cu(z) + dv(z)
.

The normalization of f gives a = 1 and b = 0. Since f ′(0) = 1, so d = 1. Hence

the function f is represented by

f(z) =
u(z)

cu(z) + v(z)
. (3.3)
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It is evident that

f ′(z) =
u′(z)v(z)− v′(z)u(z)(

cu(z) + v(z)
)2

= − W(u, v)(
cu(z) + v(z)

)2 =
1(

cu(z) + v(z)
)2 , (3.4)

where W(u, v) is the Wronskian of u and v. Also, the function f ′′ given by

f ′′(z) =
−2
(
cu′(z) + v′(z)

)(
cu(z) + v(z)

)3
together with the normalization conditions for u and v show that c = −a2. Es-

timates on bounds for various expressions related to u and v were found in [41].

Indeed, using the integral representation of the fundamental solutions

u(z) = z +
∫ z

0 (η − z)A(η)u(η)dη,

v(z) = 1 +
∫ z

0 (η − z)A(η)v(η)dη,

(3.5)

and applying Gronwall’s inequality, Chiang obtained the following inequalities [41]:

|u(z)| < eδ/2, (3.6)∣∣∣∣u(z)

z
− 1

∣∣∣∣ < 1

2
δeδ/2, (3.7)

|cu(z) + v(z)| < (1 + η)eδ/2, (3.8)

|cu(z) + v(z)− 1| < η +
1

2
(1 + η)δeδ/2. (3.9)

The proof of these inequalities follows by taking the path of integration to be

η(t) = teiθ, t ∈ [0, r], z = reiθ, and applying Gronwall’s inequality whenever
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|A(z)| < δ and 0 < r < 1. For instance,

|u(z)| =
∣∣∣∣z +

∫ z

0
(η − z)A(η)u(η)dη

∣∣∣∣
≤ 1 +

∫ r

0
(r − t)|A(teiθ)| |u(teiθ)|dt

≤ exp(

∫ r

o
(r − t)|A(teiθ)|dt) ≤ exp(δ/2).

This proves inequality (3.6). Note that there was a typographical error in [41,

inequality (8), p. 112], and that inequality (3.7) is the right form. Substituting

(3.6) back into (3.5) yields

|u(z)− z| =
∣∣∣∣∫ z

0
(η − z)A(η)u(η)dη

∣∣∣∣
≤
∫ r

0
(r − t)|A(teiθ)| |u(teiθ)|dt

≤ δ exp(δ/2)

∫ r

o
(r − t)dt

= δ exp(δ/2)
r2

2
< δ exp(δ/2)/2.

Hence inequality (3.7) holds. From (3.5), it follows that

cu(z) + v(z) = 1 + cz +

∫ z

0
(ζ − z)A(ζ)(cu(ζ) + v(ζ))dζ, (3.10)

and therefore

|cu(z) + v(z)| ≤ 1 + |c|r +

∫ r

0
(r − t)|A(teiθ)| |(cu(teiθ) + v(teiθ))|dt.

Gronwall’s inequality shows that, whenever |A(z)| < δ and 0 < r < 1,

|cu(z) + v(z)| < (1 + |c|) exp

(∫ r

0
(r − t)|A(teiθ)|dt

)
< (1 + |c|) exp(δ/2). (3.11)
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This proves inequality (3.8). If (3.11) is substituted back into (3.10), then

|cu(z) + v(z)− 1| ≤ |c|r +

∫ r

0
(r − t)|A(teiθ)||(cu(teiθ) + v(teiθ))|dt

< η + (1 + η)δ exp(δ/2)

∫ r

0
(r − t)dt

< η + (1 + η)δ
exp(δ/2)

2
.

Therefore, inequality (3.9) holds.

3.3 Inclusion Criteria for Subclasses of Analytic Functions

The first result leads to sufficient conditions for univalence.

Theorem 3.4 Let 0 < α ≤ 1, 0 ≤ β < 1, f ∈ A and |a2| = η, where α, β and η

satisfy

sin−1 (β(1 + η)2)+ 2 sin−1 η <
απ

2
. (3.12)

Suppose (3.1) holds where δ(η) satisfies the inequality

sin−1 (β(1 + η)2eδ
)

+ 2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
. (3.13)

Then | arg(f ′(z)− β)| ≤ απ/2.

Proof. It is evident that

lim
δ→0

(
sin−1 (β(1 + η)2eδ

)
+ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

))

= sin−1 (β(1 + η)2)+ 2 sin−1 η.

Let ε = (απ/2)− (sin−1
(
β(1 + η)2

)
+ 2 sin−1 η). From (3.12) follows that ε > 0.
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The inequality

sin−1 β(1+η)2eδ
)
+2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
< sin−1 (β(1+η)2)+2 sin−1 η+ε

together with condition (3.12) show that there is a real number δ(η) ≥ 0 satisfying

inequality (3.13). The representation of f ′ in terms of the linearly independent

solutions of the differential equation y′′ + A(z)y = 0 with A(z) := S(f ; z)/2 as

given by equation (3.4) yields

f ′(z)− β =
1− β(c u(z) + v(z))2

(c u(z) + v(z))2
. (3.14)

If follows from the fact | argw| ≤ sin−1 r that inequality (3.8) implies

| arg
(
1− β(c u(z) + v(z))2)| ≤ sin−1 (β(1 + η)2eδ

)
. (3.15)

Similarly, inequality (3.9) shows

| arg
(
c u(z) + v(z)

)
| ≤ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.16)

Hence, it follows from (3.14), (3.15) and (3.16) that

| arg(f ′(z)− β)| =
∣∣∣∣arg

(
1− β(c u(z) + v(z))2

(c u(z) + v(z))2

)∣∣∣∣
≤ | arg

(
1− β(c u(z) + v(z))2)|+ 2| arg

(
c u(z) + v(z)

)
|

≤ sin−1(β(1 + η)2eδ) + 2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
≤ απ

2
,

where the last inequality follows from (3.13). This completes the proof.

By taking β = 0 in Theorem 3.4, the following univalence criterion is obtained.
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Corollary 3.1 Let f ∈ A, and |a2| = η < sin(απ/4), 0 < α ≤ 1. Suppose that

(3.1) holds where δ(η) satisfies the inequality

η +
1

2
(1 + η)δeδ/2 ≤ sin

(απ
4

)
.

Then | arg f ′(z)| ≤ απ/2, and in particular f ∈ S.

Example 3.1 Consider the univalent function g given by

g(z) =
z

1 + cz
(|c| ≤ 1, z ∈ U).

Since the Schwarzian derivative of an analytic function is zero if and only if it is

a Möbius transformation, it is evident that S(g, z) = 0. Therefore the condition

(3.1) is satisfied with δ = 0. It is enough to take η = |c| and to assume that η, α

and β satisfy inequality (3.12). Now

| arg(g′(z)− β)| =
∣∣∣∣arg

1

(1 + cz)2
− β

∣∣∣∣ ≤ | arg(1− β(1 + cz)2)|+ 2| arg(1 + cz)|

≤ sin−1(β(1 + |c|)2) + 2 sin−1 |c|.

In view of the latter inequality, it is necessary to assume inequality (3.12) for g to

satisfy | arg(g′(z)− β)| ≤ απ/2.

Let 0 ≤ ρ < 1, 0 ≤ λ < 1, and α be a positive integer. A function f ∈ A is

called an α-Bazilevič function of order ρ and type λ, written f ∈ B(α, ρ, λ), if

Re

(
zf ′(z)

f(z)1−αg(z)α

)
> ρ (z ∈ U)

for some function g ∈ ST (λ). Bazilevič [32] introduced the above class of functions

and proved such functions are univalent in U . Thomas [200] called a function
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satisfying the condition

Re

(
zf ′(z)

f(z)1−αg(z)α

)
> 0 (z ∈ U , g ∈ ST )

an α-Bazilevič function, written f ∈ B(α). Certain subclasses of B(α) have been

investigated widely by Keogh and Miller [78], Merkes and Wright [106] , Zamorski

[210], and Mocanu et al. [115].

The following subclass of α-Bazilevič functions introduced by Gao [56] is of

interest. A function f ∈ A is called strongly α-Bazilevič of order β if

∣∣∣∣∣arg

((
z

f(z)

)1−α
f ′(z)

)∣∣∣∣∣ < βπ

2
(α > 0, 0 < β ≤ 1).

For the class of strongly α-Bazilevič functions of order β, the following sufficient

condition is obtained.

Theorem 3.5 Let α > 0, 0 < β ≤ 1, f ∈ A and |a2| = η, where η, α and β

satisfy

η < sin

(
βπ

2(1 + α)

)
.

Suppose (3.1) holds where δ(η) satisfies the inequality

|1− α| sin−1
(

1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ βπ

2
. (3.17)

Then f is strongly α-Bazilevič of order β.

Proof. Since

lim
δ→0

(
|1− α| sin−1

(
1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

))

= (1 + α) sin−1 η,
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then the inequality

|1− α| sin−1
(

1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
< (1 + α) sin−1 η + ε

holds for a given ε = (βπ/2) − (1 + α) sin−1 η. This shows that the condition

(1 + α) sin−1 η ≤ βπ/2, or equivalently η < sin(βπ/2(1 + α)) ensures that there is

a real number δ(η) satisfying (3.17). Using (3.3) and (3.4) lead to

∣∣∣∣∣arg

((
z

f(z)

)1−α
f ′(z)

)∣∣∣∣∣ =

∣∣∣∣∣arg

((
u(z)

z

)α−1

(cu(z) + v(z))−(α+1)

)∣∣∣∣∣
≤ |1− α|

∣∣∣∣arg

(
u(z)

z

)∣∣∣∣+ |α + 1| |arg(cu(z) + v(z))| .

Inequality (3.7) shows that

∣∣∣∣arg

(
u(z)

z

)∣∣∣∣ ≤ sin−1
(

1

2
δeδ/2

)
(3.18)

It now follows from (3.16), (3.17) and (3.18) that

∣∣∣∣∣arg

((
z

f(z)

)1−α
f ′(z)

)∣∣∣∣∣
≤ |1− α| sin−1

(
1

2
δeδ/2

)
+ (1 + α) sin−1

(
η +

1

2
(1 + η)δeδ/2

)
≤ βπ

2
.

For α ≥ 0, consider the class Rα defined by

Rα =
{
f ∈ A : Re

(
f ′(z) + αzf ′′(z)

)
> 0
}
.

For this class, the following sufficient condition is obtained.
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Theorem 3.6 Let α ≥ 0, f ∈ A and |a2| = η, where η and α satisfy

2 sin−1 η + sin−1
(

2ηα

1− η

)
<
π

2
. (3.19)

Suppose (3.1) holds where δ(η) satisfies the inequality

2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
. (3.20)

Then f ∈ R(α).

Proof. It is evident that

lim
δ→0

(
2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

))

= 2 sin−1 η + sin−1
(

2ηα

1− η

)
.

Again it is easily seen from a limiting argument that condition (3.19) guarantees

the existence of a real number δ(η) ≥ 0 satisfying inequality (3.20). It is sufficient

to show that

∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)

f ′(z)

))∣∣∣∣ < π

2
.

The equation (3.4) yields

zf ′′(z)

f ′(z)
= −2z

cu′(z) + v′(z)

cu(z) + v(z)
. (3.21)

A simple calculation from (3.5) shows that

cu′(z) + v′(z) = c−
∫ z

0
A(η)

(
cu(η) + v(η)

)
dη,
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and an application of (3.8) leads to

|cu′(z) + v′(z)| ≤ |c|+
∫ z

0
|A(η)|

∣∣cu(η) + v(η)
∣∣dη ≤ η + (1 + η)δeδ/2. (3.22)

Use of (3.9) yields

|cu(z) + v(z)| ≥ 1− |cu(z) + v(z)− 1| ≥ 1− η − 1

2
(1 + η)δeδ/2. (3.23)

The lower bound in (3.23) is non-negative from the assumption made in (3.20).

From (3.21), (3.22) and (3.23) , it is evident that

∣∣∣∣(1 + α
zf ′′(z)

f ′(z)

)
− 1

∣∣∣∣ =

∣∣∣∣2zαcu′(z) + v′(z)

cu(z) + v(z)

∣∣∣∣
≤

2α
(
η + (1 + η)δeδ/2

)
1− η − 1

2(1 + η)δeδ/2
.

Hence, ∣∣∣∣arg

(
1 + α

zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
. (3.24)

From (3.16) it follows that

| arg f ′(z)| = 2| arg(cu(z) + v(z))| ≤ 2 sin−1
(
η +

1

2
(1 + η)δeδ/2

)
. (3.25)

Using (3.4) and (3.16), inequality (3.25) together with (3.24) and (3.20) imply that

∣∣∣∣arg

(
f ′(z)

(
1 + α

zf ′′(z)

f ′(z)

))∣∣∣∣
≤ | arg f ′(z)|+

∣∣∣∣arg

(
1 + α

zf ′′(z)

f ′(z)

)∣∣∣∣
≤ 2 sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4α
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)

≤ π

2
.
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Generalizing the familiar starlike and convex functions, Lewandoski et al. [91]

introduced γ-starlike functions consisting of f ∈ A satisfying

Re

((
zf ′(z)

f(z)

)1−γ (
1 +

zf ′′(z)

f ′(z)

)γ)
> 0 (0 ≤ γ ≤ 1).

Further discussion can be found in [38, 51, 194]. More generally, let M(α, β) be

the class of analytic functions defined by

M(α, β) =

{
f ∈ A : Re

((
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β)
> 0, α, β ∈ R

}
. (3.26)

The following sufficient condition for the class M(α, β) is obtained.

Theorem 3.7 Let f ∈ A, |a2| = η ≤ 1/3, and β, α be real numbers satisfying

|α| sin−1 η + |β| sin−1
(

2η

1− η

)
<
π

2
. (3.27)

Suppose (3.1) holds where δ(η) satisfies the inequality

|α| sin−1
(

1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ |β| sin−1

(
4
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.

(3.28)

Then f ∈M(α, β).

Proof. Condition (3.27) assures the existence of δ satisfying (3.28). From (3.3)

and (3.4), it follows that

zf ′(z)

f(z)
=

z

u(z)

1

cu(z) + v(z)
(z ∈ U). (3.29)
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By (3.18) and (3.16),

∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ ≤ sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.30)

Using (3.24) with α = 1, (3.30) and (3.28) lead to

∣∣∣∣∣arg

((
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β)∣∣∣∣∣
≤ |α|

∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣+ |β|
∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣
≤ |α| sin−1

(
1

2
δeδ/2

)
+ |α| sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ |β| sin−1 4

(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

≤ π

2
.

This shows that f ∈M(α, β).

Remark 3.1 Theorem 3.7 yields the following interesting special cases.

(1) If α = 0, β = 1, a sufficient condition for convexity is obtained. This case

reduces to a result in [41, Theorem 2, p. 109].

(2) For α = 1, β = 0, a sufficient condition for starlikeness is obtained.

(3) For α = −1 and β = 1, then the class of functions satisfying (3.26) reduces to

the class of functions

G :=

f ∈ A : Re

1 +
zf ′′(z)
f ′(z)

zf ′(z)
f(z)

 > 0

 .

This class G was considered by Silverman [184]. He proved that functions in

the class G are starlike in U . The class G was also studied extensively by
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Tuneski [132, 201–203].

Theorem 3.8 Let β ≥ 0, f ∈ A and |a2| = η, where η satisfies

sin−1 (η) + sin−1
(

2βη

1− η

)
<
π

2
. (3.31)

Suppose (3.1) holds where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
4β
(
η + (1 + η)δeδ/2

)
2− 2η − (1 + η)δeδ/2

)
≤ π

2
.

Then

Re

(
zf ′(z)

f(z)
+ β

z2f ′′(z)

f(z)

)
> 0. (3.32)

The proof is similar to the proof of Theorem 3.7, and is therefore omitted. Con-

dition (3.31) is equivalent to the condition

η

(
1 +

√
(1− η)2 − 4β2η2 + 2β

√
1− η2

)
< 1.

For β = 1, the above equation simplifies to

η8 − 4η7 + 12η6 − 12η5 + 6η4 + 20η3 − 4η2 − 4η + 1 = 0;

the value of the root η is approximately 0.321336. Lewandowski et al. [92] proved

that analytic functions satisfying (3.32) are starlike. Functions satisfying inequal-

ity (3.32) has been extensively studied by Ramesha et al. [157], Obradović and

Joshi [134], Nunokawa et al. [133], and Padmanabhan [142].
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Consider the class Pγ , 0 ≤ γ ≤ 1, given by

Pγ :=

{
f ∈ A :

∣∣∣∣arg

(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ < π

2
, z ∈ U

}
.

The same approach using Gronwall’s inequality leads to the following result on the

class Pγ .

Theorem 3.9 Let 0 ≤ γ < 1, f ∈ A and |a2| = η, where η and γ satisfy

sin−1
(

γ

1− γ
1

η − 1

)
+ sin−1 η <

π

2
. (3.33)

Suppose (3.1) holds where δ(η) satisfies the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
2γ

1− γ
1

2− 2η − (1 + η)δeδ/2
1

1− 2eδ/2

)
≤ π

2
.

(3.34)

Then f ∈ Pγ.

Proof. It is clear that

lim
δ→0

(
sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)

+ sin−1
(

2γ

1− γ
1

2− 2η − (1 + η)δeδ/2
1

1− 2eδ/2

))

= sin−1
(

γ

1− γ
1

η − 1

)
+ sin−1 η.
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Thus, the inequality

sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
2γ

1− γ
1

2− 2η − (1 + η)δeδ/2
1

1− 2eδ/2

)
< sin−1

(
γ

1− γ
1

η − 1

)
+ sin−1 η + ε.

holds for ε = (π/2) − sin−1 (γ/(1− γ)(η − 1)) − sin−1 η. Therefore, condition

(3.33) assures the existence of a small enough real number δ(η) ≥ 0 satisfying

inequality (3.34).

A simple calculation from (3.5) and Lemma 3.1 shows that

|u(z)− 1| ≤ |z − 1|+
∣∣∣∣∫ z

0
(ζ − z)A(ζ)u(ζ)dζ

∣∣∣∣
≤ (z − 1) exp

(∫ z

0
(ζ − z)|A(ζ)|dζ

)
≤ 2eδ/2.

The above inequality gives

∣∣∣∣ z

u(z)

∣∣∣∣ ≤ 1

|u(z)|
≤ 1

1− |u(z)− 1|
≤ 1

1− 2eδ/2
. (3.35)

Therefore, for some 0 < β ≤ γ/(1− γ), (3.29), (3.35) and (3.23) lead to

∣∣∣∣1 + β
zf ′(z)

f(z)
− 1

∣∣∣∣ = β

∣∣∣∣ z

u(z)

∣∣∣∣ 1

|cu(z) + v(z)|

≤ β

1− 2eδ/2
1

1− η − 1
2(1 + η)δeδ/2

=
2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2
.
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Hence

∣∣∣∣arg

(
1 + β

zf ′(z)

f(z)

)∣∣∣∣ ≤ sin−1
(

2β

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)
. (3.36)

Also, (3.7) and (3.16) yield

∣∣∣∣arg
f(z)

z

∣∣∣∣ =

∣∣∣∣arg
u(z)

z(cu(z) + v(z))

∣∣∣∣
≤
∣∣∣∣arg

u(z)

z

∣∣∣∣+ |arg(cu(z) + v(z))|

≤ sin−1
(

1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
. (3.37)

Replacing β by γ/(1−γ) in inequality (7.14), and using (3.37) and (3.34) yield

∣∣∣∣arg

(
(1− γ)

f(z)

z
+ γf ′(z)

)∣∣∣∣ ≤ ∣∣∣∣arg
f(z)

z

∣∣∣∣+

∣∣∣∣arg

(
1 +

γ

1− γ
zf ′(z)

f(z)

)∣∣∣∣
≤ sin−1

(
1

2
δeδ/2

)
+ sin−1

(
η +

1

2
(1 + η)δeδ/2

)
+ sin−1

(
2γ

1− γ
1

1− 2eδ/2
1

2− 2η − (1 + η)δeδ/2

)
≤ π

2
,

and hence f ∈ Pγ .

76



CHAPTER 4

CONVEXITY OF INTEGRAL TRANSFORMS AND DUALITY

4.1 Duality Technique

For f ∈ A, Fournier and Ruscheweyh [53] investigated starlikeness properties of

the operator

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt (4.1)

over functions f in the class

P(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z)− β

)
> 0, z ∈ U

}
.

Here λ is a non-negative real-valued integrable function satisfying the condition∫ 1
0 λ(t)dt = 1. Ali and Singh [21] used the Duality Principle [172] to find a sharp

estimate of the parameter β that ensures Vλ(f) is convex over P(β). In 2002,

Choi et al. [45] investigated convexity property of the integral transform (4.1) over

functions f in the class

Pα(β) :=

{
f ∈ A : ∃φ ∈ R with Re eiφ

(
(1− α)

f(z)

z
+ αf ′(z)− β

)
> 0, z ∈ U

}
,

α ∈ R. The class Pα(β) is closely related to the class Rα(β) defined by

Rα(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z) + αzf ′′(z)− β

)
> 0, z ∈ U

}
.

It is evident that f ∈ Rα(β) if and only if zf ′ belongs to Pα(β).

Consider now the following class of functions that includes both classes P(β)

77



and Pα(β). For α ≥ 0, γ ≥ 0 and β < 1, define the class

Wβ(α,γ) :=
{
f ∈ A : ∃φ ∈ R with

Re eiφ
(

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ U

}
.

(4.2)

Thus P(β) ≡ Wβ(1, 0), Pα(β) ≡ Wβ(α, 0), and Rγ(β) ≡ Wβ(1 + 2γ, γ). The

class Wβ(α, γ) is closely related to the class R(α, γ, h) consisting of all solutions

f ∈ A satisfying

f ′(z) + αzf ′′(z) + γz2f ′′′(z) ≺ h(z) (z ∈ U),

with h(z) := hβ(z) = (1 + (1 − 2β)z)/(1 − z). Here g(z) ≺ h(z) indicates the

function g is subordinate to h, or in other words, there is an analytic function w

satisfying w(0) = 0 and |w(z)| < 1 such that g(z) = h(w(z)), z ∈ U . When φ = 0

in (4.2), it is clear that f ∈ R(α, γ, hβ) if and only if zf ′ belongs to Wβ(α, γ).

Every function f ∈ R(α, γ, h) for a suitably normalized convex function h has a

double integral representation, which was recently investigated by Ali et al. [12].

In a recent paper, Ali et al. [7] investigated starlikeness properties of the in-

tegral transform (4.1) over the class Wβ(α, γ). The present chapter investigates

convexity of the integral transform Vλ over the classWβ(α, γ) by applying the Du-

ality Principle. Specifically, in Section 4.2, the best value β < 1 is determined that

ensures Vλ mapsWβ(α, γ) into the class of convex functions CV . Necessary and suf-

ficient conditions are also derived that ensure Vλ(f) is convex univalent. In Section

4.3, simpler sufficient conditions for Vλ(f) to be convex are derived. These are used

in Section 4.4 in the discussion of several interesting applications for specific choices

of the admissible function λ. As a consequence, the smallest value β < 1 is ob-

tained that ensures a function f satisfying Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β
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is convex in the unit disk. The results obtained in this section extend and improve

earlier works by several authors. The final section is devoted to extending the main

convexity result to the generalized integral operator of the form ρz+ (1−ρ)Vλ(f),

ρ < 1. The best value β < 1 is obtained that ensures the latter operator maps

Wβ(α, γ) into the class CV .

4.2 Convexity of Integral Operators

The following notations introduced in [7] are used. Let µ ≥ 0 and ν ≥ 0 satisfy

µ+ ν = α− γ and µν = γ. (4.3)

When γ = 0, then µ is chosen to be 0, in which case, ν = α ≥ 0. When α = 1+2γ,

(4.3) yields µ+ ν = 1 + γ = 1 + µν, or (µ− 1)(1− ν) = 0.

(i) For γ > 0, choosing µ = 1 gives ν = γ.

(ii) For γ = 0, then µ = 0 and ν = α = 1.

In the sequel, whenever the particular case α = 1 + 2γ is considered, the values of

µ and ν for γ > 0 will be taken as µ = 1 and ν = γ respectively, while µ = 0 and

ν = 1 = α in the case γ = 0.

Next we introduce two auxiliary functions. Let

φµ,ν(z) = 1 +
∞∑
n=1

(nν + 1)(nµ+ 1)

n+ 1
zn, (4.4)

and

ψµ,ν(z) = φ−1
µ,ν(z) = 1 +

∞∑
n=1

n+ 1

(nν + 1)(nµ+ 1)
zn

=

∫ 1

0

∫ 1

0

dsdt

(1− tνsµz)2
. (4.5)
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Here φ−1
µ,ν denotes the convolution inverse of φµ,ν such that φµ,ν ∗φ−1

µ,ν = 1/(1−z).

If γ = 0, then µ = 0, ν = α, and it is clear that

ψ0,α(z) = 1 +
∞∑
n=1

n+ 1

nα + 1
zn =

∫ 1

0

dt

(1− tαz)2
.

If γ > 0, then ν > 0, µ > 0, and making the change of variables u = tν , v = sµ

result in

ψµ,ν(z) =
1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvz)2
dudv.

Thus the function ψµ,ν can be written as

ψµ,ν(z) =



1

µν

∫ 1

0

∫ 1

0

u1/ν−1v1/µ−1

(1− uvz)2
dudv, γ > 0,

∫ 1

0

dt

(1− tαz)2
, γ = 0, α ≥ 0.

Now let q be the solution of the initial-value problem

d

dt
t1/νq(t) =



1

µν
t1/ν−1

∫ 1

0
s1/µ−1 1− st

(1 + st)3
ds, γ > 0,

1

α
t1/α−1 1− t

(1 + t)3
, γ = 0, α > 0,

(4.6)

satisfying q(0) = 0. It is easily seen that the solution is given by

q(t) =
1

µν

∫ 1

0

∫ 1

0
s1/µ−1w1/ν−1 1− swt

(1 + swt)3
dsdw =

∞∑
n=0

(n+ 1)2(−1)ntn

(1 + µn)(1 + νn)
. (4.7)

In particular,
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qγ(t) =
1

γ

∫ 1

0
s1/γ−1 1

(1 + st)2
ds, γ > 0, α = 1 + 2γ,

qα(t) =
1

α
t−1/α

∫ t

0
τ1/α−1 1− τ

(1 + τ)3
dτ, γ = 0, α > 0. (4.8)

A well-known result [172, p. 94] states that

f ∈ ST ⇐⇒ 1

z
(f ∗ h)(z) 6= 0 (z ∈ U), (4.9)

where h is given by

h(z) =
z(1 + ε−1

2 z)

(1− z)2
(|ε| = 1). (4.10)

This can be verified from Hadamard product in (4.9). Let ε = (1− iT )/(1 + iT ),

and

h(z) = hT (z) =
1

1 + iT

(
z

(1− z)2
+

iTz

1− z

)
. (4.11)

Now, f ∈ ST implies Re(zf ′/f) > 0, or equivalently zf ′/f 6= −iT , thus

zf ′ + iTf

z(1 + iT )
6= 0⇔ 1

z(1 + iT )

(
f ∗ z

(1− z)2
+ iTf ∗ z

1− z

)
6= 0

⇔ 1

z

(
hT ∗ f

)
(z) 6= 0,

where hT given by (4.11).

Functions in the class Wβ(α, γ) generally are not convex. The following is the

main result that gives conditions for convexity.

Theorem 4.1 Let µ ≥ 0, ν ≥ 0 satisfy (4.3), and let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt, (4.12)
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where q is the solution of the initial-value problem (4.6). Further let

Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx (ν > 0), (4.13)

Πµ,ν(t) =



∫ 1

t
Λν(x)x1/ν−1−1/µdx, γ > 0 (µ > 0, ν > 0),

Λα(t), γ = 0 (µ = 0, ν = α > 0),

(4.14)

and assume that t1/νΛν(t)→ 0, and t1/µΠµ,ν(t)→ 0 as t→ 0+. Let Vλ be given

by (4.1) and h given by (4.10). Then



Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0, γ > 0,

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0, γ = 0,

(4.15)

if and only if F (z) = Vλ(f)(z) is in CV for f ∈ Wβ(α, γ). This conclusion does

not hold for smaller values of β.

Proof. Since the case γ = 0 (µ = 0 and ν = α) corresponds to Lemma 3(ii) [45, p.

121], it is sufficient to consider only the case γ > 0.

Let

H(z) = (1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z).

Since µ+ ν = α− γ and µν = γ, then

H(z) = (1 + γ − (α− γ))
f(z)

z
+ (α− γ − γ) f ′(z) + γzf ′′(z)

= (1 + µν − µ− ν)
f(z)

z
+ (µ+ ν − µν) f ′(z) + µνzf ′′(z).
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With f(z) = z +
∑∞
n=2 anz

n, it follows from (4.4) that

H(z) = 1 +
∞∑
n=1

an+1(nν + 1)(nµ+ 1)zn = f ′(z) ∗ φµ,ν(z), (4.16)

and (4.5) yields

f ′(z) = H(z) ∗ ψµ,ν(z). (4.17)

Let g be given by

g(z) =
H(z)− β

1− β
.

Since Re eiφg(z) > 0, the Duality Principle allows us to assume that

g(z) =
1 + xz

1 + yz
(|x| = 1, |y| = 1). (4.18)

Now, (4.17) implies that f ′(z) = [(1 − β)g(z) + β] ∗ ψµ,ν(z), and (4.18) readily

gives

f(z)

z
=

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z), (4.19)

where for convenience, we write ψ := ψµ,ν .

If f ∈ Wβ(α, γ), then (4.9) states that

F ∈ ST ⇐⇒ 1

z
(F ∗ h)(z) 6= 0 (z ∈ U),

where h is given by (4.10). Now F ∈ CV if and only if zF ′ ∈ ST , and so

0 6= 1

z
(zF ′(z) ∗ h(z))

=
1

z
(F (z) ∗ zh′(z)) =

1

z

[∫ 1

0
λ(t)

f(tz)

t
dt ∗ zh′(z)

]
=

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ h′(z).
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From (4.19), it follows that

0 6=
∫ 1

0

λ(t)

1− tz
dt ∗

[
1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ h′(z)

=

∫ 1

0

λ(t)

1− tz
dt ∗ h′(z) ∗

[
1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=

∫ 1

0
λ(t)h′(tz)dt ∗ (1− β)

[
1

z

∫ z

0

1 + xw

1 + yw
dw +

β

1− β

]
∗ ψ(z)

= (1− β)

[∫ 1

0
λ(t)h′(tz)dt+

β

1− β

]
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z).

Theorem 1.14 (p. 21) states that the dual set of functions g given by (4.18) consists

of analytic functions p satisfying p(0) = 1 and Re p(z) > 1/2 in U . Hence

0 6= (1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

β

1− β

]
∗ 1 + xz

1 + yz
∗ ψ(z)

⇐⇒Re (1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

β

1− β

]
∗ ψ(z) >

1

2

⇐⇒Re (1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

β

1− β
− 1

2(1− β)

]
∗ ψ(z) > 0.

Using (4.12), the latter condition is equivalent to

Re

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw − q(t)

)
dt

]
∗ ψ(z) > 0. (4.20)

From (4.5), the above inequality is equivalent to

Re

[∫ 1

0
λ(t)

(
1 +

∞∑
n=1

Bn+1(tz)n − q(t)

)
dt

]
∗

(
1 +

∞∑
n=1

n+ 1

(nν + 1)(nµ+ 1)
zn

)
> 0
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where h(z) = z +
∑∞
n=2Bnz

n. Thus

0 < Re

∫ 1

0
λ(t)

(
1 +

∞∑
n=1

(n+ 1)Bn+1

(nν + 1)(nµ+ 1)
(tz)n − q(t)

)
dt

= Re

∫ 1

0
λ(t)

( ∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h′(tz)− q(t)

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

dηdζ

1− zηνζµ
∗ h′(tz)− q(t)

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0
h′(tzηνζµ)dηdζ − q(t)

)
dt,

which reduces to

Re

∫ 1

0
λ(t)

[∫ 1

0

∫ 1

0

1

µν
h′(tzuv)u1/ν−1v1/µ−1dvdu− q(t)

]
dt > 0.

A change of variable w = tu leads to

Re

∫ 1

0

λ(t)

t1/ν

[∫ t

0

∫ 1

0
h′(wzv)w1/ν−1v1/µ−1dvdw − µνt1/νq(t)

]
dt > 0.

Integrating-by-parts with respect to t and using (4.6) gives the equivalent form

Re

∫ 1

0
Λν(t)

[∫ 1

0
h′(tzv)t1/ν−1v1/µ−1dv − t1/ν−1

∫ 1

0
s1/µ−1 1− st

(1 + st)3
ds

]
dt > 0.

Making the variable change w = vt and η = st reduces the above inequality to

Re

∫ 1

0
Λν(t)t1/ν−1/µ−1

[∫ t

0
h′(wz)w1/µ−1dw −

∫ t

0
η1/µ−1 1− η

(1 + η)3
dη

]
dt > 0,

which after integrating-by-parts with respect to t yields

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0.

Thus F ∈ CV if and only if condition (4.15) holds.
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To verify sharpness, let β0 satisfy

β0 − 1/2

1− β0
= −

∫ 1

0
λ(t)q(t)dt.

Assume that β < β0 and let f ∈ Wβ(α, γ) be the solution of the differential

equation

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z) = β + (1− β)

1 + z

1− z
.

From (4.16), it follows that

f(z) = z +
∞∑
n=1

2(1− β)

(nν + 1)(nµ+ 1)
zn+1,

and

G(z) =

∫ 1

0
λ(t)

f(tz)

t
dt = z +

∞∑
n=1

2(1− β)

(nν + 1)(nµ+ 1)

(∫ 1

0
λ(t)tndt

)
zn+1.

Thus

G(z) = Vλ(f)(z) = z +
∞∑
n=1

2(1− β)τn
(nν + 1)(nµ+ 1)

zn+1,

where τn =
∫ 1

0 λ(t)tndt. Now (4.7) implies that

β0 − 1/2

1− β0
= −

∫ 1

0
λ(t)q(t)dt = −

∞∑
n=1

(n+ 1)2(−1)nτn
(1 + µn)(1 + νn)

.

This means that

(zG′)′
∣∣∣
z=−1

= 1 + 2(1− β)
∞∑
n=1

(n+ 1)2(−1)nτn
(1 + µn)(1 + νn)

= 1− 1− β
1− β0

< 0.

Hence (zG′)′(z) = 0 for some z ∈ U , and so zG′ is not even locally univalent in U .
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Therefore the value of β in (4.12) is sharp.

Theorem 4.1 yields several known results. The case γ = 0 (µ = 0 and ν = α)

corresponds to the following result proved by Choi et al. [45].

Corollary 4.1 [45, Lemma 3(ii), p. 121] Let Λα(t) be an integrable function on

[0, 1] defined by

Λα(t) =

∫ 1

t

λ(x)

x1/α
dx,

satisfying limt→0 Λα(t) = 0. Further, let 1/2 ≤ α ≤ 1 and qα be defined by (4.8).

Defined β < 1 by

β − 1/2

1− β
= −

∫ 1

0
λ(t)qα(t)dt.

Then Vλ(Pα(β)) ⊂ CV if and only if

Re

∫ 1

0
Λα(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0

holds.

Remark 4.1 When γ = 0, then µ = 0, ν = α, and in this particular instance,

Theorem 4.1 gives Lemma 3(ii) in Choi et al. [45, p. 121]. There the range of α

lies in [1/2, 1], whereas the range of α in Theorem 4.1 for this particular case is

α > 0.

The special case α = 1 above yields a result of Ali and Singh [21, Theorem

1(ii), p. 301].

Corollary 4.2 [21, Theorem 1, p. 301 ] Let f ∈ Wβ(1, 0) = Pβ and β < 1, with

β − 1/2

1− β
= −

∫ 1

0
λ(t)

1

(1 + t)2
dt.
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and

Λ(t) =

∫ 1

t

λ(s)

s
ds, (4.21)

satisfies tΛ→ 0 as t→ 0+. Then

Re

∫ 1

0
Λ(t)

(
h′(tz)− 1− t

(1 + t)3

)
dt ≥ 0, (4.22)

where h as defined in (4.10) if and only if F (z) = Vλ(f)(z) is in CV . The conclusion

does not hold for smaller values of β.

If α = 1 + 2γ, then µ = 1 and ν = γ for γ > 0, while µ = 0 and ν = α = 1 for

γ = 0. In this instance, Theorem 4.1 gives the following result.

Corollary 4.3 Let f ∈ Wβ(1 + 2γ, γ) = Rγ(β), γ ≥ 0, and let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)qγ(t)dt,

where qγ is given by (4.8). Further let Λγ be defined by (4.13),

Πγ(t) =



∫ 1

t
Λγ(s)s1/γ−2ds, γ > 0,

∫ 1

t

λ(s)

s
ds, γ = 0,

(4.23)

and h be given by (4.10). Then

Re

∫ 1

0
Πγ(t)

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0

if and only if F (z) = Vλ(f)(z) is in CV . The conclusion does not hold for smaller

values of β.
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4.3 Sufficient Conditions for Convexity of Integral Transforms

The conditions stipulated in Theorem 4.1 can be cumbersome to use. A simpler

sufficient condition for convexity of the integral operator (4.1) is now given in

the following theorem. The following lemma of Fournier and Ruscheweyh [53] is

required.

Lemma 4.1 [53, Theorem 1, p. 530] Let Λ be integrable on [0, 1], and positive on

(0, 1). If Λ(t)/(1− t2) is decreasing on (0,1), then LΛ(CCV) = 0, where

LΛ(f) = inf
z∈D

∫ 1

0
Λ(t)

(
Re

f(tz)

tz
− 1

(1 + t)2

)
dt (f ∈ S)

and

LΛ(CCV) = inf
f∈CCV

LΛ(f).

Theorem 4.2 Let Πµ,ν and Λν be given as in Theorem 4.1. Assume that both

Πµ,ν and Λν are integrable on [0, 1], and positive on (0, 1). Assume further that

µ ≥ 1 and

Λν(t)t1/ν−1/µ + (1− 1/µ)Πµ,ν(t)

1− t2
is decreasing on (0, 1). (4.24)

If β satisfies (4.12), and f ∈ Wβ(α, γ), then Vλ(f) ∈ CV.

Proof. Integrating-by-parts with respect to t yields

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt

= Re

∫ 1

0
Πµ,ν(t)t1/µ−1 ∂

∂t

(
h(tz)

z
− t

(1 + t)2

)
dt

= Re

∫ 1

0
t1/µ−1

(
Λν(t)t1/ν−1/µ +

(
1− 1

µ

)
Πµ,ν(t)

)(
h(tz)

tz
− 1

(1 + t)2

)
dt.

The function t1/µ−1 is decreasing on (0, 1) when µ ≥ 1. Thus, condition (4.24)
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along with Lemma 4.1 yield

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0.

The desired conclusion now follows from Theorem 4.1.

Let us scrutinize Theorem 4.2 for helpful conditions to ensure convexity of

Vλ(f). Now for γ > 0,

Πµ,ν(t) =

∫ 1

t
Λν(y)y1/ν−1−1/µdy and Λν(t) =

∫ 1

t

λ(x)

x1/ν
dx.

To apply Theorem 4.2, it is sufficient to show that the function

k(t) =
Λν(t)t1/ν−1/µ + (1− 1/µ)Πµ,ν(t)

1− t2
:=

p(t)

1− t2

is decreasing in the interval (0, 1). Note that k(t) > 0 and decreasing in the interval

(0, 1) provided

q(t) := p(t) +
1− t2

2
t−1p′(t) ≤ 0.

Since q(1) = 0, this will certainly hold if q is increasing in (0, 1). Now

q′(t) =
1− t2

2
t−2[tp′′(t)− p′(t)],

and

tp′′(t)− p′(t) = −λ(t)t−1/µ
(

1

ν
− 1

µ
− 2 +

tλ′(t)
λ(t)

)
+

(
1

ν
− 1

µ
− 2

)(
1

ν
− 1

)
t1/ν−1/µ−1Λν(t).
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Thus tp′′(t)− p′(t) is nonnegative if

1

ν
− 1

µ
− 2 +

tλ′(t)
λ(t)

≤ 0 and

(
1

ν
− 1

µ
− 2

)(
1

ν
− 1

)
≥ 0. (4.25)

For µ ≥ 1, the condition (4.3) implies ν ≥ µ ≥ 1. Thus condition (4.25) is

equivalent to

tλ′(t)
λ(t)

≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1).

These observations result in the following theorem.

Theorem 4.3 Let λ be a nonnegative real-valued integrable function on [0, 1]. As-

sume that Λν and Πµ,ν given by (4.13) and (4.14) are both integrable on [0, 1], and

positive on (0, 1). Under the assumptions stated in Theorem 4.1, if λ satisfies

tλ′(t)
λ(t)

≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1), (4.26)

then F (z) = Vλ(f)(z) ∈ CV. The conclusion does not hold for smaller values of β.

Remark 4.2 The condition µ ≥ 1 is equivalent to 0 < γ ≤ α ≤ 2γ + 1.

Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 4.14 yields the following

result.

Corollary 4.4 Let λ be a nonnegative real-valued integrable function on [0, 1]. Let

f ∈ Wβ(1 + 2γ, γ) = Rβ(γ), γ ∈ [1,∞), and let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)qγ(t)dt,

where qγ is given by (4.8). Assume further that Π1,γ and Λγ are integrable on

[0, 1] and positive on (0, 1). If λ satisfies

tλ′(t)
λ(t)

≤ 3− 1

γ
,

91



then F (z) = Vλ(f)(z) ∈ CV. The conclusion does not hold for smaller values of β.

In the case γ = 0 and α ≥ 1 (µ = 0, ν = α), an easier sufficient condition for

convexity of the integral operator (4.1) is obtained in the following theorem.

Theorem 4.4 Let λ be a nonnegative real-valued integrable function on [0, 1]. As-

sume that Λα and Π0,α given by (4.13) and (4.14) are both integrable on [0, 1], and

positive on (0, 1). Under the assumptions stated in Theorem 4.1, if λ(1) = 0 and

λ satisfies

tλ′′(t)− 1

α
λ′(t) > 0 (α ≥ 1), (4.27)

then F (z) = Vλ(f)(z) ∈ CV. The conclusion does not hold for smaller values of β.

Proof. From Theorem 4.1, it suffices to show that

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0 (γ = 0).

Integrating-by-parts with respect to t yields

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt

= Re

∫ 1

0
t1/α−1

(
t1−1/αλ(t) +

(
1− 1

α

)
Λα(t)

)(
h(tz)

tz
− 1

(1 + t)2

)
dt.

The function t1/α−1 is decreasing on (0, 1) when α ≥ 1. Thus, the condition

t1−1/αλ(t) +
(

1− 1
α

)
Λα(t)

1− t2
is decreasing on (0, 1)

along with Lemma 4.1 will yield

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0.
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Let p(t) = k(t)/(1 − t2), where k(t) = t1−1/αλ(t) + (1 − 1/α)Λα(t). Taking

the logarithmic derivative of p and using the fact that p(t) > 0 for α ≥ 1, the

condition p′(t) ≤ 0 in (0, 1) is equivalent to the inequality

q(t) = k(t) + t−1k′(t)
1− t2

2
≤ 0.

Clearly q(1) = 0 and if q is increasing in (0, 1), then p will be decreasing in (0, 1).

Direct computations show that q′(t) ≥ 0 provided (t−1k′(t))′ ≥ 0. Since

(t−1k′(t))′ = t−1/α−1
(
tλ′′(t)− 1

α
λ′(t)

)
,

the desired result follows from (4.27).

4.4 Applications to Integral Transforms

The integral operators has been investigated extensively in Section 1.9. In this

section, various well-known integral operators are considered, and conditions for

convexity for f ∈ Wβ(α, γ) under these integral operators are obtained. First let

λ be defined by

λ(t) = (1 + c)tc (c > −1).

Then the integral transform

Fc(z) = Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt (c > −1), (4.28)

is the Bernardi integral operator. The classical Alexander and Libera transforms

are special cases of (4.28) with c = 0 and c = 1 respectively. For this special case

of λ, the following result holds.
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Theorem 4.5 Let c > −1, 0 < γ ≤ α ≤ 1 + 2γ, and β < 1 satisfy

β − 1/2

1− β
= −(c+ 1)

∫ 1

0
tcq(t)dt,

where q is given by (4.7). If f ∈ Wβ(α, γ), then the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to CV provided

c ≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1).

The value of β is sharp.

Proof. With λ(t) = (1 + c)tc, then tλ′(t)/λ(t) = c, and the result readily follows

from Theorem 4.14.

When α = 1 + 2γ, γ > 0, and µ = 1, Theorem 4.28 yields the following result.

Corollary 4.5 Let −1 < c ≤ 3− 1/γ, γ ∈ [1,∞), and β < 1 satisfy

β − 1/2

1− β
= −(c+ 1)

∫ 1

0
tcqγ(t)dt,

where qγ is given by (4.8). If f ∈ Wβ(1 + 2γ, γ) = Rγ(β), then the function

Vλ(f)(z) = (1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to CV . The value of β is sharp.

The case c = 0 in Theorem 4.5 yields the following interesting result, which

we state as a theorem.
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Theorem 4.6 Let 0 < γ ≤ α ≤ 1 + 2γ. If F ∈ A satisfies

Re
(
F ′(z) + αzF ′′(z) + γz2F ′′′(z)

)
> β

in U , and β < 1 satisfies

β − 1/2

1− β
= −

∫ 1

0
q(t)dt,

where q is given by (4.7), then F is convex. The value of β is sharp.

Proof. It is evident that the function f = zF ′ belongs to the class

Wβ,0(α, γ) =

{
f ∈ A :

Re

(
(1− α + 2γ)

f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)

)
> β, z ∈ U

}
.

Thus

F (z) =

∫ 1

0

f(tz)

t
dt.

The conditions on α and γ imply that 1 ≤ µ ≤ ν. Thus the result now follows

from Theorem 4.5 with c = 0. It is also evident from the proof of sharpness in

Theorem 4.1 that the extremal function in Wβ(α, γ) indeed also belongs to the

class Wβ,0(α, γ).

Example 4.1 If γ = 1, α = 3, then µ = 1 = ν. In this case, (4.7) yields

β = (1− 2 ln 2)/2(1− ln 2) = −0.629445. Thus

Re
(
f ′(z) + 3zf ′′(z) + z2f ′′′(z)

)
> β ⇒ f ∈ CV .
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Theorem 4.7 Let b > −1, a > −1, and 0 < γ ≤ α ≤ 2γ + 1. Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt,

where q is given by (4.7) and

λ(t) =


(a+ 1)(b+ 1)

ta(1−tb−a)
b−a , b 6= a,

(a+ 1)2ta log(1/t), b = a.

(4.29)

If f ∈ Wβ(α, γ), then

Gf (a, b; z) =



(a+1)(b+1)
b−a

∫ 1
0 t

a−1(1− tb−a)f(tz)dt, b 6= a,

(a+ 1)2
∫ 1

0 t
a−1 log(1/t)f(tz)dt, b = a,

(4.30)

belongs to CV provided

a ≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1). (4.31)

The value of β is sharp.

Proof. It is seen that
∫ 1

0 λ(t)dt = 1. There are two cases to consider. When b 6= a,

then

tλ′(t)
λ(t)

= a− (b− a)tb−a

1− tb−a
.

The function λ satisfies (4.43) if

a− (b− a)tb−a

1− tb−a
≤ 2 +

1

µ
− 1

ν
(ν ≥ µ ≥ 1). (4.32)
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Since t ∈ (0, 1), the condition b > a implies (b − a)tb−a/(1 − tb−a) > 0, and

so inequality (4.32) holds true whenever a satisfies (4.31). When b < a, then

(a− b)/(ta−b− 1) < b− a, and hence a− (b− a)tb−a/(1− tb−a) < b < a, and thus

(4.32) holds if a satisfies (4.31).

For the case b = a, then

tλ′(t)
λ(t)

= a− 1

log(1/t)
.

Since t < 1 implies 1/ log(1/t) ≥ 0, condition (4.43) is satisfied provided a satisfies

(4.31). This completes the proof.

The simpler condition (4.43) can also be applied to the choice

λ(t) =
(1 + a)p

Γ(p)
ta
(

log

(
1

t

))p−1

(a > −1, p ≥ 0).

The integral transform Vλ in this case takes the form

Vλ(f)(z) =
(1 + a)p

Γ(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1f(tz)dt (a > −1, p ≥ 0).

This is the Komatu operator, which reduces to the Bernardi integral operator when

p = 1. For this λ, the following result holds.

Theorem 4.8 Let a > p− 2 ≥ −1, and 0 < γ ≤ α ≤ 2γ + 1. Let β < 1 satisfy

β − 1/2

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta
(

log

(
1

t

))p−1

q(t)dt,

where q is given by (4.7). For f ∈ Wβ(α, γ), the function

Φp(a; z) ∗ f(z) =
(1 + a)p

Γ(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1f(tz)dt (4.33)
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belongs to CV provided

a ≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1). (4.34)

The value of β is sharp.

Proof. Brief computations show that

tλ′(t)
λ(t)

= a− (p− 1)

log(1/t)
.

Since log(1/t) > 0 for t ∈ (0, 1), and p ≥ 1, condition (4.43) is satisfied whenever

a satisfies (4.34).

We next apply Theorem 4.4 to the case λ(1) = 0 as shown by the following

two theorems.

Theorem 4.9 Suppose a > −1, b > −1, α ≥ 1 are related by

(1) −1 < a ≤ 0 and a = b, or

(2) −1 < a ≤ 0 and −1 < a < b ≤ 1 + 1/α.

Let β < 1 satisfy

β − 1/2

1− β
= −

∫ 1

0
λ(t)q(t)dt,

where q and λ are given by (4.8) and (4.29) respectively. If f ∈ Wβ(α, 0) = Pβ(α),

then Gf (a, b; z) defined by (4.30) belongs to CV. The value of β is sharp.

Proof. To apply Theorem 4.4, it suffices to verify inequality (4.27) for λ defined

by (4.29). It is seen that

λ′(t) =


(a+1)(b+1)

b−a ta−1(a− btb−a), b > a,

(a+ 1)2
(
−1 + a log(1

t )
)
ta−1, b = a,
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and

tλ′′(t) =


(a+1)(b+1)

b−a ta−1(a(a− 1)− b(b− 1)tb−a), b > a,

(a+ 1)2
(

1− 2a+ a(a− 1) log(1
t )
)
ta−1, b = a.

Case (i). Let b = a > −1. Substituting the expression for λ′ and tλ′′ in (4.27)

yields the equivalent condition

a log

(
1

t

)(
a− 1

α
− 1

)
+

(
−2a+

1

α
+ 1

)
≥ 0.

This clearly holds for t ∈ (0, 1) whenever −1 < a ≤ min{0, 1+1/α, (1+1/α)/2} =

0.

Case (ii). Let b > a > −1 with a ∈ (−1, 0] and −1 < b ≤ 1 + 1/α. In this case,

condition (4.27) is equivalent to ψt(a) ≥ ψt(b), where

ψt(a) = a(a− 1)ta − 1

α
ata.

For a fixed t,

ψ′t(a) = ta
(

2a− 1− 1

α
− a2 log

(
1

t

)
+ a

(
1 +

1

α

)
log

(
1

t

))
,

that is, ψ′t(a) ≤ 0 for a ∈ (−1, 0). Thus, ψt(a) is a decreasing function of a for

each fixed t ∈ (0, 1). In particular, for b > a with b ∈ (−1, 0) and a ∈ (−1, 0),

inequality (4.27) holds. When b > a with 0 < b ≤ 1 + 1/α, then ψt(a) ≥ ψt(0) = 0

for each fixed t ∈ (0, 1). For 0 < b ≤ 1 + 1/α,

ψt(b) = btb
(
b− 1− 1

α

)
≤ 0.

It follows then that ψt(a) ≥ 0 ≥ ψt(b) holds for each fixed t ∈ (0, 1). Thus,

inequality (4.27) holds for b > a > −1 with a ∈ (−1, 0] and 0 < b ≤ 1 + 1/α.
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Remark 4.3 The conditions b > −1 and a > −1 in Theorem 4.9 yield several

improvements of known results.

(1) Taking γ = 0 and α ≥ 1 in Theorem 4.9 leads to a result extending Theorem

3.4 obtained in [28, p. 12] for the case α ∈ [1/2, 1]. When α = 1, the range of

b there lies in (−1, 0], whereas the range of b in Theorem 4.9 lies in the larger

interval (−1, 2].

(2) With α = 1 above leads to improvement of a result obtained by Ponnusamy

and Rønning [152, Corollary 3.2]. There the parameters b > a > −1 must

satisfy a fairly complicated equation to deduce Gf (a, b; z) is starlike of order

1/2. In our present situation, the conditions on the parameters a and b are

simpler to infer convexity.

For α = 1, γ = 0, a = −η and b = −η + 2, Theorem 4.9 reduces to Corollary

1 [21, p. 302] and Corollary 1 in [47, pp. 915-916, (γ = 0)].

Corollary 4.6 [21, Corollary 1, p. 302] Let 1 ≥ η ≥ 0 and β < 1 be given by

β − 1/2

1− β
= −(1− η)(3− η)

2

∫ 1

0
t−η

1− t
1 + t

dt. (4.35)

Then for f ∈ Wβ(1, 0) = Pβ the function

Vλ(f)(z) =
(1− η)(3− η)

2

∫ 1

0
t−η−1(1− t2)f(tz)dt (4.36)

belongs to CV . The value of β is sharp.

Now, let Φ be defined by Φ(1− t) = 1 + Σ∞n=1bn(1− t)n, bn ≥ 0 for n ≥ 1, and

λ(t) = Ktb−1(1− t)c−a−bΦ(1− t), (4.37)

where K is a constant chosen such that
∫ 1

0 λ(t)dt = 1.
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Theorem 4.10 Let a, b, c > 0 and α ≥ 1. Let β < 1 satisfy

β − 1/2

1− β
= −K

∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)q(t)dt,

where q is given by (4.8), and K is a constant such that K
∫ 1

0 t
b−1(1−t)c−a−bΦ(1−

t) = 1. If f ∈ Wβ(α, 0), then the function

Vλ(f)(z) = K

∫ 1

0
tb−2(1− t)c−a−bΦ(1− t)f(tz)dt

belongs to CV provided

c ≥ a+ b+ 1 and 0 < b ≤ 1.

The value of β is sharp.

Proof. As in the earlier proof, it suffices to verify inequality (4.27). Consider λ

given by (4.37). Direct computations show that

λ′(t) = Ktb−2(1− t)c−a−b−1((
(b− 1)(1− t)− (c− a− b)t

)
Φ(1− t)− t(1− t)Φ′(1− t)

)
,

and

tλ′′(t) =Ktb−2(1− t)c−a−b−2
((

(b− 1)(b− 2)(1− t)2

− 2(b− 1)(c− a− b)t(1− t) + (c− a− b)(c− a− b− 1)t2
)
Φ(1− t)

+
(
2(c− a− b)t− 2(b− 1)(1− t)

)
t(1− t)Φ′(1− t) + t2(1− t)2Φ′′(1− t)

)
.

Thus, (4.27) is satisfied provided

ψ(t) = Φ(1− t)X(t) + t(1− t)Φ′(1− t)Y (t) + t2(1− t)2Φ′′(1− t) ≥ 0,
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where

X(t) = (1− t)2(b− 1)

(
− 1

α
+ b− 2

)
− (c− a− b)t(1− t)

(
− 1

α
+ 2b− 2

)
+ (c− a− b)(c− a− b− 1)t2,

Y (t) = 2(c− a− b)t+ (1− t)
(

1

α
− 2b+ 2

)
.

Since Φ(1 − t) = 1 + Σ∞n=1bn(1 − t)n, bn ≥ 0 for n ≥ 1, the functions Φ(1 − t),

Φ′(1− t) and Φ′′(1− t) are nonnegative for t ∈ (0, 1). Therefore, it suffices to show

X(t) ≥ 0 and Y (t) ≥ 0,

and these evidently hold provided c ≥ a+ b+ 1 and 0 < b ≤ min{1, 2 + 1/α, (2 +

1/α)/2} = 1.

Remark 4.4 For γ = 0 and α ≥ 1, Theorem 4.10 extends Theorem 3.1 in [28, p.

9, (µ = 0)] for α ∈ [1/2, 1]. When α = 1, the range of b obtained in [28] lies

in the interval (0, 1/2], whereas the range of b obtained in Theorem 4.10 for this

particular case lies in (0, 1].

Remark 4.5 As shown in [28], choosing

Φ(1− t) = F (c− a, 1− a, c− a− b+ 1; 1− t)

gives

K =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
.
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In this case, Vλ(f) reduces to the Hohlov operator given by

Vλ(f)(z) = Ha,b,c(f)(z) = zF (a, b; c; z) ∗ f(z)

= K

∫ 1

0
tb−2(1− t)c−a−bF (c− a, 1− a, c− a− b+ 1; 1− t) f(tz)dt,

where a > 0, b > 0, and c− a− b+ 1 > 0. In the case γ = 0 and α ≥ 1, Theorem

4.10 extends Theorem 1 in [45, p. 122] and Theorem 3.2 in [28, p. 11]. When

α = 1, the range of b obtained in [28] lies in the interval (0, 1/2], whereas the

range of b in Theorem 4.10 lies in (0, 1]. This result improves as well Theorem 1

obtained by Choi et al. [45] for the particular case α = 1.

In particular, for a = 1, b = a and c = a+ b, Theorem 4.10 yields Corollary 2

in [21, p. 302] and Corollary 2 in [47, p. 916, (γ = 0)].

Corollary 4.7 [21, Corollary 2, p. 302] For 0 < a < 1, b > 2 and f ∈ Pβ, let

F (z) = zF (1, a; a+ b; z) ∗ f(z),

and β < 1 defined by

β − 1
2

1− β
= − Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
ta−1(1− t)b−1 dt

(1 + t)2
.

Then F is convex. The result does not holds for smaller β.

Choosing now (see [28, Theorem 3.3, p.12])

Φ(1− t) =

(
log(1/t)

1− t

)p−1

in Theorem 4.10 yields the following interesting result, which we state as a theorem.
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Theorem 4.11 Let −1 < a ≤ 0, α ≥ 1, and p ≥ 2. Let β < 1 satisfy

β − 1/2

1− β
= −(1 + a)p

Γ(p)

∫ 1

0
ta
(

log
1

t

)p−1

q(t)dt,

where q is given by (4.8). If f ∈ Wβ(α, 0), then the function Φp(a; z) ∗ f(z)

defined by (4.33) belongs to CV. The value of β is sharp.

Proof. Choose

Φ(1− t) =

(
log(1/t)

1− t

)p−1

,

c− a− b = p− 1 and b = a+ 1 so that λ defined by equation (4.37) takes the form

λ(t) = Kta(1− t)p−1Φ(1− t), K =
(1 + a)p

Γ(p)
.

The desired result now follows from Theorem 4.10.

Remark 4.6 For the particular case α = 1, this result improves Theorem 3.3 by

Balasubramanian et al. [28], where the range of a obtained there has been improved

from (−1,−1/2] to (−1, 0].

4.5 A Generalized Integral Operator

In [21], Ali and Singh generalized the operator (4.1) and considered

Vλ(f)(z) := ρz + (1− ρ)Vλ(f) = z

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z) (ρ < 1). (4.38)

In this final section, Theorem 4.1 is generalized to obtain conditions on λ such

that Vλ(f) is starlike or convex for f ∈ Wβ(α, γ). As an application, the results

obtained will be applied for λ(t) = (1+c)tc. Specifically, Starlikeness and convexity

of a generalization of the Bernardi transform are investigated.
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Theorem 4.12 Let Πµ,ν and Λν be given as in Theorem 4.1. Assume that both

Πµ,ν and Λν are integrable on [0, 1], and positive on (0, 1). Assume further that

ρ < 1 and f ∈ A. Let β < 1 satisfy

1

2(1− β)(1− ρ)
=

∫ 1

0
λ(t) (1− q(t)) dt, (4.39)

where q is the solution of the initial-value problem (4.6). Then



Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0, γ > 0,

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0, γ = 0,

if and only if Vλ(f) is in CV for f ∈ Wβ(α, γ). The conclusion does not hold for

smaller values of β.

Proof. Let f ∈ Wβ(α, γ). In view of the fact stated in (4.9) that

Vλ(f) ∈ ST ⇐⇒ 1

z
(Vλ(f) ∗ h)(z) 6= 0 (z ∈ U),

where h is given by (4.10), and Vλ(f) ∈ CV if and only if zV ′λ(f) ∈ ST , the

condition becomes

0 6= 1

z
(zV ′λ(f) ∗ h(z))

=
1

z
(Vλ(f) ∗ zh′(z)) =

1

z

[
z

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z)dt ∗ zh′(z)

]
=

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z)

z
∗ h′(z).
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From (4.19), it follows that

0 6=
∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗
[

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ h′(z)

=

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ h′(z) ∗
[

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=

∫ 1

0
λ(t)(1− ρ)

[
h′(tz) +

ρ

1− ρ

]
dt ∗ (1− β)

[
1

z

∫ z

0

1 + xw

1 + yw
dw +

β

1− β

]
∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)h′(tz)dt+

ρ

(1− ρ)(1− β)
+

β

1− β

]
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

ρ

(1− ρ)(1− β)
+

β

1− β

]
∗ 1 + xz

1 + yz
∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ 1 + xz

1 + yz
∗ ψ(z).

Theorem 1.14 (p. 21) shows that the set of functions g given by (4.18) has a dual

set which includes the analytic functions p satisfying p(0) = 1 and Re p(z) > 1/2
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in U . Hence

0 6=(1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ 1 + xz

1 + yz
∗ ψ(z)

⇐⇒Re (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ ψ(z) > 1/2

⇐⇒Re (1− ρ)(1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt− (1− 1

2(1− ρ)(1− β)
)

]
∗ ψ(z) > 0

⇐⇒Re

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw

)
dt− (1− 1

2(1− ρ)(1− β)
)

]
∗ ψ(z) > 0.

Using (4.39), this condition is equivalent to

Re

[∫ 1

0
λ(t)

(
1

z

∫ z

0
h′(tw)dw − q(t)

)
dt

]
∗ ψ(z) > 0,

which as proved in Theorem 4.1, after changing variable and integrating-by-parts

with respect to t yields

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0.

Taking γ = 0 and α > 0, Theorem 4.12 leads to Theorem 2.5 obtained by

Balasubramanian et al. in [28] for the case α ∈ [1/2, 1], and it reduces to Theorem

3 obtained by Ali and Singh in [21] when γ = 0, α = 1.

Corollary 4.8 [21, Theorem3, p. 303] Let λ, Λ be given as in Corollary 4.2.

Assume that Λ is integrable on [0, 1], and positive on (0, 1). Assume further that
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ρ < 1 and f ∈ A. Let β < 1 satisfy

1

2(1− β)(1− ρ)
=

∫ 1

0
λ(t)

t(2 + t)

(1 + t)2
dt.

Then (4.22) holds if and only if Vλ(f) is in CV for f ∈ Wβ(1, 0) = Pβ. The

conclusion does not hold for smaller values of β.

Theorem 4.13 Let Πµ,ν and Λν be given as in Theorem 4.1. Assume that both

Πµ,ν and Λν are integrable on [0, 1], and positive on (0, 1). Assume further that

ρ < 1 and f ∈ A. Let β satisfy

1

2(1− β)(1− ρ)
=

∫ 1

0
λ(t)

(
1− g(t)

2

)
dt, (4.40)

where g is the solution of the initial-value problem

d

dt
t1/ν(1 + g(t)) =


2

µν
t1/ν−1

∫ 1

0

s1/µ−1

(1 + st)2
ds, γ > 0,

2

α

t1/α−1

(1 + t)2
, γ = 0, α > 0,

(4.41)

with g(0) = 1. Then



Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt > 0, γ > 0,

Re

∫ 1

0
Π0,α(t)t1/α−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt > 0, γ = 0,

(4.42)

if and only if Vλ(f) is in ST for f ∈ Wβ(α, γ). The conclusion does not hold for

smaller values of β.

Proof. Let f ∈ Wβ(α, γ). From (4.9) follows that Vλ(f) ∈ ST if and only if
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(Vλ(f)(z) ∗ h(z))/z 6= 0 where h is given by (4.10), hence the condition becomes

0 6= 1

z
(Vλ(f) ∗ h(z)) =

1

z

[
z

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z)dt ∗ h(z)

]
=

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ f(z)

z
∗ h(z)

z
.

From (4.19), it is evident that

0 6=
∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗
[

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ h(z)

z

=

∫ 1

0
λ(t)

1− ρtz
1− tz

dt ∗ h(z)

z
∗
[

1

z

∫ z

0

(
(1− β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=

∫ 1

0
λ(t)(1− ρ)

[
h(tz)

tz
+

ρ

1− ρ

]
dt ∗ (1− β)

[
1

z

∫ z

0

1 + xw

1 + yw
dw +

β

1− β

]
∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)

h(tz)

tz
dt+

ρ

(1− ρ)(1− β)
+

β

1− β

]
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

ρ

(1− ρ)(1− β)
+

β

1− β

]
∗ 1 + xz

1 + yz
∗ ψ(z)

= (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ 1 + xz

1 + yz
∗ ψ(z).
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By Theorem 1.14 (p. 21), it follows that

0 6=(1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ 1 + xz

1 + yz
∗ ψ(z)

⇐⇒Re (1− β)(1− ρ)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt+

1

(1− ρ)(1− β)
− 1

]
∗ ψ(z) > 1/2

⇐⇒Re (1− ρ)(1− β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw

)
dt− (1− 1

2(1− ρ)(1− β)
)

]
∗ ψ(z) > 0

To complete the proof, it suffices to verify

Re

∫ 1

0
λ(t)

[(
1

z

∫ z

0

h(tw)

tw
dw

)
dt−

(
1− 1

2(1− ρ)(1− β)

)]
∗ ψ(z) > 0.

Substituting the value of β given by (4.40), the latter condition is equivalent to

Re

(∫ 1

0
λ(t)

(
1

z

∫ z

0

h(tw)

tw
dw − 1 + g(t)

2

)
dt

)
∗ ψ(z) > 0.

From (4.5), the above inequality is equivalent to

Re

[∫ 1

0
λ(t)

(
1 +

∞∑
n=1

Bn+1
(tz)n

n+ 1
− q(t)

)
dt

]
∗

(
1 +

∞∑
n=1

n+ 1

(nν + 1)(nµ+ 1)
zn

)
> 0
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where h(z) = z +
∑∞
n=2Bnz

n. Thus

0 < Re

∫ 1

0
λ(t)

(
1 +

∞∑
n=1

Bn+1

(nν + 1)(nµ+ 1)
(tz)n − 1 + g(t)

2

)
dt

= Re

∫ 1

0
λ(t)

( ∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

dηdζ

1− zηνζµ
∗ h(tz)

tz
− 1 + g(t)

2

)
dt

= Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

h(tzηνζµ)

tzηνζµ
dηdζ − 1 + g(t)

2

)
dt,

which reduces to

Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

1

µν

h(tzuv)

tzuv
u1/ν−1v1/µ−1dvdu− 1 + g(t)

2

)
dt > 0.

A change of variable w = tu leads to

Re

∫ 1

0

λ(t)

t1/ν

(∫ t

0

∫ 1

0

h(wzv)

wzv
w1/ν−1v1/µ−1dvdw − µνt1/ν 1 + g(t)

2

)
dt > 0.

Integrating by parts with respect to t and using (4.41) gives the equivalent form

Re

∫ 1

0
Λν(t)

(∫ 1

0

h(tzv)

tzv
t1/ν−1v1/µ−1dv − t1/ν−1

∫ 1

0

s1/µ−1

(1 + st)2
ds

)
dt > 0.

Making the variable change w = vt and η = st reduces the above inequality to

Re

∫ 1

0
Λν(t)t1/ν−1/µ−1

(∫ t

0

h(wz)

wz
w1/µ−1dw −

∫ t

0

η1/µ−1

(1 + η)2
dη

)
dt > 0,

which after integrating by parts with respect to t yields

Re

∫ 1

0
Πµ,ν(t)t1/µ−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt > 0.

Thus F ∈ ST if and only if condition (4.42) holds.
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Taking γ = 0 and α > 0, Theorem 4.13 leads to Theorem 2.4 obtained by

Balasubramanian et al. in [28] for the case α ∈ [1/2, 1], and to Theorem 2 obtained

by Ali and Singh in [21] and Theorem 3 in [47, p. 916] for the case γ = 0, α = 1.

Corollary 4.9 [21, Theorem 3, p. 303] Let λ, Λ be given as in Corollary 4.2.

Assume that Λ is integrable on [0, 1], and positive on (0, 1). Assume further that

ρ < 1 and f ∈ A. Let β < 1 satisfy

1

2(1− β)(1− ρ)
=

∫ 1

0
λ(t)

t

1 + t
dt.

Then

Re

∫ 1

0
Λ(t)t1/α−1

(
h(tz)

tz
− 1

(1 + t)2

)
dt > 0

holds if and only if Vλ(f) is in ST for f ∈ Wβ(1, 0) = Pβ. The conclusion does

not hold for smaller values of β.

For the case α = 1 + 2γ, Theorem 4.12 reduces to the following result.

Corollary 4.10 Let f ∈ Wβ(1 + 2γ, γ) = Rγ(β), γ ≥ 0, and let β < 1 satisfy

(4.39). Assume Λγ is defined by (4.13) and Πγ is defined by (4.23). Then

Re

∫ 1

0
Πγ(t)

(
h′(tz)− 1− t

(1 + t)3

)
dt > 0,

where h is given by (4.10), if and only if F (z) = Vλ(f)(z) is in CV . The conclusion

does not hold for smaller values of β.

Now the results obtained are applied to the generalization of the Bernadri

transform. Choosing λ(t) = (1+c)tc, Theorem 4.12 leads to the following corollary.

Corollary 4.11 Let c > −1, γ > 0, ρ < 1, and β < 1 satisfy

1

2(1− β)(1− ρ)
= (1 + c)

∫ 1

0
tc (1− q(t)) dt,
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where q is given by (4.6). If f ∈ Wβ(α, γ), then the function

Vλ(f)(z) = ρz + (1− ρ)(1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to CV provided

c ≤ 2 +
1

µ
− 1

ν
(ν ≥ µ ≥ 1).

The value of β is sharp.

The following sufficient condition for f ∈ Wβ(α, γ) to be starlike was obtained

by Ali et al. [7, p. 816].

Theorem 4.14 [7, Theorem 4.2, p. 816] Let λ be a non-negative real-valued inte-

grable function on [0, 1]. Assume that Λν and Πµ,ν given respectively by (4.13) and

(4.14) are both integrable on [0, 1], and positive on (0, 1). Under the assumptions

stated in Theorem 4.1, if λ satisfies

tλ′(t)
λ(t)

≤


1 +

1

µ
, µ ≥ 1 (γ > 0),

3− 1
α , γ = 0, α ∈ (0, 1/3] ∪ [1,∞),

(4.43)

then F (z) = Vλ(f)(z) ∈ ST . The conclusion does not hold for smaller values of

β.

Using the sufficient condition (4.43) obtained by Ali et al. [7] and Choosing

λ(t) = (1 + c)tc, Theorem 4.13 reduces to the following result.

Corollary 4.12 Let c > −1, ρ < 1, and β < 1 satisfy

1

2(1− β)(1− ρ)
= (1 + c)

∫ 1

0
tc
(

1− g(t)

2

)
dt,
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where g is given by (4.41). If f ∈ Wβ(α, γ), then the function

Vλ(f)(z) = ρz + (1− ρ)(1 + c)

∫ 1

0
tc−1f(tz)dt

belongs to ST provided

c ≤


1 + 1

µ , µ ≥ 1 (γ > 0),

3− 1
α , γ = 0, α ∈ (0, 1/3] ∩ [1,∞).

The value of β is sharp.
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CHAPTER 5

COEFFICIENT CONDITION FOR STARLIKENESS AND

CONVEXITY

5.1 Introduction

For 0 ≤ α < 1, let ST (α) and CV(α) be the class of starlike and convex functions

of order α. Analytically,

ST (α) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α

}
,

and

CV(α) :=

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

}
.

Closely related are the classes of functions

ST α :=

{
f ∈ A :

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− α
}
,

and

CVα :=

{
f ∈ A :

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1− α
}
,

introduced by Ruscheweyh [171]. Note that ST α ⊆ ST (α) and CVα ⊆ CV(α).

For α ≥ 0, and β < 1, let

Rα(β) =
{
f ∈ A : Re

(
f ′(z) + αzf ′′(z)

)
> β, z ∈ U

}
, (5.1)

and R(β) := R1(β). In 1962, Krzyż [86] by a counter example showed that

functions f ∈ R(0) are not necessarily convex. In 1977, Chichra [42] proved that

R(0) ⊂ S, while in 1981, Singh and Singh [185] showed that R(0) ⊂ ST . Singh

and Singh [186] proved that for β ≥ −1/4, R(β) ⊂ ST . Ali [5] conjectured the

best value of β is β = (1 − 2 log 2)/(2 − 2 log 2) = −0.626. In 1994, Fournier and
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Ruscheweyh [53] applied the Duality Principle and verified Ali’s conjecture [5] for

β such that R(β) ⊂ ST . Ali and Singh [21] also investigated the sharp bound for

β that ensures functions f ∈ R(β) are starlike of order γ.

Mocanu [113,114] proved that

Re

(
f ′(z) +

1

2
zf ′′(z)

)
> 0⇒ Re

zf ′(z)

f(z)
> 0,

Re
(
f ′(z) + zf ′′(z)

)
> 0⇒

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < π

3
,

Re

(
f ′(z) +

1

2
zf ′′(z)

)
> 0⇒

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < 4π

9
.

Sălăgean [176] improved the above mentioned results for the class T of all analytic

functions with negative coefficients of the form

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0). (5.2)

We recall here the notations for subclasses of T as follows: T ST (α) = T ∩ST (α),

T ST α = T ∩ ST α, T CV(α) = T ∩ CV(α), and T CVα = T ∩ CVα. Several

interesting results for functions f ∈ T were determined by Sălăgean [176]. For

instance, Sălăgean [176] proved the following result.

Theorem 5.1 [176, Corollary 2.2] If f ∈ T , then

Re
(
f ′(z) + γzf ′′(z)

)
> β ⇒ Re

zf ′(z)

f(z)
> δ,

where

δ =


2(β+γ)
2γ+β+1 , β ∈ [−1, 0], γ > 1,

2γ
2γ−β+1 , β ∈ [0, 1), γ > 0.
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Lewandowski et al. [92] investigated the class of analytic functions satisfying

Re

(
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> 0 (z ∈ U) (5.3)

and proved that a function f satisfying (5.3) is starlike. For β < 1, α ≥ 0, a

function f ∈ A belongs to the class L(α, β) if it satisfies the inequality

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> β. (5.4)

Clearly, L(0, β) = ST (β). For β ≥ −α/2, Li and Owa [93] proved that L(α, β) ⊂

ST . The class L(α, β) has been extensively studied by Ramesha et al. [157],

Obradović and Joshi [134], Nunokawa et al. [133], Padmanabhan [142], Liu et

al. [97], and Ravichandran [162]. Ravichandran [160] also investigated functions f

satisfying (5.4) using differential subordination.

The following sufficient condition for functions f ∈ A to belong to the class

L(α, β) is needed (Lemma 1.1).

Lemma 5.1 [97] Let β < 1, and α ≥ 0. If f ∈ A satisfies the inequality

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤ 1− β, (5.5)

then f ∈ L(α, β).

In Section 5.2, the largest bound for β is determined so that analytic functions

f(z) = z +
∑∞
n=2 anz

n satisfying the inequality
∑∞
n=2 n(n − 1)|an| ≤ β is either

starlike or convex of some positive order. In Section 5.3, a similar problem is

investigated for functions f satisfying the coefficient inequality
∑∞
n=2

(
αn2 + (1−

α)n − β
)
|an| ≤ 1 − β. In fact, the sharp bound for the order of starlikeness and

convexity of functions f satisfying the coefficient inequality
∑∞
n=2

(
αn2 + (1 −

α)n−β
)
|an| ≤ 1−β are obtained. In Section 5.4, the largest value is obtained that
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bounds each coefficient inequality of the form
∑
nan,

∑
n(n− 1)an,

∑
(n− 1)an

and
∑
n2an so that the function is starlike or convex of positive order. In the final

section, the results obtained are applied to determine conditions on the parameters

so that the hypergeometric functions belong to the class L(α, β).

5.2 Sufficient Coefficient Estimates for Starlikeness and Convexity

In 1962, necessary and sufficient condition for a function to be starlike was proved

by Merkes et al. [105, Theorem 2, p. 961] (Theorem 1.11). In 1975, Silverman [182,

Theorem 1, p. 110] independently also obtained the same result and used it to

investigate several problems on functions with negative coefficients. Necessary and

sufficient conditions for convex functions follow by an application of Alexander’s

result, and it was proved in [182, Corollary 1, p. 110]. These results are stated in

the following theorem.

Theorem 5.2 Let 0 ≤ α < 1.

(1) If f(z) = z +
∑∞
n=2 anz

n satisfies the inequality

∞∑
n=2

(n− α)|an| ≤ 1− α, (5.6)

then f ∈ ST α. If an ≤ 0, then (5.6) is also necessary for f ∈ ST (α).

(2) Similarly, if f satisfies the inequality

∞∑
n=2

n(n− α)|an| ≤ 1− α, (5.7)

then f ∈ CVα. If an ≤ 0, then (5.7) is necessary for f ∈ CV(α).

The following theorem provides a sufficient coefficient inequality for functions

to be in the classes CVα or ST α.
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Theorem 5.3 Let α ∈ [0, 1), and f(z) = z+
∑∞
n=2 anz

n ∈ A satisfy the inequality

∞∑
n=2

n(n− 1)|an| ≤ β < 1. (5.8)

(1) The function f belongs to the class CVα if β ≤ (1 − α)/(2 − α). The bound

(1− α)/(2− α) is sharp.

(2) The function f belongs to the class ST α if β ≤ 2(1− α)/(2− α). The bound

2(1− α)/(2− α) is sharp.

Proof. (1) Let f satisfy inequality (5.8) with β ≤ (1− α)/(2− α). Since

n− α ≤ (2− α)(n− 1) (5.9)

for n ≥ 2, inequality (5.8) leads to

∞∑
n=2

n(n− α)|an| ≤ (2− α)
∞∑
n=2

n(n− 1)|an| ≤ (2− α)β ≤ 1− α.

Thus, it follows from Theorem 5.2 (2) that f ∈ CVα. The function f0 : U → C

defined by

f0(z) = z − 1− α
2(2− α)

z2

satisfies the hypothesis of Theorem 5.2 and therefore f0 ∈ CVα. This function f0

shows that the bound for β is sharp.

(2) Now, let f satisfy inequality (5.8) with β ≤ 2(1−α)/(2−α). When n ≥ 2,

inequality (5.9) leads to

(n− α) ≤ n(n− α)

2
≤ (2− α)n(n− 1)

2
,
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and hence

∞∑
n=2

(n− α)|an| ≤
(2− α)

2

∞∑
n=2

n(n− 1)|an| ≤ (1− α).

By Theorem 5.2 (1), f ∈ ST α. The function

f0(z) = z − 1− α
2− α

z2 ∈ ST α

shows that the result is sharp.

Theorem 5.3 (1) will be applied to a certain class of uniformly convex functions.

A function f ∈ S is uniformly convex, if f maps every circular arc γ contained in

U with center ζ ∈ U onto a convex arc. Goodman [62] introduced the class UCV

and gave a two-variable analytic characterization for the class UCV , while Rønning

[167], and Ma and Minda [103] independently gave a one-variable characterization

for f ∈ UCV by using the minimum principle for harmonic functions:

f ∈ UCV ⇔
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < Re

(
1 +

zf ′′(z)

f ′(z)

)
(z ∈ U).

In 1999, Kanas and Wisniowska [75,76] extended the class UCV by introducing

the class k−UCV of k-uniformly convex functions. A function f ∈ S is k-uniformly

convex (k ≥ 0), if f maps every circular arc γ contained in U with center ζ, |ζ| ≤ k,

onto a convex arc. Kanas and Wisniowska [75,76] showed that f ∈ k−UCV if and

only if f satisfies the inequality

k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < Re

(
1 +

zf ′′(z)

f ′(z)

)
(0 ≤ k <∞, z ∈ U).

This analytic characterization was used by Kanas and Wisniowska [75] to obtain

the following sufficient condition for a function to be k-uniformly convex.
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Corollary 5.1 [75, Theorem 3.3, p. 334] If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies

the inequality
∞∑
n=2

n(n− 1)|an| ≤
1

k + 2
,

then f ∈ k − UCV. Further, the bound 1/(k + 2) is sharp.

Proof. From Theorem 5.3 (1), it follows that f ∈ CVk/(k+1), and hence

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1

k + 1
. (5.10)

Inequality (5.10) yields

k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < k

k + 1
= 1− 1

k + 1
< 1−

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1 + Re

(
zf ′′(z)

f ′(z)

)
,

and hence f ∈ k − UCV . The result is sharp for the function f0 ∈ k − UCV given

by

f0(z) = z − 1

2(k + 2)
z2.

Remark 5.1 The above result extended Goodman’s [62, Theorem 6] case of k = 1

for functions to be k-uniformly convex. In the special case k = 0, Corollary 5.1

shows that the bound is 1/2 for functions to be convex.

Alexander’s relation shows that f ∈ CVα if and only if zf ′ ∈ ST α, and

Theorem 5.3 (1) now readily yields the following result.

Corollary 5.2 Let α ∈ [0, 1). If f(z) = z +
∑∞
n=2 anz

n ∈ A and

∞∑
n=2

(n− 1)|an| ≤
1− α
2− α

,
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then f ∈ ST α. Further, the bound (1− α)/(2− α) is sharp.

The corollary above can also be deduced from Theorem 5.2 (1) and the inequality

n− α ≤ (2− α)(n− 1), n ≥ 2.

The class PST of parabolic starlike functions of order α ∈ [0, 1) consists of

functions f satisfying the inequality

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− 2α + Re

(
zf ′(z)

f(z)

)
.

A sufficient coefficient inequality condition for functions to be parabolic starlike

is given in the following result.

Corollary 5.3 [6, Theorem 3.1, p. 564] Let α ∈ [0, 1). If f(z) = z +
∑∞
n=2 anz

n

satisfies the inequality
∑∞
n=2(n − 1)|an| ≤ (1 − α)/(2 − α), then f is parabolic

starlike of order α. The bound (1 − α)/(2 − α) cannot be replaced by a larger

number.

Remark 5.2 Corollary 5.3 for the class of parabolic starlike functions of order ρ

was obtained by Ali [6, Theorem 3.1, p. 564] by using a two-variable characteriza-

tion of a corresponding class of uniformly convex functions.

Theorem 5.4 Let α ∈ [0, 1) and f(z) = z +
∑∞
n=2 anz

n ∈ A.

(1) If
∑∞
n=2 n|an| ≤ 1− α , then f ∈ ST α.

(2) If
∑∞
n=2 n

2|an| ≤ 1− α , then f ∈ CVα.

(3) If
∑∞
n=2 n

2|an| ≤ 4(1 − α)/(2 − α) , then f ∈ ST α and the bound 4(1 −

α)/(2− α) is sharp.

Proof. The first two parts follow from Theorem 5.2 and the simple inequality
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n− α < n. Indeed,

∞∑
n=2

(n− α)|an| ≤
∞∑
n=2

n|an| ≤ 1− α⇒ f ∈ ST α,

∞∑
n=2

n(n− α)|an| ≤
∞∑
n=2

n2|an| ≤ 1− α⇒ f ∈ CVα.

The third follows from Theorem 5.2 (1) and use of the identity (n− α) ≤ n2(2−

α)/4 (n ≥ 2). In view of this, it follows that

∞∑
n=2

(n− α)|an| ≤
2− α

4

∞∑
n=2

n2|an| ≤ 1− α⇒ f ∈ ST α.

The result is sharp as demonstrated by the function f0 given by

f0(z) = z − 1− α
2− α

z2.

5.3 The Subclass L(α, β)

The following theorem provides sufficient coefficient conditions for functions to

belong to either L(α, β) ∩ ST η or L(α, β) ∩ CVη, β < 1, for an appropriate value

η.

Theorem 5.5 Let β < 1, and f ∈ A satisfy inequality (5.5).

(1) The function f is in the class ST η if η ≤ (2α + β)/(2α + 1), α ≥ 0. The

bound (2α + β)/(2α + 1) is sharp.

(2) The function f is in the class CVη if η ≤ (α− 1 + β)/α, α > 0, β ≥ 0.

Proof. (1) If η ≤ η0 := (2α + β)/(2α + 1), then ST η0 ⊂ ST η. Hence it is enough

to prove that f ∈ ST η0 . The inequality

(2α + 1)n− 2α ≤ αn2 + (1− α)n (n ≥ 2, α ≥ 0)
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together with inequality (5.5) show that

∞∑
n=2

(n− η0)|an| =
∞∑
n=2

(2α + 1)n− 2α− β
2α + 1

|an|

≤
∞∑
n=2

αn2 + (1− α)n− β
2α + 1

|an|

≤ 1− β
2α + 1

= 1− η0.

It is now evident from Theorem 5.2 (1) that f ∈ ST η0 . The result is sharp for the

function f0 ∈ ST η0 given by

f0(z) = z − 1− β
2α + 2− β

z2.

(2) If η ≤ η0 := (α − 1 + β)/α, then CVη0 ⊂ CVη. Hence it suffices to show

f ∈ CVη0 . The inequality

αn2 + (1− α)n− nβ ≤ αn2 + (1− α)n− β (n ≥ 2, β ≥ 0)

together with inequality (5.5) yield

∞∑
n=2

n(n− η0)|an| =
1

α

∞∑
n=2

(
αn2 + (1− α)n− nβ

)
|an|

≤ 1

α

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an|

≤ 1− β
α

= 1− η0.

It follows now from Theorem 5.2(2) that f ∈ CVη0 .

Along similar lines with Theorem 5.3, the following result provides a sufficient

coefficient inequality for functions to belong to the class L(α, β).

Theorem 5.6 Let β < 1, and f(z) = z +
∑∞
n=2 anz

n ∈ A.
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(1) If f satisfies
∑∞
n=2 n(n − 1)|an| ≤ 2(1 − β)/(2α + 2 − β), α ≥ 0, then f ∈

L(α, β). The bound 2(1− β)/(2α + 2− β) is sharp.

(2) Let 0 ≤ α ≤ 1 and η ∈ R be given by

η =


4(1− β)/(3α + 1), α + β ≥ 1,

4(1− β)/(2α + 2− β), α + β ≤ 1.

If f satisfies
∑∞
n=2 n

2|an| ≤ η, then f ∈ L(α, β). The result is sharp for

α + β ≤ 1.

Proof. (1) Since

2αn2 + 2(1− α)n− 2β ≤ (2α + 2− β)n(n− 1) (n ≥ 2),

it follows that

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤

1

2

∞∑
n=2

n(n− 1)(2α + 2− β)|an| ≤ 1− β.

Lemma 5.1 now yields f ∈ L(α, β). The result is sharp for the function f0 ∈

L(α, β) given by

f0(z) = z − 1− β
2α + 2− β

z2.

(2) Let α + β ≥ 1, and
∑∞
n=2 n

2|an| ≤ 4(1− β)/(3α + 1). In this case, since

4
(
αn2 + (1− α)n− β

)
≤ (3α + 1)n2 (n ≥ 2),

it readily follows that

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤

3α + 1

4

∞∑
n=2

n2|an| ≤ 1− β.
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Lemma 5.1 shows that f ∈ L(α, β).

Now, let α + β ≤ 1 and
∑∞
n=2 n

2|an| ≤ 4(1 − β)/(2α + 2 − β). In this case,

the inequality

4
(
αn2 + (1− α)n− β

)
≤ n2(2α + 2− β) (n ≥ 2)

shows that

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤

1

4

∞∑
n=2

n2(2α + 2− β)|an| ≤ 1− β,

and hence, Lemma 5.1 implies that f ∈ L(α, β). The function f0 ∈ L(α, β) given

by

f0(z) = z − 1− β
2α + 2− β

z2

demonstrates sharpness of the result.

5.4 Functions with Negative Coefficients

For functions with negative coefficients, the next theorem proves the equiva-

lence between the inequalities
∑∞
n=2 n(n− 1)an ≤ β and |f ′′(z)| < β.

Theorem 5.7 Let β > 0, and f(z) = z −
∑∞
n=2 anz

n ∈ T . Then

|f ′′(z)| ≤ β ⇐⇒
∞∑
n=2

n(n− 1)an ≤ β.

Proof. The necessary condition follows by allowing z → 1− in

|f ′′(z)| =

∣∣∣∣∣
∞∑
n=2

n(n− 1)anz
n−2

∣∣∣∣∣ ≤ β.
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If f satisfies the coefficient inequality
∑∞
n=2 n(n− 1)an ≤ β, then

|f ′′(z)| ≤
∞∑
n=2

n(n− 1)an|z|n−2 ≤
∞∑
n=2

n(n− 1)an ≤ β.

Remark 5.3 It is known that functions f ∈ A satisfying the inequality |f ′′(z)| ≤

β for 0 < β ≤ 1are starlike, and if |f ′′(z)| ≤ β for 0 < β ≤ 1/2, then f ∈ CV [188,

Theorem 1, p.1861].

Theorem 5.8 Let 0 ≤ α < 1, and f(z) = z −
∑∞
n=2 anz

n ∈ T .

(1) If f ∈ T CV(α), then
∑∞
n=2 nan ≤ (1−α)/(2−α). The bound (1−α)/(2−α)

is sharp.

(2) If f ∈ T CV(α), then
∑∞
n=2 n(n− 1)an ≤ 1− α.

(3) If f ∈ T CV(α), then
∑∞
n=2(n − 1)an ≤ (1 − α)/2(2 − α). The bound (1 −

α)/2(2− α) is sharp.

(4) If f ∈ T CV(α), then
∑∞
n=2 n

2an ≤ 2(1−α)/(2−α). The bound 2(1−α)/(2−α)

is sharp.

Proof. The results follow from Theorem 5.2 (2).

(1) Since 2− α ≤ n− α (n ≥ 2), it follows that

∞∑
n=2

nan ≤
∞∑
n=2

n(n− α)

2− α
an ≤

1− α
2− α

.

(2) From n− 1 ≤ n− α readily follows that

∞∑
n=2

n(n− 1)an ≤
∞∑
n=2

n(n− α)an ≤ 1− α.

127



(3) The inequality 2(2− α)(n− 1) ≤ n(n− α) shows that

∞∑
n=2

(n− 1)an ≤
∞∑
n=2

n(n− α)

2(2− α)
an ≤

1− α
2(2− α)

.

(4) By using n2(2− α) ≤ 2n(n− α), it follows that

∞∑
n=2

n2an ≤
∞∑
n=2

2n(n− α)

2− α
an ≤

2(1− α)

2− α
.

The results are sharp for the function f0 given by

f0(z) = z − 1− α
2(2− α)

z2.

The Alexander’s relation between T CV(α) and T ST (α) readily yields the

following corollary.

Corollary 5.4 Let 0 ≤ α < 1, and f(z) = z −
∑∞
n=2 anz

n ∈ T .

(1) If f ∈ T ST (α), then
∑∞
n=2 an ≤ (1−α)/(2−α). The bound (1−α)/(2−α)

is sharp.

(2) If f ∈ T ST (α), then
∑∞
n=2(n− 1)an ≤ 1− α.

(3) If f ∈ T ST (α), then
∑∞
n=2 nan ≤ 2(1−α)/(2−α). The bound 2(1−α)/(2−α)

is sharp.

Let T L(α, β) be the subclass of L(α, β) consisting of functions with negative

coefficients. For functions in T L(α, β), the following lemma holds.

Lemma 5.2 [97, Theorem 8, p.414] Let β < 1, α ≥ 0, and f(z) = z−
∑∞
n=2 anz

n.

Then

f ∈ T L(α, β)⇐⇒
∞∑
n=2

(
αn2 + (1− α)n− β

)
an ≤ 1− β.
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Corollary 5.5 Let β < 1, α > 0 and f ∈ T L(α, β).

(1) The function f ∈ T ST η provided η ≤ (2α + β)/(2α + 1), and the bound

(2α + β)/(2α + 1) is sharp.

(2) The function f ∈ T CVη provided η ≤ (α− 1 + β)/α, β ≥ 0.

Proof. The result follows from Lemma 5.2 and Theorem 5.5.

The next result shows that T CV
(
(2α + 3β − 2)/(2α + β)

)
⊂ T L(α, β) for

0 ≤ β < 1, α ≥ 0.

Theorem 5.9 Let 0 ≤ β < 1, and α ≥ 0. If η ≥ (2α + 3β − 2)/(2α + β), then

T CV(η) ⊆ T L(α, β).

Proof. For η0 ≤ η, T CV(η) ⊂ T CV(η0) and therefore it is sufficient to prove

T CV(η0) ⊆ T L(α, β) where η0 = (2α+3β−2)/(2α+β). For n ≥ 2, the inequality

2αn2 + 2(1− α)n− 2β ≤ n
(
(2α + β)n− (2α + 3β − 2)

)
holds. Theorem 5.2 (2) for f(z) = z −

∑∞
n=2 anz

n (an ≥ 0) yields

∞∑
n=2

(
αn2 + (1− α)n− β

)
an ≤

1

2

∞∑
n=2

n
(
(2α + β)n− (2α + 3β − 2)

)
an

=
2α + β

2

∞∑
n=2

n(n− η0)an

≤ 2α + β

2
(1− η0)

= 1− β.

It is now evident from Lemma 5.2 that f ∈ T L(α, β).

Theorem 5.10 Let β < 1, and f(z) = z −
∑∞
n=2 anz

n ∈ T L(α, β). Then

(1)
∑∞
n=2 n(n− 1)an < (1− β)/α when α > 0;
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(2)
∑∞
n=2(n− 1)an ≤ η where η = (1− β)/(1− α), β ≤ 3α + 1, 0 ≤ α < 1.

(3) For 0 ≤ α ≤ 1, and

η =


(1− β)/α, β ≤ 2(1− α), α > 0

4(1− β)/(2α + 2− β), β ≥ 2(1− α), β ≥ 0, α > 1/2

then
∑∞
n=2 n

2an ≤ η. The result for β > 2(1− α) is sharp.

(4)
∑∞
n=2 nan ≤ 2(1− β)/(2α + 2− β), α, β ≥ 0. The result is sharp.

Proof. The equivalence in Lemma 5.2 between f ∈ T L(α, β) and

∞∑
n=2

(
αn2 + (1− α)n− β

)
an ≤ 1− β

is used throughout the proof of this theorem.

(1) Since

αn(n− 1) ≤ αn2 + (1− α)n− β (n ≥ 2),

it readily follows that

∞∑
n=2

n(n− 1)an <
∞∑
n=2

αn2 + (1− α)n− β
α

an ≤
1− β
α

.

(2) If β ≤ 3α + 1, then

(n− 1)(1− α) ≤ αn(n− 1) + n− β (n ≥ 2),

and use of this inequality shows that

∞∑
n=2

(n− 1)an ≤
∞∑
n=2

αn2 + (1− α)n− β
1− α

an ≤
1− β
1− α

.

130



(3) If β ≤ 2(1− α), the inequality

αn2 ≤ αn2 + 2(1− α)− β ≤ αn2 + n(1− α)− β

shows that
∞∑
n=2

n2an ≤
∞∑
n=2

αn2 + (1− α)n− β
α

an ≤
1− β
α

.

In the case β ≥ 2(1− α), the inequality

n2(2α + 2− β) ≤ 4(αn2 + (1− α)n− β) (n ≥ 2),

readily gives

∞∑
n=2

n2an ≤
∞∑
n=2

4(αn2 + (1− α)n− β)

2α + 2− β
an ≤

4(1− β)

2α + 2− β
.

(4) For α, β ≥ 0, the inequality

(2α + 2− β)n ≤ 2
(
αn2 + (1− α)n− β

)
shows that

∞∑
n=2

nan ≤
∞∑
n=2

2
(
αn2 + (1− α)n− β

)
2α + 2− β

an ≤
2(1− β)

2α + 2− β
.

The sharpness can be seen by considering the function f0 given by

f(z) = z − 1− β
2α + 2− β

z2 ∈ T L(α, β).
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5.5 Applications to Gaussian Hypergeometric Functions

In this section, appropriate theorems from the previous sections are applied to the

Gaussian hypergeometric functions. For a, b, c ∈ C with c 6= 0,−1,−2, · · · , the

Gaussian hypergeometric function is defined by

F (a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · ,

where (λ)n is the Pochhammer symbol defined in terms of the Gamma function

by

(λ)n =
Γ(λ+ n)

Γ(λ)
(n = 0, 1, 2, . . . ).

This is equivalent to (λ)n = λ(λ+ 1)n−1, (λ)0 = 1 defined on page 29. The series

converges absolutely in U . It also converges on |z| = 1 when Re(c−a−b) > 0. For

Re(c − a − b) > 0, the value of the hypergeometric function F (a, b; c; z) at z = 1

is related to the Gamma function by the Gauss summation formula

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(c 6= 0,−1,−2, · · · ). (5.11)

By making use of Theorem 5.2, Silverman [183] determined conditions on

a, b, c so that the function zF (a, b; c; z) belongs to certain subclasses of starlike

and convex functions. In this section, conditions on the parameters a, b, c are

determined so that the function zF (a, b; c; z) belongs to the class L(α, β). Similar

results holds for other classes of functions investigated in this chapter. The proof

follows by applying appropriate theorems from the previous sections, and the Gauss

summation formula for the Gaussian hypergeometric functions. The method of

proof is similar to those of Silverman [183], and Kim and Ponnusamy [82]. The

following Gauss summation formula for the Gaussian hypergeometric functions is

required.
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Lemma 5.3 [2, Lemma 10, p.169] Let a, b, c > 0.

(1) For c > a+ b+ 1,

∞∑
n=1

n
(a)n(b)n
(c)n(1)n

=
ab

c− a− b− 1
F (a, b; c; 1).

(2) For c > a+ b+ 2,

∞∑
n=1

n2 (a)n(b)n
(c)n(1)n

=

(
(a)2(b)2

(c− a− b− 2)2
+

ab

c− a− b− 1

)
F (a, b; c; 1).

Theorem 5.11 Let a, b ∈ C and c ∈ R satisfy c > |a|+ |b|+ 2. If either

(1) for α ≥ 0, β < 1,

F (|a|, |b|; c; 1)

(
(|a|)2(|b|)2

(c− |a| − |b| − 2)2
+

2|ab|
c− |a| − |b| − 1

)
≤ 2(1− β)

2α + 2− β
,

(5.12)

or

(2) for 1− α ≥ β, α ∈ [0, 1],

F (|a|, |b|; c; 1)

(
(|a|)2(|b|)2

(c− |a| − |b| − 2)2
+

3|ab|
c− |a| − |b| − 1

+ 1

)
≤ 6− 5β + 2α

2α + 2− β
,

(5.13)

then the function zF (a, b; c; z) ∈ L(α, β). In the case b = a, the range of c in

either case can be improved to c > max{0, 2(1 + Re a)}.

Proof. Case 1. For α ≥ 0, β < 1, it follows from the fact |(a)n| ≤ (|a|)n and
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Lemma 5.3 that

∞∑
n=2

n(n− 1)

∣∣∣∣(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣ ≤ ∞∑
n=2

n(n− 1)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= F (|a|, |b|; c; 1)

×
(

(|a|)2(|b|)2

(c− |a| − |b| − 2)2
+

2|ab|
c− |a| − |b| − 1

)
≤ 2(1− β)

2α + 2− β
,

and Theorem 5.6 (1) shows that zF (a, b; c; z) ∈ R(α, β).

Case 2. Let 1− α ≥ β, α ∈ [0, 1]. From Lemma 5.3 follows that

∞∑
n=2

n2
∣∣∣∣(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣ ≤ ∞∑
n=2

n2 (|a|)n−1(|b|)n−1

(c)n−1(1)n−1

= F (|a|, |b|; c; 1)

×
(

(|a|)2(|b|)2

(c− |a| − |b| − 2)2
+

3|ab|
c− |a| − |b| − 1

+ 1

)
− 1

≤ 4(1− β)

2α + 2− β
.

The result follows from Theorem 5.6 (2). For b = a, the proof is similar to the

previous proof, and is therefore omitted.
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CHAPTER 6

SUBORDINATION OF LINEAR OPERATORS SATISFYING A

RECURRENCE RELATION

6.1 Introduction

This chapter deals with the class Am of all analytic functions f of the form

f(z) = zm +
∞∑

k=m+1

akz
k (z ∈ U), (6.1)

with A := A1. Linear operators on Am continued to be of considerable interest,

and widely studied. Many of these investigations rely on the differential recurrence

relation inherited by the operators. For example, the Carlson-Shaffer operator [40]

Lm(a, c) on Am defined by

Lm(a, c)f(z) := zm +
∞∑
k=1

(a)k
(c)k

ak+mz
k+m

satisfies the first-order differential recurrence relation

z(Lm(a, c)f(z))′ = aLm(a+ 1, c)f(z)− (a−m)Lm(a, c)f(z).

Here (a)k is the Pochhammer symbol given by (a)k = a(a + 1)k−1, (a)0 = 1 (p.

29). The multiplier transformation operator and the Dziok-Srivastava are other

examples with a similar first-order differential recurrence relation [18,49].

Consider now the class of all linear operators satisfying a certain first-order

differential recurrence relation. Specifically, let Om be the class of linear operators

La : Am → Am (a ∈ C) satisfying the first-order differential recurrence relation

z[Laf(z)]′ = caLa+1f(z)− (ca −m)Laf(z) (6.2)
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for some ca ∈ C.

This chapter aims to show that the class of functions defined through each

linear operator La in Om can be given a unified treatment. The class Om con-

tains various operators. These include the Bernardi-Libera-Livingston operator,

the Ruscheweyh derivative operator, the Carlson-Shaffer operator, the Hohlov op-

erator, the multiplier transformation as well as several other operators introduced

by various authors [17–19].

The Dziok-Srivastava operator [49, 190] H
l,j
m (α1, . . . , αl; β1, . . . , βj ; z) : Am →

Am is defined by

H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z) := zm +

∞∑
k=m+1

(α1)k−m · · · (αl)k−m
(β1)k−m · · · (βj)k−m

akz
k

(k −m)!
.

(6.3)

It is known [49] that

z[H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z)]′ = α1H

l,j
m (α1 + 1, · · · , αl; β1, · · · , βj ; z)f(z)

−(α1 −m)H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z)f(z).

(6.4)

Clearly, if a = ca = α1, then Laf(z) = H
l,j
m (α1, · · · , αl; β1, · · · , βj ; z) is the Dziok-

Srivastava operator defined in (6.3). Special cases of the Dziok-Srivastava linear

operator are the Hohlov linear operator [72], the Carlson-Shaffer linear operator

[40], the Ruscheweyh derivative operator [169], the generalized Bernardi-Libera-

Livingston linear integral operator [34, 94, 98], and the Srivastava-Owa fractional

derivative operator [135,137].

The multiplier transformation Im(n, λ) on Am given by

Im(n, λ)f(z) := zm +
∞∑

k=m+1

(
k + λ

m+ λ

)n
akz

k, (6.5)
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satisfies

z[Im(n, λ)f(z)]′ = (m+ λ)Im(n+ 1, λ)f(z)− λIm(n, λ)f(z). (6.6)

The multiplier transformation Im(n, λ)f(z) defined in (6.5) is a special case of Laf

when a = n and ca = m+ λ. Note that in this case a and ca are independent.

For α real, a function f ∈ A is α-convex if

Re

(
(1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

))
> 0.

Miller and Mocanu [111, p. 10] have shown that α-convex functions are starlike

for 0 ≤ α ≤ 1. This result is in fact a particular case of the general subordination

implication

φ

(
zf ′(z)

f(z)
, 1 +

zf ′′(z)

f ′(z)
, S(f, z)

)
≺ h(z)⇒ zf ′(z)

f(z)
≺ q(z),

investigated by Miller and Mocanu [107], and Ali et al. [17]. Here S(f, z) denotes

the Schwarzian derivative of f .

In the sequel, we shall consider second-order differential subordination satisfied

by the class of functions defined through a linear operator in Om. This chapter

investigates three differential subordination implications for functions associated
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with the linear operator La ∈ Om:

{
φ (Laf(z), La+1f(z), La+2f(z); z) : z ∈ U

}
⊂ Ω⇒ Laf(z) ≺ q(z),

(6.7){
φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
: z ∈ U

}
⊂ Ω⇒ Laf(z)

zm−1
≺ q(z),

(6.8){
φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
: z ∈ U

}
⊂ Ω⇒ La+1f(z)

Laf(z)
≺ q(z).

(6.9)

Several differential inequalities and subordinations are obtained as applications of

these results. In Section 6.3, the corresponding differential superordination impli-

cations are also obtained. These results are applied to prove sandwich-type results

for the linear operator La ∈ Om. In Section 6.4, various interesting examples for

different choices of admissible functions φ are investigated. The obtained results

unify various earlier results, for example, those of [17–19].

6.2 Subordination Implications of Linear Operators

The following terminology introduced by Miller and Mocanu [111] will be required.

Denote by Q the set of functions q that are analytic and injective on Ū\E(q) where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) =∞}

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Let Q(a) be the subclass of Q for

which q(0) = a. Further, let Q0 := Q(0) and Q1 := Q(1) .

Definition 6.1 (Definition 1.1) Let Ω be a set in C, q ∈ Q and m be a pos-

itive integer. The class of admissible functions Ψm[Ω, q] consists of functions

ψ : C3 × U → C satisfying the admissibility condition ψ(r, s, t; z) 6∈ Ω whenever
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r = q(ζ), s = kζq′(ζ) and

Re

(
t

s
+ 1

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U , ζ ∈ ∂U\E(q) and k ≥ m. Denote by Ψ[Ω, q] := Ψ1[Ω, q].

The next theorem is the foundation result in the theory of first and second-

order differential subordinations.

Theorem 6.1 (Theorem 1.15) Let ψ ∈ Ψm[Ω, q] with q(z) = a+a1z+a2z
2 + · · · .

If p(z) = a+ amz
m + am+1z

m+1 + · · · satisfies

ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω,

then p(z) ≺ q(z).

In the sequel, La is a linear operator in Om. First, the differential subordina-

tion implication given by (6.7) is investigated. An appropriate class of admissible

functions is required to apply the subordination methodology. The class of ad-

missible functions ΦH [Ω, q] associated with the Dziok-Srivastava linear operator

given by (6.3) was studied by Ali et al. [19]. Ali et al. [18] investigated the class of

admissible functions ΦI [Ω, q] related to the multiplier transformation defined by

(6.5). Now the following family of admissible functions is defined and theorems

analogous to those of Miller and Mocanu [111] are obtained.

Definition 6.2 Let Ω ⊂ C, q ∈ Q0 ∩ A, ca, ca+1 ∈ C \ {0}, and m be a positive

integer. The class of admissible functions ΦL[Ω, q] consists of functions φ : C3 ×
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U → C satisfying the admissibility condition φ(u, v, w; z) 6∈ Ω whenever

u = q(ζ), v =
kζq′(ζ) + (ca −m)q(ζ)

ca

Re

(
caca+1w − (m− ca)(m− ca+1)u

cav + (m− ca)u
− (ca + ca+1 − 2m)

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U , ζ ∈ ∂U\E(q) and k ≥ m.

If a = ca = α1, then the class ΦL[Ω, q] reduces to ΦH [Ω, q] introduced and

investigated in [19, Definition 2.1, p. 1794]. If a = n and ca = m+λ, then the class

ΦL[Ω, q] coincides with the class ΦI [Ω, q] studied in [18, Definition 2.1, p. 125]. It

is seen that the class ΦL[Ω, q] extends the classical class Ψm[Ω, q] introduced by

Miller and Mocanu [111].

Theorem 6.2 Let f ∈ Am, and φ ∈ ΦL[Ω, q]. If

{φ (Laf(z), La+1f(z), La+2f(z); z) : z ∈ U} ⊂ Ω, (6.10)

then Laf(z) ≺ q(z).

Proof. The function p : U → C defined by

p(z) := Laf(z) (6.11)

is analytic in U as Laf is well-defined and (6.10) holds. Thus the first-order

differential recurrence relation (6.2) yields

La+1f(z) =
zp′(z) + (ca −m)p(z)

ca
(6.12)
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and

La+2f(z) =
z2p′′(z) + (ca + ca+1 − 2m+ 1)zp′(z) + (ca −m)(ca+1 −m)p(z)

caca+1
.

(6.13)

Define the transformations from C3 to C by

u = r, v =
s+ (ca −m)r

ca
,

w =
t+ (ca + ca+1 − 2m+ 1)s+ (ca −m)(ca+1 −m)r

caca+1
,

(6.14)

and the function ψ : C3 × U → C by

ψ(r, s, t; z) := φ(u, v, w; z) = φ

(
r,
s+ (ca −m)r

ca
,

t+ (ca + ca+1 − 2m+ 1)s+ (ca −m)(ca+1 −m)r

caca+1
; z

)
.

(6.15)

It follows from (6.11), (6.12), (6.13), and (6.15) that

ψ
(
p(z), zp′(z), z2p′′(z); z

)
= φ

(
Laf(z), La+1f(z), La+2f(z); z

)
. (6.16)

The theorem follows from Theorem 6.1 provided ψ ∈ Ψm[Ω, q] where q ∈ Q(a).

Since

t

s
+ 1 =

caca+1w + (m− ca)(ca+1 −m)u

cav + (m− ca)u
− (ca + ca+1 − 2m),

condition (6.10) shows that ψ ∈ Ψm[Ω, q]. Thus, the admissibility condition for

ψ ∈ Ψm[Ω, q] as per Definition 6.1 is equivalent to the admissibility condition for

φ ∈ ΦL[Ω, q] as given in Definition 6.2. Hence from Theorem 6.1, p(z) = Laf(z) ≺

q(z).
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Remark 6.1 Various known results are special case of Theorem 6.2 for suitable

choices of the parameters a and ca. For instance, Theorem 2.1 in [19, p. 1765] is

deduced from Theorem 6.2 where a = ca = α1. If a = n and ca = m + λ, then

Theorem 2.1 in [18, p. 125] follows from Theorem 6.2.

For a simply connected domain Ω 6= C, there is a conformal mapping h of U

onto Ω (Theorem 1.1). In this case, the class ΦL[Ω, q] is written as ΦL[h, q]. The

following result is an immediate consequence of Theorem 6.2.

Corollary 6.1 Let f ∈ Am, and φ ∈ ΦL[h, q]. If φ (Laf(z), La+1f(z), La+2f(z); z)

is analytic in U , and

φ (Laf(z), La+1f(z), La+2f(z); z) ≺ h(z), (6.17)

then Laf(z) ≺ q(z).

Remark 6.2 If a = ca = α1, then Corollary 6.1 reduces to Theorem 2.2 in [19, p.

1766], and Theorem 2.2 in [18, p. 126] follows from Corollary 6.1 where a = n

and ca = m+ λ.

The next result extends Theorem 6.1 to the case where the behavior of q on

∂U is unknown.

Corollary 6.2 Let Ω ⊂ C, q ∈ Q0 ∩ A. Let φ ∈ ΦL[Ω, qρ] for some ρ ∈ (0, 1)

where qρ(z) = q(ρz). If f ∈ Am, and

{
φ
(
Laf(z), La+1f(z), La+2f(z); z

)
: z ∈ U

}
⊂ Ω,

then Laf(z) ≺ q(z).

Proof. Theorem 6.2 yields Laf(z) ≺ qρ(z). The result is now deduced from

qρ(z) ≺ q(z).
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Remark 6.3 If a = ca = α1, then Corollary 6.2 reduces to Corollary 2.1 in [19, p.

1766], and Corollary 2.1 in [18, p. 126] follows from Corollary 6.2 where a = n

and ca = m+ λ.

The following result is similar to Theorem 2.3d in [111, pp. 30-31].

Theorem 6.3 Let h and q be univalent in U with q(0) = 0, and set qρ(z) = q(ρz)

and hρ(z) = h(ρz). Let φ : C3 × U → C satisfy one of the following conditions:

(1) φ ∈ ΦL[h, qρ] for some ρ ∈ (0, 1), or

(2) there exists ρ0 ∈ (0, 1) such that φ ∈ ΦL[hρ, qρ], for all ρ ∈ (ρ0, 1).

If f ∈ Am, φ (Laf(z), La+1f(z), La+2f(z); z) is analytic in U , and Laf satisfies

(6.17), then Laf(z) ≺ q(z).

Proof. Case 1. Let condition (1) be satisfied. From Corollary 6.1, it follows that

Laf(z) ≺ qρ(z), and since qρ(z) ≺ q(z), it is deduced that Laf(z) ≺ q(z).

Case 2. Let pρ(z) = p(ρz) = Laf(ρz). If the condition (2) is satisfied, then

from (6.16) follows that

ψ
(
pρ(z), zp′ρ(z), z2p′′ρ(z); ρz

)
= ψ

(
p(ρz), zp′(ρz), z2p′′(ρz); ρz

)
= φ

(
Laf(ρz), La+1f(ρz), La+2f(ρz); ρz

)
∈ hρ(U).

Using Corollary 6.1 shows that Laf(ρz) ≺ qρ(z) for all ρ ∈ (ρ0, 1). By letting

ρ→ 1−, it is seen that Laf(z) ≺ q(z).

The next theorem yields the best dominant of differential subordination (6.17).

Theorem 6.4 Let h be univalent in U , and φ : C3 × U → C. Suppose that the

differential equation

ψ
(
q(z), zq′(z), z2q′′(z); z

)
= h(z) (6.18)
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has a solution q with q(0) = 0 where ψ is given by (6.15) and satisfies one of the

following conditions:

(1) q ∈ Q0 and φ ∈ ΦL[h, q],

(2) q is univalent in U and φ ∈ ΦL[h, qρ] for some ρ ∈ (0, 1), or

(3) q is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦL[hρ, qρ], for

all ρ ∈ (ρ0, 1).

If f ∈ Am, φ (Laf(z), La+1f(z), La+2f(z); z) is analytic in U , and Laf satisfies

(6.17), then Laf(z) ≺ q(z), and q is the best dominant.

Proof. From Corollary 6.1 and Theorem 6.3, it can be deduced that q is a dominant

of (6.17). Since q satisfies (6.18), it is also a solution of (6.17) and therefore q will

be dominated by all dominants of (6.17). Hence q is the best dominant of (6.17).

Remark 6.4 If a = ca = α1, then Theorem 6.4 reduces to Theorem 2.4 in [19, p.

1767], and Corollary 2.4 in [18, p. 127] follows from Theorem 6.4 where a = n

and ca = m+ λ.

As an application, it is of interest to investigate the differential subordination

implication (6.7) for the case of dominant by the disk of radius M . The class of

admissible functions ΦL[Ω, q] reduces to the class ΦL[Ω,M ] defined below where

q(z) = Mz (M > 0) in Definition 6.2.

Definition 6.3 Let Ω ⊂ C, M > 0, and ca, ca+1 ∈ C \ {0}. The class of

admissible functions ΦL[Ω,M ] consists of functions φ : C3 × U → C such that

φ

(
Meiθ,

k + ca −m
ca

Meiθ,

L+ (ca + ca+1 − 2m+ 1)kMeiθ + (ca −m)(ca+1 −m)Meiθ

caca+1
; z

)
6∈ Ω

(6.19)

144



whenever z ∈ U , θ ∈ R, Re(Le−iθ) ≥ (k − 1)kM for all real θ, and k ≥ m.

When a = ca = α1, the class ΦL[Ω,M ] reduces to ΦH [Ω,M ] introduced and

investigated in [19]. If a = n and ca = m + λ, then the class ΦL[Ω,M ] coincides

with ΦI [Ω,M ] studied in [18].

Corollary 6.3 Let f ∈ Am, and φ ∈ ΦL[Ω,M ]. If

φ
(
Laf(z), La+1f(z), La+2f(z); z

)
∈ Ω,

then |Laf(z)| < M .

Remark 6.5 When Ω = U and M = 1, various known results are obtained as

special case of Corollary 6.3. For instance, Theorem 1 in [1, p. 269] is deduced

from Corollary 6.3 when a = ca = α1. If a = n and ca = m + λ, then Theorem

2 in [1, p. 271] follows from Corollary 6.3. If ca = a, Corollary 6.3 is reduced to

Theorem [25, p. 767]. Also, if a = ca = α1, Corollary 2.2 in [19, p. 1767] follows

from Corollary 6.3. If a = n and ca = m + λ, then Corollary 2.2 in [18, p. 128]

follows from Corollary 6.3.

In the special case Ω = q(U) = {w : |w| < M}, the class ΦL[Ω,M ] is simply

denoted by ΦL[M ]. Corollary 6.3 can be rewritten in the following form:

Corollary 6.4 Let f ∈ Am, and φ ∈ ΦL[M ]. If

|φ(Laf(z), La+1f(z), La+2f(z); z)| < M,

then |Laf(z)| < M.

Remark 6.6 If a = ca = α1, then Corollary 2.3 in [19, p. 1767] follows from

Corollary 6.4. If a = n and ca = m + λ, then Corollary 6.4 yields Corollary 2.3

in [18, p. 4].
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Now the differential subordination implication given in (6.8) is investigated.

The class of admissible functions ΦH,1[Ω, q] associated with the Dziok-Srivastava

linear operator given by (6.3) was studied by Ali et al. [19]. Ali et al. [18] inves-

tigated the class of admissible functions ΦI,1[Ω, q] related to multiplier transform

defined by (6.5). The differential subordination implication given in (6.8) holds

when the function φ belongs to the class of admissible functions introduced in the

following definition.

Definition 6.4 Let Ω ⊂ C, q ∈ Q0 ∩ A, and ca, ca+1 ∈ C \ {0}. The class of

admissible functions ΦL,1[Ω, q] consists of functions φ : C3×U → C satisfying the

admissibility condition φ(u, v, w; z) 6∈ Ω whenever

u = q(ζ), v =
kζq′(ζ) + (ca − 1)q(ζ)

ca
,

Re

(
caca+1w + (1− ca)(ca+1 − 1)u

cav + (1− ca)u
− ca − ca+1 + 2

)
≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U , ζ ∈ ∂U\E(q) and k ≥ 1.

When a = ca = α1, the class ΦL,1[Ω, q] reduces to ΦH,1[Ω, q] introduced and

investigated in [19]. If a = n and ca = m + λ, then the class ΦL,1[Ω, q] coincides

with ΦI,1[Ω, q] studied in [18].

Theorem 6.5 Let f ∈ Am, and φ ∈ ΦL,1[Ω, q]. If

{
φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
: z ∈ U

}
⊂ Ω, (6.20)

then

Laf(z)

zm−1
≺ q(z).

146



Proof. The function p : U → C defined by

p(z) :=
Laf(z)

zm−1
. (6.21)

is well-defined and analytic in U by (6.20). Thus the recurrence relation (6.2)

yields

La+1f(z)

zm−1
=
zp′(z) + (ca − 1)p(z)

ca
, (6.22)

and

La+2f(z)

zm−1
=
z2p′′(z) + (ca + ca+1 − 1)zp′(z) + (ca − 1)(ca+1 − 1)p(z)

caca+1
. (6.23)

Define the transformations from C3 to C by

u = r, v =
s+ (ca − 1)r

ca
,

w =
t+ (ca + ca+1 − 1)s+ (ca − 1)(ca+1 − 1)r

caca+1
,

and the function ψ : C3 × U → C by

ψ(r, s, t; z) := φ(u, v, w; z) = φ

(
r,
s+ (ca − 1)r

ca
,

t+ (ca + ca+1 − 1)s+ (ca − 1)(ca+1 − 1)r

caca+1
; z

)
.

(6.24)

It follows from (6.21), (6.22), (6.23) and (6.24) that

ψ
(
p(z), zp′(z), z2p′′(z); z

)
= φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
. (6.25)
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In view of Theorem 6.1, it suffices to show that ψ ∈ Ψm[Ω, q]. Since

t

s
+ 1 =

caca+1w + (1− ca)(ca+1 − 1)u

cav + (1− ca)u
− ca − ca+1 + 2,

condition (6.20) shows that ψ ∈ Ψm[Ω, q]. Thus, the admissibility condition for

ψ as given in Definition 6.1 and the admissibility condition for φ ∈ ΦL,1[Ω, q] are

equivalent. Hence by Theorem 6.1, p(z) = Laf(z)/zm−1 ≺ q(z).

Remark 6.7 Theorem 2.5 in [19, p. 1769] is deduced from Theorem 6.5 where

a = ca = α1. If a = n and ca = m + λ, then Theorem 2.5 in [18, p. 129] follows

from Theorem 6.5.

For a conformal mapping h from U onto a simply connected domain Ω 6= C,

the class ΦL,1[Ω, q] is written as ΦL,1[h, q], and the following corollary is deduced

from Theorem 6.5.

Corollary 6.5 Let f ∈ Am, and φ ∈ ΦL,1[h, q]. If

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)

is analytic in U , and

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
≺ h(z),

then

Laf(z)

zm−1
≺ q(z).

A special case of differential subordination implication (6.8) is of interest. Let

q(z) = Mz with M > 0. Then q(U) is the disk of radius M centered at origin. In

this case, the class of admissible functions ΦL,1[Ω,M ] will be defined as follows.
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Definition 6.5 Let Ω ⊂ C, M > 0, and ca, ca+1 ∈ C \ {0}. The class of ad-

missible function ΦL,1[Ω,M ] consists of functions φ : C3 × U → C satisfying the

admissibility condition φ(r, s, t; z) 6∈ Ω where

r =Meiθ, s =
k + ca − 1

ca
Meiθ,

t =
L+ (ca + ca+1 − 1)kMeiθ + (ca − 1)(ca+1 − 1)Meiθ

caca+1
,

whenever z ∈ U , θ ∈ R, Re(Le−iθ) ≥ (k − 1)kM for all real θ, and k ≥ 1.

When a = ca = α1, the class ΦL,1[Ω,M ] reduces to ΦH,1[Ω,M ] introduced

and investigated in [19]. If a = n and ca = m + λ, then the class ΦL,1[Ω,M ]

coincides with ΦI,1[Ω,M ] studied in [18].

Corollary 6.6 Let f ∈ Am, and φ ∈ ΦL,1[Ω,M ]. If

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
∈ Ω,

then ∣∣∣∣Laf(z)

zm−1

∣∣∣∣ < M.

In the special case Ω = q(U) = {w : |w| < M}, the class ΦL,1[Ω,M ] is simply

denoted by ΦL,1[M ].

Corollary 6.7 Let f ∈ Am, and φ ∈ ΦL,1[M ]. If

∣∣∣∣φ(Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)∣∣∣∣ < M,

then ∣∣∣∣Laf(z)

zm−1

∣∣∣∣ < M.
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Ali et al. [19] introduced the class of admissible functions ΦH,2[Ω, q] so that

the differential subordination (6.9) holds when Laf is the Dziok-Srivastava linear

operator given by (6.3). Ali et al. [18] determined the corresponding class ΦI,2[Ω, q]

of admissible functions where Laf is the multiplier transformation defined by (6.5).

Now, appropriate class of admissible functions is determined so that the differential

subordination implication (6.9) holds.

Definition 6.6 Let Ω ⊂ C, ca ∈ C, ca+2ca+1ca 6= 0 and q ∈ Q1 ∩ A0. The class

of admissible functions ΦL,2[Ω, q] consists of functions φ : C3 × U → C satisfying

the admissibility condition φ(u, v, w; z) 6∈ Ω whenever

u = q(ζ), v = 1− ca
ca+1

+
1

ca+1

(
caq(ζ) +

kζq′(ζ)

q(ζ)

)
,

Re

(
vca+1

(
(w − 1)ca+2 + (1− v)ca+1

)
ca+1v − cau− ca+1 + ca

+ ca+1(v − 1) + ca(1− 2u)

)

≥ kRe

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ U , ζ ∈ ∂U\E(q) and k ≥ 1.

When a = ca = α1, the class ΦL,2[Ω, q] reduces to ΦH,2[Ω, q] introduced and

investigated in [19]. If a = n and ca = m + λ, then the class ΦL,2[Ω, q] coincides

with ΦI,2[Ω, q] studied in [18].

Theorem 6.6 Let f ∈ Am, and φ ∈ ΦL,2[Ω, q]. If

{
φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
: z ∈ U

}
⊂ Ω (6.26)

then

La+1f(z)

Laf(z)
≺ q(z).
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Proof. Define the function p : U → C by

p(z) :=
La+1f(z)

Laf(z)
. (6.27)

From (6.26), the function p is well-defined and analytic in U . By (6.2) and (6.27),

it follows that

La+2f(z)

La+1f(z)
=

1

ca+1

(
cap(z) + ca+1 − ca +

zp′(z)

p(z)

)
, (6.28)

and

La+3f(z)

La+2f(z)
=

1

ca+2

(
cap(z)− ca +

zp′(z)

p(z)
+ ca+2+

zcap
′(z) +

zp′(z)

p(z)
+
z2p′′(z)

p(z)
− (

zp′(z)

p(z)
)2

cap(z) + ca+1 − ca +
zp′(z)

p(z)

)
. (6.29)

Define the transformations from C3 to C by

u = r, v =
1

ca+1

(
car + ca+1 − ca +

s

r

)
,

w =
1

ca+2

(
car − ca +

s

r
+ ca+2 +

cas+
s

r
+
t

r
− (

s

r
)2

car + ca+1 − ca +
s

r

)
.

If the function ψ : C3 × U → C is defined by

ψ(r, s, t; z) := φ(u, v, w; z),

then the equations (6.27), (6.28) and (6.29) show that

ψ
(
p(z), zp′(z), z2p′′(z); z

)
= φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
. (6.30)
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Now, it is enough to show that the admissibility condition for φ ∈ ΦL,2[Ω, q]

is equivalent to the admissibility condition for ψ ∈ Ψm[Ω, q] as given in Definition

6.1. Since

s

r
= vca+1 − car − ca+1 + ca

t

r
= [(w − 1)ca+2 + (1− v)ca+1]vca+1 − [cau+ 1− s

r
]
s

r

= [(w − 1)ca+2 + (1− v)ca+1]vca+1 − [vca+1 − ca+1 + ca + 1− 2
s

r
]
s

r

= [(w − 1)ca+2 + (1− v)ca+1]vca+1

− [vca+1 − ca+1 + ca + 1− 2(vca+1 − car − ca+1 + ca)]
s

r

= [(w − 1)ca+2 + (1− v)ca+1]vca+1 + [ca+1(v − 1) + ca(1− 2u)− 1]
s

r
,

it follows that

t

s
+ 1 =

[(w − 1)ca+2 + (1− v)ca+1]vca+1

ca+1v − cau− ca+1 + ca
+ ca+1(v − 1) + ca(1− 2u).

Hence ψ ∈ Ψm[Ω, q] and by Theorem 6.1, p(z) = La+1f(z)/Laf(z) ≺ q(z).

Remark 6.8 If a = ca = α1, then Theorem 2.7 in [19, p. 1771] follows from

Theorem 6.6. If a = n and ca = m + λ, then Theorem 6.6 yields Theorem 2.7

in [18, , p. 132].

If h is a conformal mapping from U onto a simply connected domain Ω 6= C,

then ΦL,2[Ω, q] is written as ΦL,2[h, q], and the following result is obtained as a

consequence of Theorem 6.6.

Corollary 6.8 Let f ∈ Am, and φ ∈ ΦL,2[Ω, q]. If

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
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is analytic in U , and

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
≺ h(z),

then

La+1f(z)

Laf(z)
≺ q(z).

An interesting application of Theorem 6.6 is in the case of q(U) being the disk

|w − 1| < M . The class of admissible functions ΦL,2[Ω,M ] introduced below is

needed in Corollary 6.9.

Definition 6.7 Let Ω ⊂ C, ca ∈ C, caca+1ca+2 6= 0, and M > 0. The class of

admissible functions ΦL,2[Ω,M ] consists of functions φ : C3 × U → C satisfying

the admissibility condition φ(u, v, w; z) 6∈ Ω whenever

u = 1 +Meiθ, v = 1 +
(1 +Meiθ)ca + k

ca+1(1 +Meiθ)
Meiθ

w = 1 +
(1 +Meiθ)ca + k

ca+2(1 +Meiθ)
Meiθ+

(M + e−iθ)
(
Le−iθ + kM(ca + 1) + cakM

2eiθ
)
− k2M2

ca+2(M + e−iθ)
(
caM2eiθ + ca+1e−iθ +M(ca + ca+1 + k)

) ,
z ∈ U , θ ∈ R, Re(Le−iθ) ≥ (k − 1)kM for all real θ, and k ≥ 1.

When a = ca = α1, the class ΦL,2[Ω,M ] reduces to ΦH,2[Ω,M ] introduced

and investigated in [19]. If a = n and ca = m + λ, then the class ΦL,2[Ω,M ]

coincides with ΦI,2[Ω,M ] studied in [18].

Corollary 6.9 Let f ∈ Am, and φ ∈ ΦL,2[Ω,M ]. If

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
∈ Ω,
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then ∣∣∣∣La+1f(z)

Laf(z)
− 1

∣∣∣∣ < M.

In the special case Ω = q(U) = {w : |w − 1| < M}, the class ΦL,2[Ω,M ] is

simply denoted by ΦL,2[M ].

Corollary 6.10 Let f ∈ Am, and φ ∈ ΦL,2[M ]. If

∣∣∣∣φ(La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
− 1

∣∣∣∣ < M,

then ∣∣∣∣La+1f(z)

Laf(z)
− 1

∣∣∣∣ < M.

Remark 6.9 When a = ca = α1, Corollary 2.10 in [19, p. 1774] is easily deduced

from Corollary 6.10. If a = n and ca = m+ λ, then Corollary 2.10 in [18, p. 133]

follows from Corollary 6.10.

6.3 Superordination Implications of Linear Operators

The differential superordination is the dual problem of differential subordination.

This section investigates three differential superordination implications for func-

tions related to the linear operator La ∈ Om:

Ω ⊂
{
φ (Laf(z), La+1f(z), La+2f(z); z) : z ∈ U

}
⇒ q(z) ≺ Laf(z),

(6.31)

Ω ⊂
{
φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
: z ∈ U

}
⇒ q(z) ≺ Laf(z)

zm−1
,

(6.32)

Ω ⊂
{
φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
: z ∈ U

}
⇒ q(z) ≺ La+1f(z)

Laf(z)
.

(6.33)
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The results of the previous section combined with the corresponding results in this

section yield several sandwich-type theorems.

The following results obtained by Miller and Mocanu [112] are required.

Definition 6.8 (Definition 1.2) Let Ω be a set in C and q(z) = a + amz
m +

am+1z
m+1+· · · with q′(z) 6= 0. The class of admissible functions Ψ′m[Ω, q] consists

of functions ψ : C3 ×U → C satisfying the admissibility condition ψ(r, s, t; ζ) ∈ Ω

whenever r = q(z), s = zq′(z)/k and

Re

(
t

s
+ 1

)
≤ 1

k
Re

(
zq′′(z)

q′(z)
+ 1

)
,

z ∈ U , ζ ∈ ∂U and k ≥ m ≥ 1. Denote by Ψ′[Ω, q] := Ψ′1[Ω, q].

Theorem 6.7 (Theorem 1.16) Let ψ ∈ Ψ′m[Ω, q] with q(z) = a+a1z+a2z
2 + · · · .

If p ∈ Q(a) and ψ
(
p(z), zp′(z), z2p′′(z); z

)
is univalent in U , then

Ω ⊂ {ψ
(
p(z), zp′(z), z2p′′(z); z

)
, z ∈ U}

implies q(z) ≺ p(z).

Analogous to the case of subordination, a suitable class of admissible func-

tions is required to apply differential superordination methodology. Ali et al. [19]

introduced the class of admissible functions Φ′H [Ω, q] associated with the Dziok-

Srivastava linear operator given by (6.3). The class of admissible functions Φ′I [Ω, q]

related to multiplier transformation defined by (6.5) was investigated by Ali et

al. [18]. The following class of admissible functions is now introduced to investi-

gate the differential superordination implication given in (6.31).

Definition 6.9 Let Ω ⊂ C, ca ∈ C, ca+1ca 6= 0, and q ∈ Am with zq′(z) 6= 0.

The class of admissible functions Φ′L[Ω, q] consists of functions φ : C3 × U → C
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satisfying the admissibility condition φ(u, v, w; ζ) ∈ Ω whenever

u = q(z), v =
zq′(z) +m(ca −m)q(z)

mca
,

Re

(
caca+1w + (m− ca)(ca+1 −m)u

cav + (m− ca)u
− (ca + ca+1 − 2m)

)
≤ 1

k
Re

(
zq′′(z)

q′(z)
+ 1

)
,

z ∈ U , ζ ∈ ∂U and k ≥ m.

Theorem 6.8 Let f ∈ A, φ ∈ Φ′L[Ω, q], and Laf ∈ Q0. If

φ
(
Laf(z), La+1f(z), La+2f(z); z

)
is univalent in U , then

Ω ⊂
{
φ
(
Laf(z), La+1f(z), La+2f(z); z

)
: z ∈ U

}
(6.34)

implies q(z) ≺ Laf(z).

Proof. It follows from (6.16) and (6.34) that

Ω ⊂
{
ψ
(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ U

}
,

where ψ is defined by (6.15). From (6.14), it can be seen that the admissibility

condition for φ ∈ Φ′L[Ω, q] is equivalent to the admissibility condition for ψ ∈

Ψ′m[Ω, q] as given in Definition 6.8. Hence ψ ∈ Ψ′m[Ω, q] and by Theorem 6.7,

q(z) ≺ p(z) = Laf(z).

For a conformal mapping h from U onto a simply connected domain Ω, the

class Φ′L[Ω, q] is written as Φ′L[h, q]. Consequently, the following result is obtained
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by Theorem 6.8.

Corollary 6.11 Let h be analytic in U and φ ∈ Φ′L[h, q]. If f ∈ A, Laf ∈ Q0,

and φ
(
Laf(z), La+1f(z), La+2f(z); z

)
is univalent in U , then

h(z) ≺ φ
(
Laf(z), La+1f(z), La+2f(z); z

)
,

implies q(z) ≺ Laf(z).

The best subordinant will be determined by the next theorem.

Theorem 6.9 Let h be analytic in U and φ : C3 × U → C and ψ be given by

(6.15). Suppose that the differential equation ψ
(
q(z), zq′(z), z2q′′(z); z

)
= h(z) has

a solution q ∈ Q0. If φ ∈ Φ′L[h, q], f ∈ A, Laf ∈ Q0 and

φ
(
Laf(z), La+1f(z), La+2f(z); z

)
is univalent in U , then

h(z) ≺ φ
(
Laf(z), La+1f(z), La+2f(z); z

)
implies q(z) ≺ Laf(z) and q(z) is the best subordinant.

Proof. The proof is similar to the Theorem 6.4 and is therefore omitted.

Corollary 6.11 together with Corollary 6.1 give the following sandwich-type

result.

Corollary 6.12 Let h1 and q1 be analytic functions in U , h2 be univalent function

in U , q2 ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ ΦL[h2, q2] ∩ Φ′L[h1, q1]. If f ∈ A,

Laf(z) ∈ A ∩Q0 and φ
(
Laf(z), La+1f(z), La+2f(z); z) is univalent in U , then

h1(z) ≺ φ
(
Laf(z), La+1f(z), La+2f(z); z

)
≺ h2(z)
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implies q1(z) ≺ Laf(z) ≺ q2(z).

The differential superordination implication (6.32) holds for the class of ad-

missible functions Φ′L,1[Ω, q] introduced below.

Definition 6.10 Let Ω ⊂ C, ca ∈ C, ca+1ca 6= 0 and q ∈ A with zq′(z) 6= 0.

The class of admissible functions Φ′L,1[Ω, q] consists of functions φ : C3 × U → C

satisfying the admissibility condition φ(u, v, w; ζ) ∈ Ω whenever

u = q(z), v =
zq′(z) +m(ca − 1)q(z)

mca
,

Re

(
caca+1w + (1− ca)(ca+1 − 1)u

cav + (1− ca)u
− ca − ca+1 + 2

)
≤ 1

k
Re

(
zq′′(z)

q′(z)
+ 1

)
,

z ∈ U , ζ ∈ ∂U and k ≥ 1.

Next, the dual result of Theorem 6.5 for differential superordination is ob-

tained.

Theorem 6.10 Let φ ∈ Φ′L,1[Ω, q]. If f ∈ Am, Laf(z)/zm−1 ∈ Q0 and

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)

is univalent in U , then

Ω ⊂
{
φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
: z ∈ U

}
(6.35)

implies q(z) ≺ Laf(z)/zm−1.

Proof. It follows from (6.35) and (6.25) that

Ω ⊂
{
ψ
(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ U

}
,
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where ψ is given by (6.24). It is seen that the admissibility condition for φ ∈

Φ′L,1[Ω, q] is equivalent to the admissibility condition for ψ ∈ Ψ′m[Ω, q] as given

in Definition 6.8. Hence ψ ∈ Ψ′m[Ω, q] and by Theorem 6.7, q(z) ≺ p(z) =

Laf(z)/zm−1.

Let Ω = h(U) where h is a conformal mapping. In this case, the class Φ′L,1[Ω, q]

is written as Φ′L,1[h, q]. By Theorem 6.10, the following result holds.

Corollary 6.13 Let h be analytic in U , q ∈ A and φ ∈ Φ′L,1[h, q]. If f ∈ Am and

Laf(z)/zm−1 ∈ Q0 and

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)

is univalent in U , then

h(z) ≺ φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)

implies q(z) ≺ Laf(z)/zm−1.

From Corollaries 6.5 and 6.13, the following sandwich-type theorem is ob-

tained.

Corollary 6.14 Let h1 and q1 be analytic functions in U , h2 be univalent function

in U , q2 ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ ΦL,1[h2, q2] ∩ Φ′L,1[h1, q1]. If

f ∈ Am, Laf(z)/zm−1 ∈ A ∩Q0 and

φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)

is univalent in U , then

h1(z) ≺ φ

(
Laf(z)

zm−1
,
La+1f(z)

zm−1
,
La+2f(z)

zm−1
; z

)
≺ h2(z)
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implies

q1(z) ≺ Laf(z)

zm−1
≺ q2(z).

The class of admissible functions Φ′L,2[Ω, q] defined below will be applied to

obtain the differential superordination implication given in (6.33).

Definition 6.11 Let Ω ⊂ C, ca ∈ C, ca+2ca+1ca 6= 0, and q ∈ A0 with q(z) 6= 0,

zq′(z) 6= 0 . The class of admissible functions Φ′L,2[Ω, q] consists of functions

φ : C3 × U → C satisfying the admissibility condition φ(u, v, w; ζ) ∈ Ω whenever

u = q(z), v =
1

ca+1

(
caq(z) + ca+1 − ca +

zq′(z)

mq(z)

)
,

Re

(
vca+1

(
(w − 1)ca+2 + (1− v)ca+1

)
ca+1v − cau− ca+1 + ca

+ ca+1(v − 1) + ca(1− 2u)

)

≤ 1

k
Re

(
zq′′(z)

q′(z)
+ 1

)
,

z ∈ U , ζ ∈ ∂U and k ≥ 1.

Theorem 6.11 Let φ ∈ Φ′L,2[Ω, q]. If f ∈ Am, La+1f(z)/Laf(z) ∈ Q1 and

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)

is univalent in U , then

Ω ⊂
{
φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
: z ∈ U

}

implies

q(z) ≺ La+1f(z)

Laf(z)
.

Corollary 6.15 Let q ∈ A0, h be analytic in U and φ ∈ Φ′L,2[h, q]. If f ∈ Am,
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La+1f(z)/Laf(z) ∈ Q1 and

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)

is univalent in U , then

h(z) ≺ φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)

implies

q(z) ≺ La+1f(z)

Laf(z)
.

Corollaries 6.15 and 6.8 can be combined to show the following sandwich-type

result.

Corollary 6.16 Let h1 and q1 analytic functions in U , h2 be univalent function

in U , q2 ∈ Q1 with q1(0) = q2(0) = 1 and φ ∈ ΦL,2[h2, q2] ∩ Φ′L,2[h1, q1]. If

f ∈ Am, La+1f(z)/Laf(z) ∈ A ∩Q1 and

φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)

is univalent in U , then

h1(z) ≺ φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
≺ h2(z)

implies

q1(z) ≺ La+1f(z)

Laf(z)
≺ q2(z).

6.4 Applications

In this section, several examples are given by considering appropriate admissible

functions.
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Example 6.1 Let M > 0 and 0 6= ca ∈ C. If f ∈ Am satisfies

∣∣∣∣La+1f(z) +

(
m

ca
− 1

)
Laf(z)

∣∣∣∣ < Mm

|ca|
,

then |Laf(z)| < M .

Let φ(u, v) = v + (m/ca − 1)u, and Ω = h(U) where h(z) = Mz/|ca|. Since

∣∣∣∣φ(Meiθ,
k + ca −m

ca
Meiθ

)∣∣∣∣ =
kM

|ca|
≥ mM

|ca|

where θ ∈ R, and k ≥ m, the admissibility condition (6.19) is satisfied. Hence the

required result follows from Corollary 6.3.

Remark 6.10 If a = ca = α1, then Example 6.1 yields Corollary 2.5 in [19, p.

1768].

Example 6.2 Let M > 0, and Re ca > 0. If f ∈ Am satisfies one of the following

(1) |La+1f(z)| < M,

(2) |La+1f(z) + Laf(z)| < 2M ,

then |Laf(z)| < M .

(1) Let φ(u, v) = v, and Ω = h(U) where h(z) = Mz. To use Corollary 6.3, it

is needed to show that the admissibility condition (6.19) is satisfied. This follows

since

∣∣∣∣φ(Meiθ,
k + ca −m

ca
Meiθ

)∣∣∣∣ =

∣∣∣∣k + ca −m
ca

Meiθ
∣∣∣∣ ≥M

where θ ∈ R and k ≥ m.
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(2) Let φ(u, v) = v + u, and Ω = h(U) where h(z) = 2Mz. Since the admissi-

bility condition (6.19) is satisfied by

∣∣∣∣φ(Meiθ,
k + ca −m

ca
Meiθ

)∣∣∣∣ =

∣∣∣∣Meiθ +
k + ca −m

ca
Meiθ

∣∣∣∣ ≥ 2M

where θ ∈ R and k ≥ m, the result follows from Corollary 6.3

Example 6.3 Let M > 0, ca, ca+1 ∈ R+, and caca+1 6= 0. If f ∈ Am satisfies

one of the following

(1) |Laf(z) + La+1f(z) + La+2f(z)| < 3M,

(2) |La+2f(z) + La+1f(z)| < 2M,

then |Laf(z)| < M .

(1) Let φ(u, v, w) = u + v + w. It is shown that the admissibility condition

given in Corollary 6.3 is satisfied.

φ

(
Meiθ,

k + ca −m
ca

Meiθ,

L+ (ca + ca+1 − 2m+ 1)kMeiθ + (ca −m)(ca+1 −m)Meiθ

caca+1

)

≥M +
k + ca −m

ca
M

+
Re(Le−iθ) + (ca + ca+1 − 2m+ 1)kM + (ca −m)(ca+1 −m)M

caca+1

≥M +
k + ca −m

ca
M

+
kM(k − 1) + (ca + ca+1 − 2m+ 1)kM + (ca −m)(ca+1 −m)M

caca+1

≥ 3M

where θ ∈ R and k ≥ m. Hence by Corollary 6.3, the required result follows.
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(2) Take φ(u, v, w) = w+v and Ω = h(U) where h(z) = 2Mz. To apply Corol-

lary 6.3, it is needed to show that the admissibility condition (6.19) is satisfied.

This follows since

φ

(
Meiθ,

k + ca −m
ca

Meiθ,

L+ (ca + ca+1 − 2m+ 1)kMeiθ + (ca −m)(ca+1 −m)Meiθ

caca+1

)

≥ Re(Le−iθ) + (ca + 2ca+1 − 2m+ 1)kM + (ca −m)(2ca+1 −m)M

caca+1

≥ (k − 1)kM + (ca + 2ca+1 − 2m+ 1)kM + (ca −m)(2ca+1 −m)M

caca+1

≥ 2M

where θ ∈ R and k ≥ m.

Example 6.4 Let M > 0 and Re ca > 0. If f ∈ Am satisfies
∣∣La+1f(z)/zm−1

∣∣ <
M, then

∣∣Laf(z)/zm−1
∣∣ < M.

To show the result, it suffices to take φ(u, v, w; z) = v in Corollary 6.7.

Example 6.5 If M > 0, ca, ca+1 ∈ R and f ∈ Am satisfies

∣∣∣∣∣caca+1
La+2f(z)

zm−1
+ ca

La+1f(z)

zm−1
− (ca − 1)(ca+1 − 1)

Laf(z)

zm−1

∣∣∣∣∣
< M(2ca + ca+1 − 1),

then |Laf(z)/zm−1| < M.

Take φ(u, v, w; z) = caca+1w+ cav− (ca− 1)(ca+1− 1)u and Ω = h(U) where

h(z) = Mz(2ca + ca+1 − 1).

The result follows by Corollary 6.6.
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Example 6.6 Let M > 0, 0 ≤ ca+1 − ca ≤ 1, and ca+1 6= 0. If f ∈ Am satisfies

one of the following

(1) ∣∣∣∣La+2f(z)

La+1f(z)
− La+1f(z)

Laf(z)

∣∣∣∣ < M

|ca+1|

∣∣∣∣ 1

1 +M
+ ca − ca+1

∣∣∣∣ ,
(2)

∣∣∣∣La+1f(z)

Laf(z)

(
La+2f(z)

La+1f(z)
− La+1f(z)

Laf(z)

)∣∣∣∣ < M

|ca+1|
∣∣1− (1 +M)(ca+1 − ca)

∣∣,
(3) ∣∣∣∣∣∣∣∣

La+2f(z)

La+1f(z)

La+1f(z)

Laf(z)

− 1

∣∣∣∣∣∣∣∣ <
M

(1 +M)|ca+1|

∣∣∣∣ 1

1 +M
+ ca − ca+1

∣∣∣∣ ,
(4) Let δ ≥ 0.

∣∣∣∣δLa+2f(z)

La+1f(z)
+ (1− δ)La+1f(z)

Laf(z)
− 1

∣∣∣∣ < M

|ca+1|

∣∣∣∣ δ

1 +M
+ δca + ca+1(1− δ)

∣∣∣∣ ,
In particular, ∣∣∣∣La+2f(z)

La+1f(z)
− 1

∣∣∣∣ < M

|ca+1|

∣∣∣∣ 1

1 +M
+ ca

∣∣∣∣ ,
then ∣∣∣∣La+1f(z)

Laf(z)
− 1

∣∣∣∣ < M.

It suffices to show that the admissibility condition in Definition 6.7 for ap-

propriate admissible function φ is satisfied so that the required result follows from

Corollary 6.9.

(1) Take φ(u, v, w; z) = v − u and Ω = h(U) where

h(z) =
Mz

|ca+1|

∣∣∣∣ 1

1 +M
+ ca − ca+1

∣∣∣∣ .
165



Hence

|φ (u, v, w; z)| =

∣∣∣∣∣1 +
(1 +Meiθ)ca + k

ca+1(1 +Meiθ)
Meiθ − 1−Meiθ

∣∣∣∣∣
=

M

|ca+1|

∣∣∣∣∣k + (1 +Meiθ)(ca − ca+1)

1 +Meiθ

∣∣∣∣∣
≥ M

|ca+1|

∣∣∣∣k − (1 +M)(ca+1 − ca)

1 +M

∣∣∣∣
≥ M

|ca+1|

∣∣∣∣ 1

1 +M
+ ca − ca+1

∣∣∣∣
where z ∈ U , θ ∈ R and k ≥ 1.

(2) Let φ(u, v, w; z) = u(v − u) and Ω = h(U) where

h(z) =
Mz

|ca+1|
∣∣1− (1 +M)(ca+1 − ca)

∣∣.
Thus

|φ(u, v, w; z)| = M

|ca+1|

∣∣∣k + (ca − ca+1)(1 +Meiθ)
∣∣∣

≥ M

|ca+1|
|k − (ca+1 − ca)(1 +M)|

≥ M

|ca+1|
|1− (ca+1 − ca)(1 +M)| .

(3) Take φ(u, v, w; z) = (v − u)/u and Ω = h(U) where

h(z) =
Mz

(1 +M)|ca+1|

∣∣∣∣ 1

1 +M
+ ca − ca+1

∣∣∣∣ .
(4) Let φ(u, v, w; z) = δv + (1− δ)u and Ω = h(U) where

h(z) =
Mz

|ca+1|

∣∣∣∣ δ

1 +M
+ δca + ca+1(1− δ)

∣∣∣∣ .
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Thus

|φ (u, v, w; z)− 1| =

∣∣∣∣∣δ +
(1 +Meiθ)ca + k

ca+1(1 +Meiθ)
Mδeiθ + (1− δ)(1 +Meiθ)− 1

∣∣∣∣∣
= M

∣∣∣∣∣(1 +Meiθ)ca + k

ca+1(1 +Meiθ)
δ + (1− δ)

∣∣∣∣∣
≥ M

|ca+1|

∣∣∣∣ kδ

1 +Meiθ
+ caδ + ca+1(1− δ)

∣∣∣∣
≥ M

|ca+1|

∣∣∣∣ δ

1 +M
+ δca + ca+1(1− δ)|

∣∣∣∣
where z ∈ U , θ ∈ R and k ≥ 1.

Remark 6.11 If ca = 1 and m = 1, then Example 6.6 (2) reduces to [19, Example

2.2, p. 1775] while for ca = 1 and m = 1, Example 6.6 (3) reduces to [19, Example

2.3, p. 1775]. If a = ca = α1, then [19, Corollary 2.11, p. 1774] follows from

Example 6.6 (1).

6.5 Dominant for Functions with Positive Real Part

In this section, the class ΨL[Ω, q] is considered where q(z) = (1 + z)/(1 − z). If

|ζ| = 1, then q(ζ) = iρ (ρ ∈ R), ζq′(ζ) = −(1+ρ2)/2 and Re
(
1+ζq′′(ζ)/q′(ζ)

)
= 0

[111, p. 26]. First, the class of admissible functions ΨL[Ω, q] for this particular q

is introduced.

Definition 6.12 Let Ω ⊂ C. The class of admissible functions ΦL[Ω, 1] consists

of functions φ : C3×U → C satisfying the admissibility condition φ(u, v, w; z) 6∈ Ω

whenever

u = iρ, v = 1− ca
ca+1

+
caρ

2 − σ
ca+1ρ

i,

w = 1− ca
ca+2

+
caρ

2 − σ
ca+2ρ

i+
ρ(µ+ σ) + (νρ+ caσρ

2 + σ2)i

ca+2ρ(σ − caρ2 + (ca+1 − ca)iρ)
,
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σ ≤ −m(1 + ρ2)/2, σ + µ ≤ 0, z ∈ U and m ≥ 1.

If Ω = q(U) = {z : Re z > 0}, then the class of ΦL[q(U), 1] consists of functions

φ : C3 × U → C satisfying Reφ(u, v, w, ; z) ≤ 0 whenever σ ≤ −m(1 + ρ2)/2 ≤ 0,

σ + µ ≤ 0, caca+1ca+2 6= 0, and z ∈ U .

In view of Definition 6.12, next theorem is a immediate consequence of Theo-

rem 6.6 where q(z) = (1 + z)/(1− z).

Theorem 6.12 Let φ ∈ ΦL[Ω, 1]. If f ∈ Am satisfies

{
φ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
: z ∈ U

}
⊂ Ω,

then

Re
La+1f(z)

Laf(z)
> 0.

In particular, if φ ∈ ΦL[q(U), 1] where q(z) = (1 + z)/(1− z), then

Reφ

(
La+1f(z)

Laf(z)
,
La+2f(z)

La+1f(z)
,
La+3f(z)

La+2f(z)
; z

)
> 0⇒ Re

La+1f(z)

Laf(z)
> 0.

Example 6.7 If f ∈ Am and ca+1 > 0, then

Re


La+2f(z)

La+1f(z)

La+1f(z)

Laf(z)

 >
2ca +m

2ca+1
⇒ Re

La+1f(z)

Laf(z)
> 0.

Let φ(u, v) = v/u. Since

Reφ

(
iρ, 1− ca

ca+1
+
caρ

2 − σ
ca+1ρ

i

)
=

ca
ca+1

− σ

ρ2ca+1

≥ ca
ca+1

+
m

2ca+1
,

whenever σ ≤ −m(1 + ρ2)/2, and m ≥ 1, the admissibility condition in Definition
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6.12 is satisfied. Hence the result follows from Theorem 6.12.

Example 6.8 Let 0 < ca < ca+1 and δ > 0. If f ∈ Am satisfies

Re

(
δ
La+2f(z)

La+1f(z)
+ (1− δ)La+1f(z)

Laf(z)

)
> δ

(
1− ca

ca+1

)
,

then

Re

(
La+1f(z)

Laf(z)

)
> 0,

and, in particular,

Re

(
La+2f(z)

La+1f(z)

)
> 0⇒ Re

La+1f(z)

Laf(z)
> 0.

To verify the admissibility condition in Definition 6.12, take φ(u, v) = δv +

(1− δ)u. Since

Reφ

(
iρ, 1− ca

ca+1
+
caρ

2 − σ
ca+1ρ

i

)
= Re δ

(
1− ca

ca+1
+
caρ

2 − σ
ca+1ρ

i+ (1− δ)iρ
)

= δ

(
1− ca

ca+1

)
,

the result follows from Theorem 6.12.

Example 6.9 Let 0 < ca < ca+1. If f ∈ Am satisfies

Re

(
La+1f(z)

Laf(z)
+
La+2f(z)

La+1f(z)
−
(
La+1f(z)

Laf(z)

)2
)
> 1− ca

ca+1
,

then

Re
La+1f(z)

Laf(z)
> 0.

Let φ(u, v) = u + v − u2. The admissibility condition given in Definition 6.12
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follows from

Reφ

(
iρ, 1− ca

ca+1
+
caρ

2 − σ
ca+1ρ

i

)
= Re

(
iρ+ 1− ca

ca+1
+
caρ

2 − σ
ca+1ρ

i− (iρ)2
)

≥ 1− ca
ca+1

.

Then Theorem 6.12 proves the result.
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CHAPTER 7

RADIUS CONSTANTS FOR ANALYTIC FUNCTIONS WITH

FIXED SECOND COEFFICIENT

7.1 Introduction

This chapter deals with radius properties of analytic functions with fixed second

coefficient. LetM be a set of functions and P be a property which functions inM

may or may not possess in a disk |z| < r. The least upper bound of all numbers r

such that every function f ∈M has the property P in the disk Ur = {z : |z| < r}

is the radius for the property P in the set M.

de Branges [37] proved the Bieberbach conjecture that |an| ≤ n (n ≥ 2) for

f(z) = z +
∑∞
n=2 anz

n ∈ S. However, the inequality |an| ≤ n (n ≥ 2) need not

imply f is univalent; for example, f(z) = z + 2z2 is not a member of S.

Gavrilov [58] showed that the radius of univalence for functions f ∈ A satisfy-

ing |an| ≤ n (n ≥ 2) is the real root r0 ≈ 0.1648 of the equation 2(1−r)3−(1+r) =

0, and the result is sharp for f(z) = 2z − z/(1 − z)2. Gavrilov also proved that

the radius of univalence for functions f ∈ A satisfying |an| ≤ M (n ≥ 2) is

1 −
√
M/(1 +M). The inequality |an| ≤ M holds for functions f ∈ A satisfying

|f(z)| ≤ M , and for these functions, Landau [90] proved that the radius of uni-

valence is M −
√
M2 − 1. Yamashita [209] showed that the radius of univalence

obtained by Gavrilov [58] is also the radius of starlikeness for functions f ∈ A

satisfying |an| ≤ n or |an| ≤M (n ≥ 2). Additionally Yamashita [209] determined

that the radius of convexity for functions f ∈ A satisfying |an| ≤ n (n ≥ 2) is the

real root r0 ≈ 0.0903 of the equation 2(1−r)4− (1+4r+r2) = 0, while the radius

of convexity for functions f ∈ A satisfying |an| ≤M (n ≥ 2) is the real root of

(M + 1) (1− r)3 −M(1 + r) = 0.
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Recently Kalaj et al. [74] obtained the radii of univalence, starlikeness, and con-

vexity for harmonic mappings satisfying similar coefficient inequalities.

This chapter studies the class Ab consisting of functions

f(z) = z +
∞∑
n=2

anz
n (|a2| = 2b, 0 ≤ b ≤ 1, z ∈ U).

Univalent functions in Ab have been studied in [9,13,122,161]. In [161], Ravichan-

dran obtained the sharp radii of starlikeness and convexity of order α for functions

f ∈ Ab satisfying |an| ≤ n or |an| ≤ M (M > 0), n ≥ 3. The radius constants

for uniform convexity and parabolic starlikeness for functions f ∈ Ab satisfying

|an| ≤ n, n ≥ 3 were also obtained.

In [92], Lewandowski et al. proved that an analytic function f satisfying

Re

(
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> 0 (z ∈ U) (7.1)

is starlike. The class of such functions is easily extended to

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> β (α ≥ 0, β < 1, z ∈ U), (7.2)

and has subsequently been investigated in [97, 133, 134, 142, 157, 160, 162]. For

−α/2 ≤ β < 1, Li and Owa [93] proved that functions satisfying (7.2) are starlike.

In chapter 5, sufficient conditions of convexity and starlikeness of positive order

were obtained for functions satisfying (7.2). Several coefficient inequalities related

to this class were also investigated.

Another related class is the class of analytic functions satisfying

Re
zf ′(z)

f(z)
< β (β > 1, z ∈ U).

This class was studied in [128,138,204,206]. In [96], Liu et al. extended the class
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to functions satisfying

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
< β (α ≥ 0, β > 1, z ∈ U). (7.3)

Now functions satisfying (7.2) or (7.3) evidently belongs to the class

L(α, β) :=

{
f ∈ A : α

z2f ′′(z)

f(z)
+
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, β ∈ R \ {1}, α ≥ 0

}
.

(7.4)

Denote by L0(α, β) its subclass consisting of functions f ∈ A satisfying

∣∣∣∣αz2f ′′(z)

f(z)
+
zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ |1− β| (β ∈ R \ {1}, α ≥ 0, z ∈ U).

A sufficient condition for functions f ∈ A to belong to the class L(α, β) is

given in the following lemma.

Lemma 7.1 [97,197] Let β ∈ R \ {1}, and α ≥ 0. If f(z) = z+
∑∞
n=2 anz

n ∈ A

satisfies the inequality

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤ |1− β|, (7.5)

then f ∈ L(α, β).

Next let ST [A,B] denote the class of Janowski starlike functions f ∈ A satis-

fying the subordination

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1).

This class was introduced by Janowski [73]. Certain well-known subclasses of star-

like functions are special cases of ST [A,B] for suitable choices of the parameters A

and B. For example, for 0 ≤ β < 1, ST (β) := ST [1− 2β,−1] is the familiar class
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of starlike functions of order β, and ST β := L0(0, β) = ST [1−β, 0]. Janowski [73]

obtained the exact value of the radius of convexity for ST [A,B].

Another result that will be required in our investigation is the following result

of Goel and Sohi [59].

Lemma 7.2 [59] Let −1 ≤ B < A ≤ 1. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies

the inequality
∞∑
n=2

(
(1−B)n− (1− A)

)
|an| ≤ A−B, (7.6)

then f ∈ ST [A,B].

The Taylor coefficients of functions f(z) = z +
∑∞
n=2 anz

n ∈ A are known

to satisfy certain coefficient inequality. For instance, starlike, and close-to-convex

functions are bounded by |an| ≤ n (n ≥ 2) ( [126], [163]).

A domain D is convex in the direction of the imaginary axis if its intersection

with each parallel line to the imaginary axis is connected (or empty). A function

f is convex in the direction of the imaginary axis if f(U) is a domain convex

in the direction of the imaginary axis. Goodman [61, p. 210] showed that the

Taylor coefficients of convex functions in the direction of imaginary axis satisfy

|an| ≤ n (n ≥ 2) .

For starlike functions f(z) = z +
∑∞
n=2 anz

n of order 1/2, it is known that

|an| ≤ 1 (n ≥ 2) [177]. Loewner [99] showed that a convex function f satisfies the

sharp inequality |an| ≤ 1 (n ≥ 2). Sakaguchi [174] introduced the class of starlike

functions with respect to symmetric points and proved that if f is univalent and

starlike with respect to symmetric points, then f satisfies |an| ≤ 1 (n ≥ 2) and

the result is sharp .

A function f is said to be close-to-convex with argument β if there is a φ ∈ CV

such that

Re
f ′(z)

eiβφ′(z)
> 0.
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Goodman [64] showed that if f is close-to-convex with argument β, then |an| ≤

1 + (n − 1) cos β. The class of uniformly starlike and uniformly convex functions

are respectively defined by

UCV :=

{
f ∈ S : Re

(
1 +

(z − ζ)f ′′(z)

f ′(z)

)
> 0, ζ, z ∈ U

}
, (7.7)

UST :=

{
f ∈ S : Re

(
(z − ζ)f ′(z)

f(z)− f(ζ)

)
> 0, ζ, z ∈ U

}
. (7.8)

The Taylor coefficients of uniformly starlike functions are bounded by |an| ≤

2/n (n ≥ 2) [63], and the uniformly convex functions by |an| ≤ 1/n (n ≥ 2)

[62]. Also, functions f(z) = z +
∑∞
n=2 anz

n ∈ A with Re f ′(z) > 0 satisfy

|an| ≤ 2/n (n ≥ 2).

This chapter studies functions f(z) = z +
∑∞
n=2 anz

n ∈ Ab satisfying either

|an| ≤ cn+ d (c, d ≥ 0) or |an| ≤ c/n (c > 0) for n ≥ 3. Sharp L(α, β)-radius and

ST [A,B]-radius are obtained for these classes. Several known radius constants

are shown to be specific cases of the results obtained in this chapter.

7.2 Radius Constants

In the present section, the sharp L0(α, β)-radius and L(α, β)-radius of functions

f(z) = z +
∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ cn+ d for

n ≥ 3 are obtained.

Theorem 7.1 Let β ∈ R \ {1}, and α ≥ 0. The L(α, β)-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ cn + d, c, d ≥ 0 for

n ≥ 3 is the real root in (0, 1) of the equation

[
(c+ d)(1− β) + |1− β|+ (2α + 2− β)(2(c− b) + d)r

]
(1− r)4

= cα(1 + 4r + r2) +
(
(1− α)c+ αd

)
(1− r2)

+
(
(1− α)d− βc

)
(1− r)2 − βd(1− r)3.

(7.9)
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For β < 1, this number is also the L0(α, β)-radius of f ∈ Ab. The results are

sharp.

Proof. For 0 ≤ r0 < 1, the following identities hold:

∞∑
n=3

rn0 =
1

1− r0
− 1− r0, (7.10)

∞∑
n=3

nrn0 =
1

(1− r0)2
− 1− 2r0, (7.11)

∞∑
n=3

n2rn0 =
1 + r0

(1− r0)3
− 1− 4r0, (7.12)

∞∑
n=3

n3rn0 =
1 + 4r0 + r2

0

(1− r0)4
− 1− 8r0. (7.13)

The number r0 is the L(α, β)-radius of function f ∈ Ab if and only if f(r0z)/r0 ∈

L(α, β). Therefore, by Lemma 7.1, it is sufficient to verify the inequality

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an|rn−1

0 ≤ |1− β|, (7.14)

where r0 is the real root in (0, 1) of (7.9). Using (7.10), (7.11), (7.12), and (7.13)
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for f ∈ Ab lead to

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an|rn−1

0

≤ 2(2α + 2− β)br0 +
∞∑
n=3

(
αn2 + (1− α)n− β

)
(cn+ d)rn−1

0

= 2(2α + 2− β)br0 + cα

(
1 + 4r0 + r2

0

(1− r0)4
− 1− 8r0

)

+
(
(1− α)c+ αd

)( 1 + r0
(1− r0)3

− 1− 4r0

)
+
(
(1− α)d− βc

)( 1

(1− r0)2
− 1− 2r0

)
− βd

(
1

1− r0
− 1− r0

)
= (c+ d)(β − 1)− (2α + 2− β)

(
2(c− b) + d

)
r0

+
(
cα(1 + 4r0 + r2

0) +
(
(1− α)c+ αd

)
(1− r2

0)

+
(
(1− α)d− βc

)
(1− r0)2 − βd(1− r0)3

)
/(1− r0)4

= |1− β|.

For β < 1, consider the function

f0(z) = z−2bz2−
∞∑
n=3

(cn+d)zn = (c+1)z+2(c−b)z2− cz

(1− z)2
− dz3

1− z
. (7.15)

At the point z = r0 where r0 is the root in (0, 1) of (7.9), f0 satisfies

Re

(
α
z2f ′′0 (z)

f0(z)
+
zf ′0(z)

f0(z)

)
= 1− N(r0)

D(r0)
= β, (7.16)
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where

N(r0) = −2(c− b)(2α + 1)r0 +
2cr0(2α + 1)

(1− r0)3
+

6cαr2
0

(1− r0)4

+
2dr2

0(3α + 1)

1− r0
+
dr3

0(6α + 1)

(1− r0)2
+

2dr4
0α

(1− r0)3
,

D(r0) = c+ 1 + 2(c− b)r0 −
c

(1− r0)2
−

dr2
0

1− r0
.

This shows that r0 is the sharp L(α, β)-radius for f ∈ Ab. For β < 1, equation

(7.16) shows that the rational expression N(r0)/D(r0) is positive, and therefore

∣∣∣∣∣αz2f ′′0 (z)

f0(z)
+
zf ′0(z)

f0(z)
− 1

∣∣∣∣∣ = 1− β.

Thus, r0 is the sharp L0(α, β)-radius for f ∈ Ab when β < 1.

For β > 1,

f0(z) = z+2bz2 +
∞∑
n=3

(cn+d)zn = (1−c)z+2(b−c)z2 +
cz

(1− z)2
+

dz3

1− z
(7.17)

shows sharpness of the result. The proof is similar to the case β < 1, and is thus

omitted.

For c = 1, d = 0 and α = 0, Theorem 7.1 reduces to the radius of starlikeness

of order β for functions in Ab as follows;

Corollary 7.1 [161, Theorem 2.1, p. 3] Let f(z) = z +
∑∞
n=2 anz

n ∈ Ab and

|an| ≤ n for n ≥ 3. Then f satisfies the inequality

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ 1− β (|z| ≤ r0) (7.18)
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where r0 = r0(β) is the real root in (0, 1) of the equation

1− β + (1 + β)r = 2
(
1− β + (2− β)(1− b)r

)
(1− r)3.

The number r0(β) is also the radius of starlikeness of order β. The number r0(1/2)

is the radius of parabolic starlikeness. The results are sharp.

For β = 0, and 0 ≤ b ≤ 1, Corollary 7.1 yields the radius of starlikeness

obtained by Yamashita [209].

Corollary 7.2 [209] Let f(z) = z +
∑∞
n=2 anz

n ∈ A satisfy the coefficient in-

equality |an| ≤ n for n ≥ 2. The radius of starlikeness of f is the real root

r0 ≈ 0.1648 of the equation 2(1− r)3 − (1 + r) = 0.

Proof. Choose β = 0 in Corollary 7.1, and let rb be the real root of

1 + r =
(
2 + 4(1− b)r

)
(1− r)3 (0 ≤ b ≤ 1). (7.19)

Thus every function f ∈ Ab is starlike in each disk Cr = {z : |z| < r} for every

r < rb. Differentiating implicitly from (7.19) with respect to b gives

∂r

∂b
=

4r(1− r)3

4(1− b)(1− r)3 − 3(1− r)2(2 + 4(1− b)r)− 1
≤ 0.

It shows that if b varies from 0 to 1, then the radius starlikeness of functions f ∈ Ab

is decreasing. Therefore,

r1 < · · · < r3/4 < r1/2 < r1/4 < · · · < r0,

In view of the facts that

A =
⋃

0≤b≤1

Ab, Cr1 =
⋂

0≤b≤1

Crb ,
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it follows that every function f ∈ A is starlike in each disk Cr for every r < r1.

In the case α = 0, c = 0 and d = M , Theorem 7.1 leads to Theorem 2.5

in [161, p. 5].

Corollary 7.3 [161, Theorem 2.5, p. 5] Let f(z) = z +
∑∞
n=2 anz

n ∈ Ab and

|an| ≤ M for n ≥ 3. Then f satisfies (7.18) where r0 = r0(β) is the real root in

(0, 1) of the equation

M(1− β + βr) =
(
(1 +M)(1− β)− (2− β)(2b−M)r

)
(1− r)2.

The number r0(β) is also the radius of starlikeness of order β. The number r0(1/2)

is the radius of parabolic starlikeness. The results are sharp.

Next, the sharp L(α, β)-radius of f(z) = z +
∑∞
n=2 anz

n ∈ Ab satisfying the

coefficient inequality |an| ≤ c/n, c > 0 for n ≥ 3 is obtained.

Theorem 7.2 Let β ∈ R \ {1}, and α ≥ 0. The L(α, β)-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ c/n for n ≥ 3 and

c > 0 is the real root in (0, 1) of

[
c(1− β) + |1− β|+ (2α + 2− β)r

( c
2
− 2b

)]
(1− r)2

= cα + (1− α)c(1− r) + βc(1− r)2 log(1− r)
r

.

(7.20)

For β < 1, this number is also the L0(α, β)-radius of f ∈ Ab. The results are

sharp.

Proof. By Lemma 7.1, r0 is the L(α, β)-radius of functions f ∈ Ab when (7.14)

holds for the real root r0 of equation (7.20) in (0, 1). Using (7.10) and (7.11)
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together with

∞∑
n=3

rn0
n

= − log(1− r0)

r0
− 1− r0

2
, (7.21)

for f ∈ Ab imply that

∞∑
n=2

(
αn2 + (1− α)n− β

)
|an|rn−1

0

≤ 2(2α + 2− β)br0 +
∞∑
n=3

(
αn2 + (1− α)n− β

) ( c
n

)
rn−1
0

= 2(2α + 2− β)br0 + cα

(
1

(1− r0)2
− 1− 2r0

)
+ (1− α)c

(
1

1− r0
− 1− r0

)
− βc

(
− log(1− r0)

r0
− 1− r0

2

)
= c(β − 1) + (2α + 2− β)r0

(
2b− c

2

)
+
cαr0 + (1− α)c(1− r0)r0 + βc(1− r0)2 log(1− r0)

(1− r0)2r0

= |1− β|.

To verify sharpness for β < 1, consider the function

f0(z) = z − 2bz2 −
∞∑
n=3

c

n
zn = (1 + c)z +

( c
2
− 2b

)
z2 + c log(1− z). (7.22)
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At the point z = r0 where r0 is the root in (0, 1) of equation (7.20), f0 satisfies

Re

(
α
z2f ′′0 (z)

f0(z)
+
zf ′0(z)

f0(z)

)

= 1−
−
( c

2
− 2b

)
r0(2α + 1) +

cr0α

(1− r0)2
+

c

1− r0
+
c log(1− r0)

r0

(1 + c) +
( c

2
− 2b

)
r0 +

c log(1− r0)

r0

(7.23)

= β.

Thus r0 is the sharp L(α, β)-radius of f ∈ Ab. Since β < 1, the rational expression

in (7.23) is positive, and therefore

∣∣∣∣∣αz2f ′′0 (z)

f0(z)
+
zf ′0(z)

f0(z)
− 1

∣∣∣∣∣ = 1− β,

which shows r0 is the sharp L0(α, β)-radius of f ∈ Ab. For β > 1, sharpness of

the result is demonstrated by the function f0 given by

f0(z) = z + 2bz2 +
∞∑
n=3

c

n
zn = (1− c)z +

(
2b− c

2

)
z2 − c log(1− z).

For α = 0, Theorem 7.2 coincides with the radius of starlikeness of order β for

f ∈ Ab obtained by Ravichandran [161].

Corollary 7.4 [161, Theorem 2.8, p. 6] Let f(z) = z +
∑∞
n=2 anz

n ∈ Ab and

|an| ≤ M/n for n ≥ 3. Then f satisfies the inequality (7.18) where r0 = r0(β) is

the real root in (0, 1) of the equation

2M(1 + β(1− r) log(1− r) = r
(
2(1 +M)(1− β) + (2− β)(M − 4b)r

)
(1− r).
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The number r0(β) is also the radius of starlikeness of order β. The number r0(1/2)

is the radius of parabolic starlikeness. The results are sharp.

7.3 Radius of Janowski Starlikeness

The next result finds the sharp ST [A,B]-radius of f(z) = z +
∑∞
n=2 anz

n ∈ Ab

satisfying the coefficient inequality |an| ≤ cn+ d, c, d ≥ 0 for n ≥ 3.

Theorem 7.3 Let −1 ≤ B < A ≤ 1. The ST [A,B]-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ cn + d for n ≥ 3 and

c, d ≥ 0 is the real root in (0, 1) of

[(A−B)(c+ d+ 1)− (2b− 2c− d)
(
2(1−B)− (1− A)

)
r](1− r)3

= c(1−B)(1 + r) +
(
d(1−B)− c(1− A)

)
(1− r)− (1− A)d(1− r)2.

(7.24)

The result is sharp.

Proof. It is evident that r0 is the ST [A,B]-radius of f ∈ Ab if and only if

f(r0z)/r0 ∈ ST [A,B]. Hence, by Lemma 7.2, it suffices to show that

∞∑
n=2

(
(1−B)n− (1− A)

)
|an|rn−1

0 ≤ A−B (−1 ≤ B < A ≤ 1), (7.25)

where r0 is the root in (0, 1) of equation (7.24). From (7.10), (7.11), and (7.12)
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for function f ∈ Ab, it follows that

∞∑
n=2

(
(1−B)n− (1− A)

)
|an|rn−1

0

≤ 2
(
2(1−B)− (1− A)

)
br0 +

∞∑
n=3

(
(1−B)n− (1− A)

)
(cn+ d)rn−1

0

= 2
(
2(1−B)− (1− A)

)
br0 + c(1−B)

(
1 + r0

(1− r0)3
− 1− 4r0

)
+
(
d(1−B)− c(1− A)

)( 1

(1− r0)2
− 1− 2r0

)
− (1− A)d

(
1

1− r0
− 1− r0

)
= (B − A)(c+ d) + (2b− 2c− d)

(
2(1−B)− (1− A)

)
r0

+
(
c(1−B)(1 + r0) +

(
d(1−B)− c(1− A)

)
(1− r0)

− (1− A)d(1− r0)2
)
/(1− r0)3

= A−B.

The function f0 given by (7.15) shows that the result is sharp. Indeed, at

the point z = r0 where r0 is the root in (0, 1) of equation (7.24), the function f0

satisfies

∣∣∣∣zf ′0(z)

f0(z)
− 1

∣∣∣∣ =

−2(c− b)r0 +
2dr2

0

1− r0
+

dr3
0

(1− r0)2
+

2cr0
(1− r0)3

c+ 1 + 2(c− b)r0 −
c

(1− r0)2
−

dr2
0

1− r0

,
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and

∣∣∣∣A−Bzf ′0(z)

f0(z)

∣∣∣∣ =
(c+ 1)(A−B) + 2(c− b)r0(A− 2B)

c+ 1 + 2(c− b)r0 −
c

(1− r0)2
−

dr2
0

1− r0

−

c(A−B)

(1− r0)2
+

2cr0B

(1− r0)3
−
dr2

0(A− 3B)

1− r0
+

dr3
0B

(1− r0)2

c+ 1 + 2(c− b)r0 −
c

(1− r0)2
−

dr2
0

1− r0

.

Then (7.24) yields

∣∣∣∣zf ′0(z)

f0(z)
− 1

∣∣∣∣ =

∣∣∣∣A−Bzf ′0(z)

f0(z)

∣∣∣∣ (−1 ≤ B < A ≤ 1, z = r0), (7.26)

or equivalently f0 ∈ ST [A,B].

Applying Theorem 7.3 to the particular case c = 1, and d = 0 yields the

following corollary.

Corollary 7.5 Let −1 ≤ B < A ≤ 1. The ST [A,B]-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ n for n ≥ 3 is the real

root in (0, 1) of

2
(
(A−B)− (b−1)

(
2(1−B)− (1−A)

)
r
)
(1−r)3 = (1−B)(1+r)− (1−A)(1−r).

The result is sharp.

For c = 0, and d = M , Theorem 7.3 leads to the next corollary.

Corollary 7.6 Let −1 ≤ B < A ≤ 1. The ST [A,B]-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ M for n ≥ 3, and
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M ≥ 0 is the real root in (0, 1) of

(
(A−B)(M + 1)− (2b−M)

(
2(1−B)− (1− A)

)
r
)
(1− r)3

= M(1−B)(1− r)− (1− A)M(1− r)2.

The result is sharp.

Remark 7.1 The ST [1−2β,−1]-radius for function f(z) = z+
∑∞
n=2 anz

n ∈ Ab

satisfying |an| ≤ cn+d, c, d ≥ 0 coincides with the radius of starlikeness of order β

for function f ∈ Ab obtained in Corollary 7.1. The radius of starlikeness of order

1/2 for function f(z) = z +
∑∞
n=2 anz

n ∈ A satisfying |an| ≤ n (n ≥ 2) is the

real root r0 ≈ 0.1203 of the equation 2(1− r)3 = 1 + 3r, while this radius constant

for function f ∈ Ab satisfying |an| ≤ n (n ≥ 3) is the real root r0 ≈ 0.2062 of the

equation (1− r)3(2 + 6r) = 1 + 3r.

The last theorem will obtain the ST [A,B]-radius of f(z) = z +
∑∞
n=2 anz

n ∈

Ab satisfying the coefficient inequality |an| ≤ c/n for n ≥ 3 and c > 0.

Theorem 7.4 Let −1 ≤ B < A ≤ 1. The ST [A,B]-radius of f(z) = z +∑∞
n=2 anz

n ∈ Ab satisfying the coefficient inequality |an| ≤ c/n for n ≥ 3 and

c > 0 is the real root in (0, 1) of the equation

(
(c+ 1)(A−B)−

(
2(1−B)− (1− A)

)
r
(

2b− c

2

))
(1− r)

= c(1−B) + c(1− A)(1− r) log(1− r)
r

(7.27)

The result is sharp.

Proof. By Lemma 7.2, condition (7.25) assures that r0 is the ST [A,B]-radius of

f ∈ Ab where r0 is the real root of (7.27). Therefore, using (7.10) and (7.21) for
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f ∈ Ab yield

∞∑
n=2

(
(1−B)n− (1− A)

)
|an|rn−1

0

≤ 2
(
2(1−B)− (1− A)

)
br0 +

∞∑
n=3

(
(1−B)n− (1− A)

) ( c
n

)
rn−1
0

= 2
(
2(1−B)− (1− A)

)
br0 + c(1−B)

(
1

1− r0
− 1− r0

)
− c(1− A)

(
− log(1− r0)

r0
− 1− r0

2

)
= c(B − A) +

(
2(1−B)− (1− A)

)
r0

(
2b− c

2

)
+
c(1−B)r0 + c(1− A)(1− r0) log(1− r0)

(1− r0)r0

= A−B.

The result is sharp for the function f0 given by (7.22). Indeed, f0 satisfies

∣∣∣∣zf ′0(z)

f0(z)
− 1

∣∣∣∣ =

−
( c

2
− 2b

)
r0 +

c

1− r0
+
c log(1− r0)

r0

(1 + c) +
( c

2
− 2b

)
r0 +

c log(1− r0)

r0

,

and

∣∣∣∣A−Bzf ′0(z)

f0(z)

∣∣∣∣ =

(1 + c)(A−B) + (A− 2B)
( c

2
− 2b

)
r0 +

cB

1− r0
+
cA log(1− r0)

r0

(1 + c) +
( c

2
− 2b

)
r0 +

c log(1− r0)

r0

,

at the point z = r0 where r0 is the root in (0, 1) of equation (7.27). From (7.27),

the function f0 is seen to satisfy (7.26), and hence the result is sharp.

Remark 7.2 (1) Let f(z) = z +
∑∞
n=3 anz

n ∈ Ab satisfy |an| ≤ 1/n (n ≥

3). The radius of starlikeness is the real root r0 ≈ 0.6180 of the equation

(2 + r)(1− r) = 1, and the radius of starlikeness of order 1/2 is the real root
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r0 ≈ 0.5241 of

(1− r)
(

2 +
3r

2

)
r = 2r − (1− r) log(1− r).

(2) Let f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies |an| ≤ 1/n (n ≥ 2). The radius of

starlikeness is the real root r0 ≈ 0.2324 of the equation (2 − 3r)(1 − r) = 1,

and the radius of starlikeness of order 1/2 is the real root r0 ≈ 0.1583 of the

equation (
2− 9r

2

)
(1− r)r = 2r − (1− r) log(1− r).
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Math. J. 12 (1996), no. 4, 469–474.

[57] P. R. Garabedian and M. A. Schiffer, A proof of the Bieberbach conjecture

for the fourth coefficient, J. Rational Mech. Anal. 4 (1955), 427–465.

[58] V. I. Gavrilov, Remarks on the radius of univalence of holomorphic functions,

Mat. Zametki 7 (1970), 295–298.

[59] R. M. Goel and N. S. Sohi, Multivalent functions with negative coefficients,

Indian J. Pure Appl. Math. 12 (1981), no. 7, 844–853.

[60] G. M. Goluzin, On the majorization principle in function theory(Russian),

Dokl. Akad. Nauk SSSR 42 (1935), 647–650.

[61] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.

[62] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56

(1991), no. 1, 87–92.

[63] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155

(1991), no. 2, 364–370.

[64] A. W. Goodman and E. B. Saff, On the definition of a close-to-convex func-

tion, Internat. J. Math. Math. Sci. 1 (1978), no. 1, 125–132.

[65] T. H. Gronwall, Some remarks on conformal representation, Ann. of Math.

(2) 16 (1914/15), no. 1-4, 72–76.

195



[66] T. H. Gronwall, On the distortion in conformal mapping when the second

coeffcient in the mapping function has an assigned value, Proc. Natl. Acad.

Sci. U.S.A. 6 (1920), 300–302.

[67] H. Grunsky, Zwei Bemerkungen zur konformen Abbildung, Jahresbericht

Deutsch. Math.-Verein. 43 (1934), 140–143.

[68] D. T. Haimo, A note on convex mappings, Proc. Amer. Math. Soc. 7 (1956),

423–428.

[69] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions,

Proc. Amer. Math. Soc. 52 (1975), 191–195.

[70] W. K. Hayman, On the coefficients of univalent functions, Proc. Cambridge

Philos. Soc. 55 (1959), 373–374.

[71] E. Hille, Lectures on ordinary differential equations, Addison-Wesley Publ.

Co., Reading, MA, 1969.

[72] Ju. E. Hohlov, Operators and operations on the class of univalent functions,

Izv. Vyssh. Uchebn. Zaved. Mat. 1978, no. 10(197), 83–89.

[73] W. Janowski, Some extremal problems for certain families of analytic func-

tions. I, Ann. Polon. Math. 28 (1973), 297–326.

[74] D. Kalaj, S. Ponnusamy, M. Vuorinen, Radius of close to convexity of har-

monic functions, Complex Var. Elliptic Equ. (2012), to appear.

[75] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J.

Comput. Appl. Math. 105 (1999), no. 1-2, 327–336.

[76] S. Kanas and A. Wísniowska, Conic domains and starlike functions, Rev.

Roumaine Math. Pures Appl. 45 (2000), no. 4, 647–657 (2001).

196



[77] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952),

169–185 (1953).

[78] F. R. Keogh and S. S. Miller, On the coefficients of Bazilevič functions, Proc.

Amer. Math. Soc. 30 (1971), 492–496.

[79] Yu. E. Khokhlov, Convolution operators that preserve univalent functions,

Ukrain. Mat. Zh. 37 (1985), no. 2, 220–226, 271.

[80] J.-A Kim and T. Sugawa, Geometric properties of functions with small

schwarzian derivatives, POSTECH Korea.

[81] Y. C. Kim, Survey on integral transforms in the geometric function theory,

Korean J. Math. Sci. 8 (2001), no. 1, 47–59.

[82] Y. C. Kim and S. Ponnusamy, Sufficiency for Gaussian hypergeometric func-

tions to be uniformly convex, Int. J. Math. Math. Sci. 22 (1999), no. 4,

765–773.

[83] Y. C. Kim and F. Rønning, Integral transforms of certain subclasses of an-

alytic functions, J. Math. Anal. Appl. 258 (2001), no. 2, 466–489.

[84] Y. Komatu, On analytic prolongation of a family of operators, Mathematica

(Cluj) 32(55) (1990), no. 2, 141–145.

[85] W. Kraus, ber den Zusammenhang einiger Charakteristiken eines einfach

zusammenhngenden Bereiches mit der Kreisabbildung, Mitt. Math. Sem.

Giessen 21 (1932), 1–28.
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