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JEJARI U DAN PENENTU HANKEL UNTUK FUNGSI ANALISIS DAN

HASIL DARAB PEMETAAN LOGHARMONIK

ABSTRAK

Tesis ini mengkaji tentang ciri-ciri geometrik dan analisis bagi fungsi analisis berni-

lai kompleks dan pemetaan log-harmonik tertakrif dalam cakera unit terbuka D. Ter-

dapat empat permasalahan penyelidikan yang dikaji. Sebagai permulaan, andaikan

U sebagai kelas yang terdiri daripada fungsi analisis ternormal f yang memenuhi

syarat |(z/ f (z))2 f ′(z)− 1| < 1. Semua fungsi f ∈ U adalah univalen. Bagi per-

masalahan yang pertama, jejari-U ditentukan untuk beberapa kelas fungsi analisis

termasuk kelas fungsi analisis yang memenuhi ketidaksamaan Re f (z)/g(z)> 0, atau

| f (z)/g(z)−1|< 1 dalam D, untuk g yang terkandung dalam kelas fungsi analisis ter-

tentu. Bagi kebanyakan kes, jejari-U yang tepat diperoleh. Konjektur oleh Obradovic

dan Ponusamy berkenaan jejari univalen bagi hasil darab yang melibatkan fungsi uni-

valen juga telah dibuktikan. Permasalahan kedua berkaitan dengan penentu Han-

kel bagi fungsi analisis. Bagi fungsi analisis ternormal f , andaikan z f ′(z)/ f (z) atau

1+ z f ′′(z)/ f ′(z) subordinat kepada suatu fungsi analisis φ dalam D. Andaikan juga F

sebagai jelmaan punca ke-k, iaitu, F(z)= z
[

f
(
zk)/zk] 1

k . Batas atas terbaik dalam ben-

tuk pekali bagi fungsi φ yang diberi diperoleh bagi penentu Hankel kedua F, yang f

terkandung dalam salah satu kelas di atas. Anggaran bagi penentu Hankel bagi penjel-

maan ke-k untuk kelas fungsi α-cembung dan α-cembung secara logaritma juga diper-

oleh. Dua permasalahan terakhir adalah berkait dengan pemetaan logaritma dalam D.

Pertama, bagi pemetaan log-harmonik bak-bintang f (z) = zh(z)g(z), syarat cukup di-

dapati bagi F(z) = f (z)| f (z)|2γ agar menjadi pemetaan α-bak lingkaren log-harmonik.

ix



Syarat cukup juga diperoleh bagi dua pemetaan logharmonik f1 dan f2 yang memas-

tikan hasil darab F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, adalah pemetaan log-harmonik

bak bintang. Beberapa contoh telah dibangunkan daripada hasil darab tersebut. Per-

masalahan seterusnya melihat pada pemetaan log-harmonik ternormal f (z)= zh(z)g(z)

dimana φ(z) = zh(z)g(z) adalah fungsi analisis nyata biasa dalam D. Pewakilan kami-

ran bagi pemetaan sedemikian diterbitkan, dan anggaran bagi jejari bak-bintangnya

didapati. Anggaran atas terbaik pada lengkok juga ditentukan. Syarat-syarat geometri

cukup dan perlu bagi φ(z) = zh(z)g(z) untuk menjadi nyata biasa juga dikaji apabila

f (z) = zh(z)g(z) mempunyai dilatasi dengan pekali nyata.

x



THE U -RADIUS AND HANKEL DETERMINANT FOR ANALYTIC

FUNCTIONS, AND PRODUCT OF LOGHARMONIC MAPPINGS

ABSTRACT

This thesis studies geometric and analytic properties of complex-valued analytic

functions and logharmonic mappings in the open unit disk D. It investigates four

research problems. As a precursor to the first, let U be the class consisting of nor-

malized analytic functions f satisfying |(z/ f (z))2 f ′(z)−1|< 1. All functions f ∈ U

are univalent. In the first problem, the U -radius is determined for several classes of

analytic functions. These include the classes of functions f satisfying the inequality

Re f (z)/g(z) > 0, or | f (z)/g(z)−1| < 1 in D, for g belonging to a certain class of

analytic functions. In most instances, the exact U -radius are found. A recent conjec-

ture by Obradović and Ponnusamy concerning the radius of univalence for a product

involving univalent functions is also shown to hold true. The second problem deals

with the Hankel determinant of analytic functions. For a normalized analytic func-

tion f , let z f ′(z)/ f (z) or 1+ z f ′′(z)/ f ′(z) be subordinate to a given analytic func-

tion φ in D. Further let F be its kth-root transform, that is, F(z) = z
[

f
(
zk)/zk] 1

k .

A bound expressed in terms of the coefficients of the given function φ is obtained

for the second Hankel determinant of F , where f belongs to either of the two classes

above. Estimates for the Hankel determinant are also found for the kth-root transform

of the class of α-convex functions and α-logarithmically convex functions. The fi-

nal two studied problems studied relate to logharmonic mappings in D. First, for a

starlike logharmonic mapping f (z) = zh(z)g(z), sufficient conditions are obtained for

F(z) = f (z)| f (z)|2γ to be α−spirallike logharmonic mapping. In addition, sufficient

xi



conditions are determined on two given logharmonic mappings f1 and f2 to ensure their

product F(z)= f λ
1 (z) f 1−λ

2 (z), 0≤ λ ≤ 1, is a univalent starlike logharmonic mapping.

Several illustrative examples are constructed from this product. The latter problem

looks at normalized logharmonic mappings f (z) = zh(z)g(z) where φ(z) = zh(z)g(z) is

typically real analytic in D. An integral representation for such mappings f is derived,

and an estimate found on its radius of starlikeness. An upper estimate on arclength is

also determined. Sufficient and necessary geometric conditions for φ(z) = zh(z)g(z)

to be typically real are also investigated when f (z) = zh(z)g(z) has a dilatation with

real coefficients.

xii



CHAPTER 1

INTRODUCTION

Geometric function theory is a branch of complex analysis with a long steeped history.

It started in the early 20th century. Function theory studies geometric properties of

complex-valued functions, and incorporate various tools from analysis.

This introductory chapter presents basic definitions and fundamental results im-

portant in the sequel. These are results on analytic functions, as well as on harmonic

and log-harmonic mappings. It also serves to provide the motivations for the problems

studied in the thesis.

1.1 Analytic Univalent Functions

In this thesis, the complex plane is denoted by C. Further, let

D(z0,r) := {z : z ∈ C, |z− z0|< r}, r > 0,

be the neighborhood of z0. A set D of C is open if for every point z0 ∈ D, there is an

r > 0 such that D(z0,r) ⊂ D. An open set D is connected if there is a polygonal path

in D joining any pair of points in D.

A domain D of C is an open connected set. A domain D is simply connected if the

interior to every simple closed curve in D lies completely within D. Geometrically, a

simply connected domain is a domain without any holes.

1



A complex-valued function f defined in D is differentiable at a point z0 ∈ D if the

limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0
,

exists. A function f defined in D is analytic at z0 ∈ D if it is differentiable in some

neighbourhood of z0. It is analytic in D if it is analytic at all points in D. It is known in

[123, p. 167] that for z ∈ D(z0,r)⊆ D, an analytic function f in D has a Taylor series

expansion

f (z) =
∞

∑
n=0

an(z− z0)
n, an :=

f (n)(z0)

n!
.

Denote by H (D) the class of all analytic functions in the open unit disk D= {z ∈

C : |z| < 1}. Further, let A denote the class of all normalized analytic functions f in

H (D) of the form

f (z) = z+
∞

∑
n=2

anzn. (1.1)

A function f is univalent in D if it is one-to-one in D. Thus f is univalent if it takes

different points in D to different values, that is, for any two distinct points z1 and z2

with z1 ̸= z2 in D, f (z1) ̸= f (z2). A function f is called locally univalent at z0 if it is

one-to-one in some neighbourhood of z0. It is known in [38, p. 5] that the condition

f ′(z0) ̸= 0 is necessary and sufficient for local univalence at z0.

A function that preserves both the magnitude and orientation of angles is said to

be conformal. For an analytic function f , the condition f ′(z0) ̸= 0 is equivalent to it

being conformal at z0.

The Riemann mapping theorem is an important theorem in geometric function the-

ory. It states that any simply connected domain which is not the entire complex plane,

2



can be mapped conformally onto D.

Theorem 1.1. (Riemann Mapping Theorem) [38, p. 11] Let D be a simply connected

domain which is a proper subset of the complex plane. Let ζ be a given point in D.

Then there is a unique analytic and univalent function f which maps D onto the unit

disk D satisfying f (ζ ) = 0 and f ′(ζ )> 0.

Therefore, the study of conformal mappings on a simply connected domain can be

confined to the study of functions that are analytic and univalent on the open unit disk

D.

Denote by S the subclass of A consisting of univalent functions. An example is

the function k given by

k(z) =
z

(1− z)2 =
1
4

[(
1+ z
1− z

)2

−1

]
=

∞

∑
n=1

nzn, z ∈ D. (1.2)

This function is known as the Koebe function, and it maps D onto the entire complex

plane except for a slit along the half-line (−∞,−1/4]. The Koebe function and its

rotations e−iβ k(eiβ z), β ∈ R, play an important role in the study of the class S . These

functions are extremal functions for various problems in the class S .

In 1916, Bieberbach [30] conjectured the coefficients for f (z) = ∑∞
n=1 anzn ∈ S

satisfy |an| ≤ n. This conjecture is known as Bieberbach’s conjecture. However, he

only proved for the case when n = 2, and this result is called the Bieberbach theorem.

Theorem 1.2. (Bieberbach theorem) [30] Let f ∈ S . Then

|a2| ≤ 2.

Equality occurs if and only if f is a rotation of the Koebe function k.

In fact for many years, this conjecture has stood as a challenge to many mathemati-

cians. The problem was resolved only for some initial values of n. Lowner [76] proved
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the Bieberbach conjecture for the case n = 3, followed by Garabedian and Schiffer

[47] for n = 4. For n = 6, it was proved independently by Pederson [119] and Ozawa

[116]. Pederson and Schiffer [118] proved the conjecture for n = 5. It was not until

1985 that de Branges [36] successfully proved the Bieberbach conjecture.

Theorem 1.3. (de Branges Theorem) [36] The coefficients of each function f (z) =

z+∑∞
n=2 anzn ∈ S satisfy |an| ≤ n for n = 2,3, . . .. Equality occurs if and only if f is

the Koebe function k or one of its rotations.

Bieberbach theorem has significant implications in the theory of univalent func-

tions. These include the well known covering theorem due to Koebe, which states the

image of D under every f ∈ S must cover an open disk centered at the origin of radius

1/4.

Theorem 1.4. (Koebe One-Quarter Theorem) [38, p. 31] The range of every function

of the class S contains the disk {w : |w|< 1/4}.

One important consequence of the Bieberbach theorem is the distortion theorem

which gives sharp bounds for | f ′(z)|.

Theorem 1.5. (Distortion Theorem) [38, p. 32] Let f ∈ S . Then

1− r
(1+ r)3 ≤ | f ′(z)| ≤ 1+ r

(1− r)3 , |z|= r < 1.

Equality occurs if and only if f is a suitable rotation of the Koebe function k.

The growth theorem which results from the distortion theorem provides sharp

bounds for | f (z)|.

Theorem 1.6. (Growth Theorem) [38, p. 33] Let f ∈ S . Then

r
(1+ r)2 ≤ | f (z)| ≤ r

(1− r)2 , |z|= r < 1.
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Equality occurs if and only if f is a suitable rotation of the Koebe function k.

1.2 Subclasses of Analytic Univalent Functions

An important subclass of normalized analytic functions in the open unit disk D is the

class of functions with positive real part.

Definition 1.1. (The class of functions with positive real part) [48, p. 78] The class P

consists of all analytic functions

p(z) = 1+
∞

∑
n=1

cnzn, z ∈ D, (1.3)

with

Re p(z)> 0, z ∈ D.

An important example of a function in P is the Möbius function

m(z) :=
1+ z
1− z

= 1+2
∞

∑
n=1

zn

which maps D onto the half-plane {w : Re w > 0}. The role of this Möbius function m

is similar to that of the Koebe function in the class S .

The sharp coefficient bound for functions in the class P is given in the following

result.

Lemma 1.1. (Carathéodory’s Lemma) [38, p. 41] Let p(z) = 1+∑∞
n=1 cnzn ∈ P . Then

the following sharp estimate holds:

|cn| ≤ 2, (n = 1,2,3, . . .).

Equality occurs for the Möbius function m or its rotations.
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More generally, for 0 ≤ α < 1, let P (α) denote the class of analytic functions p of

the form (1.3) with

Re p(z)> α , z ∈ D.

The class P is closely related to several subclasses of univalent functions. These

include the important classes of convex and starlike functions. Geometric and analytic

relationships between them will soon be made evident.

A set D in C is called starlike with respect to an interior point w0 in D if the line

segment joining w0 to every other point w in D lies entirely in D. Analytically, this

condition is equivalent to

(1− t)w0 + tw ∈ D

for every w ∈ D, and 0 ≤ t ≤ 1. In the case w0 = 0, the set D is called starlike with

respect to the origin, or simply a starlike domain.

Definition 1.2. (Starlike function) [48, p. 108] A function f ∈ A is called a starlike

function with respect to w0 if it maps D onto a domain that is starlike with respect to

w0. In the particular case that w0 = 0, f is called a starlike function.

Denote by ST the subclass of S consisting of all starlike functions in D. The fol-

lowing theorem gives an analytic description of the class ST .

Theorem 1.7. (Analytical characterization of starlike functions) [38, p. 41] Let f ∈

A . Then f ∈ ST if and only if

Re
(

z f ′(z)
f (z)

)
> 0, z ∈ D. (1.4)

Thus f ∈ ST if and only if z f ′/ f ∈P . The Koebe function in (1.2) is an example

of starlike function in D. The sharp coefficient bound for f ∈ ST is given by the
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following result.

Theorem 1.8. [89] Let f (z) = z+∑∞
n=2 anzn ∈ ST . Then

|an| ≤ n, (n = 2,3, . . .).

Equality occurs for all n when f is a rotation of the Koebe function k.

A set D in C is convex if it is starlike with respect to each of its points, that is, for

every pair of points w1 and w2 lying in D, the line segment joining w1 and w2 also lies

entirely in D. Analytically, this is equivalent to

tw1 +(1− t)w2 ∈ D

for every pair w1,w2 ∈ D, and 0 ≤ t ≤ 1.

Definition 1.3. (Convex function) [48, p. 107] A function f ∈ A is called a convex

function if it maps D onto a convex domain.

Denote by CV the subclass of S consisting of all convex functions in D. The fol-

lowing is an analytic description of convex functions.

Theorem 1.9. (Analytical characterization of convex functions) [38, p. 42] Let f ∈

A . Then f ∈ CV if and only if

Re
(

z f ′′(z)
f ′(z)

+1
)
> 0 z ∈ D. (1.5)

The function

L(z) =
z

1− z
(1.6)

which maps D onto the half-plane {w : Re w>−1/2} is a convex function and belongs

to CV . The following result gives sharp coefficient bound for the class CV .
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Theorem 1.10. [75] Let f (z) = z+∑∞
n=2 anzn ∈ CV . Then

|an| ≤ 1, (n = 2,3, . . .).

Equality occurs for all n when f is a rotation of the function L given by (1.6).

In 1915, Alexander [19] showed that there is a close connection between convex

and starlike functions.

Theorem 1.11. [19] Let f ∈ A . Then f is convex in D if and only if z f ′(z) is starlike

in D.

In 1936, Robertson [129] introduced the classes of starlike and convex functions of

order α , 0 ≤ α < 1. These are given by

ST (α) :=
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
> α , z ∈ D

}
,

and

CV (α) :=
{

f ∈ A : Re
(

1+
z f ′′(z)
f ′(z)

)
> α , z ∈ D

}
,

respectively. In particular, ST (0) = ST and CV (0) = CV . It is clear that

ST (α)⊆ ST and CV (α)⊆ CV .

A classical result of Strohhäcker [138] shows that CV ⊂ ST (1/2).

A function f ∈ A is said to be close-to-convex in D if there is a convex function g

and a real number θ , −π/2 < θ < π/2, such that

Re
(

eiθ f ′(z)
g′(z)

)
> 0 z ∈ D.

This set of functions, denoted by CCV , was introduced by Kaplan [67] in 1952. The

subclasses of S , namely convex, starlike and close-to-convex functions are related as

follows:
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CV ⊂ ST ⊂ CCV .

Indeed, a significant result in the theory of univalent functions is the Noshiro-

Warschawski theorem. This theorem states that a function f ∈ A whose derivative

has positive real part in D is univalent.

Theorem 1.12. (Noshiro-Warschawski Theorem) [103] If a function f is analytic in a

convex domain D and

Re
(
eiα f ′(z)

)
> 0

for some real α , then f is univalent in D.

Using the Noshiro-Warschawski theorem, Kaplan [67] proved that every close-to-

convex function is univalent, and thus CCV ⊂ S .

For α > 0, a function f ∈ A with f ′(z) f (z)/z ̸= 0 is said to be an α-convex function

if and only if

Re

(
(1−α)

z f ′(z)
f (z)

+α
(

1+
z f ′′(z)
f ′(z)

))
> 0, z ∈ D.

This class of functions, denoted by Mα , was introduced by Mocanu et al.[86]. In 1973,

Miller et al.[84] proved that functions in the class Mα are univalent and starlike in D.

They also showed that all α-convex functions are convex for α ≥ 1. Evidently, M0

reduces to the class ST and M1 reduces to the class CV .

An analytic function f ∈ A with f ′(z) f (z)/z ̸= 0 and 1+ z f ′′(z) f ′(z) ̸= 0 is said to

be an α−logarithmically convex function in D if and only if

Re

((
z f ′(z)
f (z)

)α(
1+

z f ′′(z)
f ′(z)

)1−α
)

> 0, z ∈ D,

where α ∈ [0,1]. This set of functions denoted by Lα was introduced by Lewandowski
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et al. [73]. Darus et al [35] proved that functions in this class are starlike. They also

obtained bounds for |a2|, |a3| and |a3−µa2|, where µ is real. Some extreme coefficient

problems are also solved. It is clear that L0 reduces to the class CV and L1 reduces to

the class ST .

An analytic function f is subordinate to g in D, written f (z)≺ g(z), if there exists

an analytic function w in D with w(0) = 0, and |w(z)| < 1, such that f (z) = g(w(z)).

In particular, if the function g is univalent in D, then f ≺ g is equivalent to f (0) = g(0)

and f (D)⊆ g(D). In terms of subordination, the analytic conditions (1.4) and (1.5) can

be written respectively as

z f ′(z)
f (z)

≺ 1+ z
1− z

, z ∈ D, (1.7)

and

z f ′′(z)
f ′(z)

+1 ≺ 1+ z
1− z

, z ∈ D. (1.8)

This follows because the mapping m(z) = (1+ z)/(1− z) maps D onto the right-half

plane, and thus Re(m(z))> 0.

Ma and Minda [77] gave a unified presentation of various subclasses of starlike

and convex functions by replacing the superordinate function m(z) = (1+ z)/(1− z)

in (1.7) and (1.8) by a more general analytic univalent function φ which has positive

real part in D and normalized by the conditions φ(0) = 1, φ ′(0) > 0. Furthermore, it

is assumed that φ(D) is starlike with respect to φ(0) = 1, and symmetric with respect

to the real axis.

The class of Ma-Minda starlike functions with respect to φ , denoted by ST (φ) ,

consists of functions f ∈ A satisfying the subordination z f ′(z)/ f (z)≺ φ(z). This class

can be written as
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ST (φ) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φ(z), z ∈ D
}
. (1.9)

Similarly the class of Ma-Minda convex functions with respect to φ , denoted by CV (φ),

consists of functions f ∈ A satisfying the subordination 1+ z f ′′(z)/ f ′(z)≺ φ(z). This

class is

CV (φ) :=
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ φ(z), z ∈ D
}
.

Note that f ∈ CV (φ) if and only if z f ′ ∈ ST (φ).

The class of Ma-Minda starlike functions with respect to φ envelops several well-

known subclasses of univalent functions by appropriate choices of φ in (1.9). For

instance, when φ is given by

φα(z) :=
1+(1−2α)z

1− z
= 1+2(1−α)z+2(1−α)z2 +2(1−α)z3 + · · · ,

where 0 ≤ α < 1, then φα(D) = {w : Rew > α}. Therefore, the class of starlike func-

tions of order α which satisfies the analytical condition

Re
(

z f ′(z)
f (z)

)
> α , z ∈ D,

can be expressed in the form

ST (α) :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φα(z), z ∈ D
}
.

For the choice

φPAR(z) := 1+
2

π2

(
log

1+
√

z
1−√

z

)2

= 1+
8

π2 z+
16

3π2 z2 +
184

45π2 z3 + · · · ,

Rønning [131] showed that φPAR maps D onto the parabolic region {w = u+ iv : v2 <

2u− 1} = {w : Rew > |w− 1|}. Consequently, the class ST P of parabolic starlike

functions which satisfies the analytical condition
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Re
(

z f ′(z)
f (z)

)
>

∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣ , z ∈ D,

can be expressed in the form

ST P :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φPAR, z ∈ D
}
.

With the choice

φβ (z) :=
(

1+ z
1− z

)β
= 1+2β z+2β 2z2 +

2
3

β (1+2β 2)z3 + · · · , 0 < β ≤ 1,

it is evident that
∣∣argφβ (z)

∣∣= β |arg((1+ z)/(1− z))|< βπ/2. Thus the class ST β of

strongly starlike functions of order β which satisfies the analytical condition [31]

∣∣∣∣arg
(

z f ′(z)
f (z)

)∣∣∣∣< βπ
2

, z ∈ D,

can be expressed in the form

ST β :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φβ , z ∈ D
}
.

For the choice

φL :=
√

1+ z = 1+
1
2

z− 1
8

z2 +
1

16
z3 + · · · ,

it is clear that φL(D) = {w : |w2 −1|< 1}. Therefore, the class ST L of lemniscate of

Bernoulli starlike functions which satisfies the analytical condition [136]

∣∣∣∣∣
(

z f ′(z)
f (z)

)2

−1

∣∣∣∣∣< 1, z ∈ D,

can be expressed in the form

ST L :=
{

f ∈ A :
z f ′(z)
f (z)

≺ φL, z ∈ D
}
.
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1.3 Analytic Typically Real Functions

An analytic function f is said to be typically real in D if it has real values on the real

axis and nonreal values elsewhere. Therefore, typically real function maps the upper

unit disk into either the upper half-plane or the lower half-plane, and similarly for the

lower unit disk.

Denote by T the class consisting of typically real functions f ∈ A . This class was

introduced and investigated by Rogosinski [130].

For f ∈ T, by definition, f is real whenever z is real, that is, f (z) = f (z) for z = x ∈

(−1,1). Thus ∑∞
n=2(an−an)xn = 0, which yields an = an. Hence f has real coefficients.

The converse does not hold, as illustrated by the function f (z) = z+ z2 + 4z3 ∈

A . It is clear that f has real coefficients. However, f is not typically real because

f (i/2) =−1/4.

Furthermore, if f ∈ T, then f ′(0) > 0, and thus near the origin f maps the upper

unit disk into the upper half-plane, and the lower unit disk into the lower half-plane.

Consequently,

(Imz)(Im f (z))> 0, z ∈ D\R,

when f ∈ T.

Proposition 1.1. If f ∈S has real coefficients, then f ∈ T.

Proof. Since f has real coefficients, it follows that f is real whenever z is real. Suppose

z is not real. Since f is univalent, it follows that f (z) ̸= f (z). Further f has real

coefficients, that is, f (z) = f (z). Therefore, f (z) ̸= f (z), and thus f (z) is not real.

Hence f (z) is real if and only if z is real, which yields the desired result.
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Note that a typically real function need not be univalent. For instance, let f (z) =

z+ z3. Then f is not univalent in D since f ′(i/
√

3) = 0. However,

Im( f (z)) = Im
(
(x+ iy)(1+ x2 − y2 +2ixy)

)
= y(3x2 +1− y2).

Thus

Im(z)Im( f (z)) = y2 (3x2 +(1− y2)
)
> 0,

whenever Im (z) ̸= 0, and hence f is typically real.

Let PR denote the class of all functions in P with real coefficients. The connection

between functions in T and functions in PR was established by Rogosinski [130].

Theorem 1.13. [130] A function φ ∈ T if and only if there exists a function p ∈ PR

such that φ(z) = zp(z)/(1− z2).

1.4 The kth-root Transform

Let f (z) = z+∑∞
n=2 anzn with f (z) ̸= 0 in D\{0}. Further, let k ≥ 2 be a fixed integer.

The kth-root transform of f is defined by

F(z) :=
(

f
(

zk
)) 1

k
= z

(
f
(
zk)

zk

) 1
k

.

The following lemma is required to prove the univalence of the kth-root transform

whenever f ∈ S .

Lemma 1.2. [123, p. 142] If f is analytic in D with 0 /∈ f (D), then there exist an

analytic function h in D and an integer k ≥ 2 such that hk = f .

Proof. Since f (z) ̸= 0 in D, it follows that f ′(z)/ f (z) is analytic in D. By Cauchy’s

integral theorem [123, p. 139] , there exists a function g ∈ H (D) such that

g′(z) =
f ′(z)
f (z)

. (1.10)
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Let s(z) = f (z)exp{−g(z)}. It follows from (1.10) that

s′(z) =
(

f ′(z)−g′(z) f (z)
)

exp{−g(z)}= 0.

Then for a fixed z0 ∈ D,

s(z)− s(z0) =
∫ z

z0

s′(ζ )dζ = 0,

and thus f (z)exp{−g(z)} = s(z0). As s(z0) ̸= 0 in D, we can let s(z0) = exp{m} for

some m. Then f (z)exp{−g(z)}= exp{m}, that is, f (z)= exp{g(z)+m}= exp{G(z)},

where G(z) = g(z)+m. Hence the proof is completed by taking h(z) = exp{G(z)/k}

for every z ∈ D.

The following result shows that the kth-root transform preserves univalence.

Theorem 1.14. Let f ∈ S and g(z) = ( f (zk))1/k be the kth-root transformation of f .

Then g ∈ S . The branch is chosen so that
(

f (zk)/zk)1/k
= 1 at z = 0.

Proof. Since f ∈ S , it follows that f (z)/z is a nonvanishing analytic function. By

applying Lemma 1.2, there exist an analytic function h and an integer k ≥ 2 such that

hk(z) = f (z)/z. Let

g(z) = z
(

f (zk)

zk

) 1
k

= zh(zk).

Since f
(
zk)/zk = 1+∑∞

n=2 anzk(n−1) := 1+ x, and

(1+ x)
1
k =

∞

∑
n=0

(−1/k)n

n!
(−x)n

= 1+
1
k

x+

(−1
k

)(−1
k +1

)
2!

x2 −
(−1

k

)(−1
k +1

)(−1
k +2

)
3!

x3 + · · ·

= 1+
1
k

x− (k−1)
2k2 x2 +

(k−1)(2k−1)
3!k3 x3 + · · · ,

it follows that

g(z) = z

(
f
(
zk)

zk

) 1
k

= z

1+
1
k

∞

∑
n=2

anzk(n−1)− (k−1)
2k2

(
∞

∑
n=2

anzk(n−1)

)2

+ · · ·
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= z

1+
1
k

∞

∑
n=1

an+1znk − (k−1)
2k2

(
∞

∑
n=1

an+1znk

)2

+ · · ·

 .

Thus g is normalized with g(0) = 0 and g′(0) = 1.

Suppose z1,z2 ∈D such that g(z1) = g(z2). Then gk(z1) = gk(z2), and thus f (zk
1) =

f (zk
2). The univalence of f in D implies that zk

1 = zk
2, and hence, there exists β ∈ C,

β k = 1, such that z2 = β z1. If β = 1, then z2 = z1. Assume that β ̸= 1. It follows that

g(z2) = g(β z1) = β z1h(β kzk
1) = β z1h(zk

1) = βg(z1) = βg(z2),

and thus (1−β )g(z2) = 0. Since β ̸= 1, it yields that g(z2) = 0, that is, z2 = 0. Fur-

thermore, g(z1) = g(z2) implies z1 = 0, and hence z2 = z1 = 0. This completes the

proof.

The next result shows that the kth-root transform preserves starlikeness.

Theorem 1.15. Let g(z) = ( f (zk))1/k be the kth-root transformation of f . Then g ∈

ST if and only if f ∈ ST .

Proof. It is clear that for each z ∈ D

zg′(z)
g(z)

= zk f ′(zk)

f (zk)
.

Thus

Re
(

zg′(z)
g(z)

)
= Re

(
zk f ′(zk)

f (zk)

)
, z ∈ D,

and hence g is starlike if and only if f is starlike.
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The following result shows that the convexity of the kth-root transform of f implies

convexity of f . However, the converse does not hold.

Theorem 1.16. Let g(z) = ( f (zk))1/k be the kth-root transformation of f and g ∈ CV .

Then f ∈ CV . However, the converse is false.

Proof. Evidently,

g′(z) = g(z)
(

zk−1 f ′(zk)

f (zk)

)
. (1.11)

Thus

1+
zg′′(z)
g′(z)

=
zg′(z)
g(z)

+ k
(

1+
zk f ′′(zk)

f ′(zk)

)
− k
(

zk f ′(zk)

f (zk)

)
.

From (1.11), the above equality is equivalent to

1+
zg′′(z)
g′(z)

=
zg′(z)
g(z)

+ k
(

1+
zk f ′′(zk)

f ′(zk)

)
− k

zg′(z)
g(z)

. (1.12)

It follows that

Re
(

1+
zk f ′′(zk)

f ′(zk)

)
=

1
k

(
Re
(

1+
zg′′(z)
g′(z)

)
+(k−1)Re

(
zg′(z)
g(z)

))
,

and hence if g is convex, then f is convex.

On the other hand, f (z) = z/(1− z) is a convex function such that for z ∈ D,

k Re
(

1+
z f ′′(z)
f ′(z)

)
− (k−1)Re

(
z f ′(z)
f (z)

)
= k Re

(
1+ z
1− z

)
− (k−1)Re

(
1

1− z

)
< k Re

(
1+ z
1− z

)
− (k−1)

2
.

By taking k = 2 and z0 =
√

3/5i ∈ D, it is evident that z2
0 ∈ D, and

2 Re
(

1+
z2

0 f ′′(z2
0)

f ′(z2
0)

)
−Re

(
z2

0 f ′(z2
0)

f (z2
0)

)
< 2 Re

(
1+ z2

0

1− z2
0

)
− 1

2
=

1
2
− 1

2
= 0. (1.13)
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Equations (1.11) and (1.12) show that

Re
(

1+
zg′′(z)
g′(z)

)
= k Re

(
1+

zk f ′′(zk)

f ′(zk)

)
− (k−1)Re

(
zk f ′(zk)

f (zk)

)
.

Thus, it follows from (1.13) that g is not convex.

The kth-root transform has been widely used in a variety of ways in complex func-

tion theory. Bounds for the Fekete-Szegö coefficient functional associated with kth-

root transform ( f (zk))1/k of normalized analytic functions f were derived in [20]. An-

namalai et al. [25] obtained a bound of the Fekete Szegö coefficient functional for the

Janowski α-Spirallike functions associated with the kth-root root transformation.

1.5 The Second Hankel Determinant

For positive integers q and n, the Hankel determinant Hq(n) for an analytic function

f (z) = ∑∞
n=0 anzn is defined by

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.14)

Hankel determinants play an important role in the study of singularities. For in-

stance, Dienes [37, p.333] showed that if the function f (z) = ∑∞
n=0 anzn has at most

p poles and no other singularities on the circumference of its circle of convergence,

then limn→∞
∣∣ n
√

Hp(n)
∣∣= 1. Furthermore, Hankel determinants are useful in the study

of a function of bounded characteristic. For example, Cantor [32] proved that if the

function f (z) = ∑∞
n=0 anzn is a ratio of two bounded analytic functions in D, then
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limq→∞ Hq+1(n) = 0.

The growth rate of Hankel determinant Hq(n) as n → ∞ was obtained by Pom-

merenke [121]. Various authors [92, 94] and [100] have investigated the growth rate

of Hankel determinant Hq(n) for a certain subclass of analytic functions by essentially

following Pommerenke’s method.

Pommerenke [122] proved that Hankel determinants of univalent functions satisfy

|Hq(n)|< Kn−( 1
2+β )q+ 3

2 (n = 1,2, . . . , q = 2,3, . . .),

where β > 1/4000 and K depends only on q.

Hankel determinants have also been discussed for several subclasses of analytic

functions by many authors. For instance, in the works by Ehrenborg [42], Layman

[71], Noor [95, 96, 97, 98, 99], Noor and Al-Bany [101] and Noor [102]. The Hankel

determinant of meromorphic functions was obtained in [142]. Various properties of

these determinants can be found in [141, Chapter 4].

It is evident that H2(1) = a3 − a2
2 is the Fekete-Szegö coefficient functional for

f ∈ A . Interestingly the determinant also satisfies H2(1) = S f (0)/6, where S f is the

Schwarzian derivative of f defined in [33] by S f = ( f ′′/ f ′)′− ( f ′′/ f ′)2/2. Ali et al.

[20] investigated the Fekete-Szegö coefficient functional for the kth-root transform of

functions belonging to several classes defined via subordination.

In recent years, several authors have investigated bounds for the second Hankel

determinant H2(2) = a2a4 −a2
3 of functions belonging to various subclasses of univa-

lent and multivalent functions. For example, Elhosh obtained bounds for the second

Hankel determinant of univalent functions and close-to-convex functions respectively

in [43, 44]. In addition, Halim et al. [53, 63] and [64] obtained bounds for the second
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Hankel determinant for certain subclasses of analytic functions. Singh [134] estab-

lished a bound for the second Hankel determinant for analytic functions with respect

to other points. Moreover, Lee et al. [72] investigated bounds for the second Hankel

determinant for functions belonging to subclasses of Ma-Minda starlike and convex

functions and two other related classes defined by subordination.

Hayami and Owa [55, 57] obtained a bound for the generalized functional |anan+2−

µa2
n+1| by using the Hankel determinant H2(n) for all n ≥ 1 and some real number µ

for several subclasses of A . These authors [54] also studied a bound for the functional

|ap+2 − µa2
p+1| for p-valent analytic functions. They also obtained a bound for the

functional |ap+1ap+3 − µa2
p+2| for p-valent analytic functions in [56]. Similar study

of finding bounds for other classes of p-valent analytic functions was discussed in

[140].

1.6 Radius Problems

Another active topic of investigation in the theory of univalent functions is the radius

problem. Although not all analytic functions f ∈ A are univalent in the unit disk,

for z near to the origin, the behavior of a function f (z) = z+∑∞
n=2 anzn is similar to

the identity map. Therefore, f maps a sufficiently small disk Dr := {z ∈ C : |z| < r}

univalently onto some domain. The radius of the largest disk in D where f is univalent

is called the radius of univalence for f . For instance, the function f (z) = z+ 3z2 ∈

A is not locally univalent at z0 = −1/6 since f ′(−1/6) = 0. However, the Noshiro-

Warschawski result shows that the function f is univalent in the disk |z| < 1/6. Thus

the radius of univalence for the function f (z) = z+3z2 is r0 = 1/6.

Similarly, every univalent function f ∈ A is not necessarily starlike in the unit
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disk. However, we can find a sufficiently small disk Dr such that f maps Dr onto a

starlike domain. The radius of the largest disk with this property is called the radius of

starlikeness for f . Let F ⊂ A be a set of analytic functions. The radius of the largest

disk in D such that every function f ∈ F maps the disk onto a starlike domain is called

the radius of starlikeness for the class F . If rST is the radius of starlikeness for the

class F , then equivalently r−1 f (rz) ∈ ST for r ≤ rST , and f ∈ F . In particular, if

F = S , then the radius of starlikeness for the class S is rST = tanh(π/4) ≈ 0.65579

[52].

Analogously, the radius of the largest disk in D such that every function f ∈ F

maps the disk onto a convex domain is called the radius of convexity for the class F .

If rCV is the radius of convexity for the class F , then equivalently r−1 f (rz) ∈ CV for

r ≤ rCV , and f ∈ F . It is known [90] that the radius of convexity for the class S is

rCV = 2−
√

3 ≈ 0.26795.

Let F ⊂ A be a set of analytic functions, and let U be the class of functions f ∈

A satisfying |(z/ f (z))2 f ′(z)−1|< 1 for z ∈D. Then every analytic function f ∈ F is

not necessarily in the class U . However, we can find a sufficiently small disk Dr such

that f satisfies |(z/ f (z))2 f ′(z)− 1| < 1 in the disk Dr. The radius of the largest disk

in D such that every function f ∈ F satisfies r−1 f (rz) ∈ U is called the U -radius for

the class F and denoted by rU .

In general, for two families G and F of A , the G -radius for the class F , denoted

by RG(F ), is the largest number R such that r−1 f (rz) ∈ G for 0 < r ≤ R, and f ∈ F .

The radius of close-to-convexity for the class S was determined by Krzyż [69].

Several authors have investigated the problem of finding the radius constants for sub-
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classes of A . For instance, Ali et al. [23] obtained radius constants for several classes

of analytic functions on the unit disk D which includes the radius of starlikeness of

positive order, radius of parabolic starlikeness, radius of Bernoulli lemniscate starlike-

ness, and radius of uniform convexity. Some results of radius problems have also been

derived by Goodman [48, Chapter 13].

1.7 Harmonic Mappings

Let D be a domain in R2. A real-valued function u : D −→ R is called harmonic if all

its second partial derivatives exist and are continuous in D, and satisfies the Laplacian

equation

∆u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

A complex-valued function f (z) = f (x+ iy) = u(x,y)+ iv(x,y) in a domain D is har-

monic if the two coordinate functions u and v are real harmonic in D. Thus a complex-

valued harmonic function f satisfies Laplacian equation

∆ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 = 0.

Since z = x+ iy, it follows that

x =
z+ z

2
and y =

z− z
2i

.

By using the chain rule, it is evident that

∂
∂ z

=
∂
∂x

∂x
∂ z

+
∂
∂y

∂y
∂ z

=
1
2

(
∂
∂x

− i
∂
∂y

)
, (1.15)

and

∂
∂ z

=
∂
∂x

∂x
∂ z

+
∂
∂y

∂y
∂ z

=
1
2

(
∂
∂x

+ i
∂
∂y

)
. (1.16)
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Consequently, for a complex valued function w = u+ iv with continuous partial deriva-

tives, it is clear that

∂w
∂ z

=
1
2
(
(ux − ivx)− i(uy − ivy)

)
=

1
2
(
(ux − vy)− i(uy + vx)

)
=

1
2
(
(ux − vy)+ i(uy + vx)

)
=
(∂w

∂ z

)
,

and

∂w
∂ z

=
1
2
(
(ux − ivx)+ i(uy − ivy)

)
=

1
2
(
(ux + vy)+ i(uy − vx)

)
=

1
2
(
(ux + vy)− i(uy − vx)

)
=
(∂w

∂ z

)
.

Since

fz =
1
2
( fx + i fy) =

1
2
(
(ux + ivx)+ i(uy + ivy)

)
=

1
2
(
(ux − vy)+ i(uy + vx)

)
,

it follows from the Cauchy Riemann equations ux = vy and uy =−vx, that a function f

is analytic in a domain D if and only if fz = 0, that is, f is independent of z.

A direct calculation shows that the Laplacian of f becomes

∆ f = fxx + fyy = fxx − i fyx + i fxy + fyy = ( fx − i fy)x + i( fx − i fy)y

= 4
(

fx − i fy

2

)
z
= 4 fzz.

Thus f is harmonic if and only if fz is analytic.

Proposition 1.2. Let f be a harmonic function in a domain D. Then the composition

f ◦ψ is harmonic in Ω for any analytic function ψ : Ω −→ D.

Proof. Setting

F(z) = ( f ◦ψ)(z) = f (ψ(z)) = f (w),
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then

Fz(z) =
∂ f (w)

∂w
∂w(z)

∂ z
+

∂ f (w)
∂w

∂w(z)
∂ z

.

Since w is analytic, it follows that ∂w(z)/∂ z = (∂w(z)/∂ z) = 0. Thus

Fz(z) =
∂ f (w)

∂w
∂w(z)

∂ z
.

Also, f is harmonic. Then

Fzz(z) =
∂
∂ z

(
∂ f (w)

∂w
∂w(z)

∂ z

)
=

(
∂ 2 f (w)

∂w2
∂w(z)

∂ z
+

∂ 2 f (w)
∂w∂w

∂w(z)
∂ z

)
∂w
∂ z

+
∂ f (w)

∂w

(
∂ 2w(z)
∂ z∂ z

)
=

∂ 2 f (w)
∂w∂w

∂w(z)
∂ z

∂w(z)
∂ z

= fww(w)
∂w(z)

∂ z

(
∂w(z)

∂ z

)
= fww(w)

∣∣∣∣∂w(z)
∂ z

∣∣∣∣2 = 0.

Hence the composition f ◦ψ is harmonic.

However, if f is a harmonic function and ψ is analytic, then ψ ◦ f need not be

harmonic. For instance, F(z) = ψ ◦ f = (z+ z/2)2, where f (z) = z+ z/2 and ψ = z2.

It is evident that fzz = 0, but Fzz = 1. Thus ψ ◦ f is not harmonic.

A mapping is said to be sense-preserving if it preserves the orientation, or sense

of the angle between two curves. A sense-preserving mapping does not necessarily

preserve the magnitude of the angle between the intersecting curves.

The Jacobian of a function f (z) = u(x,y)+ iv(x,y) at a point z is given by

J f (z) :=

∣∣∣∣∣∣∣∣
ux vx

uy vy

∣∣∣∣∣∣∣∣= uxvy −uyvx.

If f is an analytic function, then f satisfies the Cauchy Riemann equations, and thus

its Jacobian has the following form

J f (z) = (ux)
2 +(vx)

2 = | f ′(z)|2.
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Hence an analytic function f is locally univalent in D if and only if J f (z) ̸= 0. In 1936,

Lewy [74] showed that this property remains true for harmonic functions. In view of

Lewy’s theorem, harmonic mappings are sense-preserving (or orientation-preserving)

if J f (z)> 0, and sense-reversing if J f (z)< 0 throughout the domain D.

The Jacobian may be expressed equivalently in terms of z derivative and z deriva-

tive:

J f (z) = uxvy −uyvx =
1
4
(
(ux + vy)

2 +(uy − vx)
2 − (ux − vy)

2 − (uy + vx)
2)

=
1
4
(
|(ux + vy)− i(uy − vx)|2 −|(ux − vy)+ i(uy + vx)|2

)
=

1
4
(
|ux + ivx − i(uy + ivy)|2 −|ux + ivx + i(uy + ivy)|2

)
=

1
4
(
| fx − i fy|2 −| fx + i fy|2

)
= | fz(z)|2 −| fz(z)|2.

It is evident that if u = u(x,y) is harmonic, then ϕ = ux − iuy is analytic. Also, it

is known that for any analytic function g in a simply connected domain D, there exists

an antiderivative G in D, that is, G′(z) = g(z) [123, p. 139]. Thus it follows that if u is

a real-valued harmonic function defined in a simply connected domain D, then there is

an analytic function Φ such that ReΦ(z) = u.

Let f = u+ iv be a harmonic function in a simply connected domain D. Then there

exist analytic functions F and G in D such that

u(z) = ReF(z) =
F(z)+F(z)

2
, v(z) = ReG(z) =

G(z)+G(z)
2

.

Thus

f (z) = u(z)+ iv(z) =
F(z)+F(z)

2
+ i

G(z)+G(z)
2

=

(
F(z)+ iG(z)

2

)
+

(
F(z)− iG(z)

2

)
.
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Write h = (F + iG)/2, g = (F − iG)/2. Then f has the canonical representation f (z) =

h(z)+ g(z), where h and g are analytic in D. The functions h and g are respectively

called the analytic and co-analytic parts of f .

Now if f (z) = h(z)+g(z) is a harmonic function, then its Jacobian has the form

J f (z) = | fz(z)|2 −| fz(z)|2 = |h′(z)|2 −|g′(z)|2 = |h′(z)|2 −|g′(z)|2.

Thus a harmonic function f (z) = h(z)+g(z) is locally univalent and sense-preserving

in D if |h′(z)|> |g′(z)|. On the other hand, f is locally univalent and sense-reversing if

|h′(z)|< |g′(z)|.

Let B(D) denote the set of bounded analytic functions a∈ H (D) satisfying |a(z)|<

1 for z ∈ D.

Necessary and sufficient conditions for a function f to be harmonic is obtained in

the following result.

Theorem 1.17. [39, p. 6] Let f be a complex-valued function defined in a domain

D having continuous second partial derivatives. Then f is a harmonic and sense-

preserving mapping in D if and only if f is a solution of the elliptic partial differential

equation

fz = a fz

for some a ∈ B(D).

Proof. Suppose that f = h+g is a harmonic function and sense-preserving in D. Then

fz(z) = h′(z) ̸= 0 and fz = g′(z). Define a function a by

a(z) :=
g′(z)
h′(z)

.

Then a is analytic in D and |a(z)|< 1. The last relation yields the desired result.
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Conversely, suppose that f is a solution of the partial differential equation fz = a fz.

Computations from (1.15) and (1.16) show that

( fz) =
(

f
)

z .

Replacing f by fz in the above equality gives

( fzz) =
(

fz
)

z .

Differentiating the equation fz = a fz with respect to z, leads to

(
fz
)

z = ( fzz) = a fzz +az fz. (1.17)

Since a is analytic, it implies that az = 0, and thus (1.17) yields fzz = a fzz. Further, as

|a(z)| < 1, then fzz = 0. Therefore, f is harmonic. Also, since | fz| < | fz|, it follows

that J f = | fz|2 −| fz|2 > 0. Hence f is sense-preserving.

Definition 1.4. The equation fz = a fz, where |a(z)|< 1 for z ∈ D is called the Beltrami

equation. The complex-valued function a is called the second dilatation of f .

Denote by SH the class of all univalent and sense-preserving harmonic functions

f = h+ g in the unit disk D, normalized by h(0) = g(0) = 0 and h′(0) = 1. Thus the

power series expansions of the analytic functions h and g are given by

h(z) = z+
∞

∑
k=2

akzk and g(z) =
∞

∑
k=1

bkzk.

Since J f > 0, it follows that |g′(0)|< |h′(0)|= 1.

This class was introduced and investigated by Clunie and Sheil-Small [34]. The

class SH contains the standard class S of analytic univalent functions.

Duren [38, p. 9] proved that the class S is normal in D, that is, every sequence

of functions fn in S has a subsequence which converges locally uniformly in D. Note
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that the definition of a normal family does not require that the limit function of a

convergent subsequence be necessarily in S . He also showed in [38, p. 9] that S is

compact in D, that is, the limits of all converging sequence of functions fn in S are

functions belonging to S .

Clunie and Sheil-Small [34] showed that SH is normal, but not compact. For in-

stance, consider the sequence of functions fn ∈ SH given by

fn(z) = z+
n

n+1
z.

Then limn→∞ fn(z) = f (z) = 2Rez. For a given ε > 0, there is N ∈ N such that

| fn(z)− f (z)|=
∣∣∣∣z+ n

n+1
z− (z+ z)

∣∣∣∣= ∣∣∣∣ z
n+1

∣∣∣∣< 1
n+1

< ε

for any z ∈ D(z0,r) and n > N. This shows that fn converges locally uniformly to the

function f in D. It is evident that the limit function is harmonic in D since fzz = 0.

However, f is not univalent, and thus f /∈SH . Hence SH is not compact.

Clunie and Sheil-Small [34] also investigated the subclass S0
H consisting of func-

tions f = h+g ∈ SH with g′(0) = 0. The series expansions of h and g for the subclass

S0
H are given by

h(z) = z+
∞

∑
n=2

akzk and g(z) =
∞

∑
n=2

bkzk.

They also proved that S0
H is normal and compact.

Univalent harmonic functions have been extensively studied in [16, 34, 38, 40, 41,

59, 60, 61, 62] and [66].
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1.8 Logharmonic Mappings

Recall that B(D) is the set of functions a ∈ H (D) satisfying |a(z)| < 1 for z ∈ D. Let

B0 denote its subclass consisting of a ∈ B(D) with a(0) = 0.

Definition 1.5. A nonconstant function f in D is called logharmonic with respect to a

if f is a solution of the nonlinear elliptic partial differential equation

(
fz(z)
f (z)

)
= a(z)

fz(z)
f (z)

. (1.18)

Suppose 0 /∈ f (D). Then the equation (1.18) is equivalent to

∂
∂ z

log( f (z)) = a(z)
∂
∂ z

log( f (z)).

Hence log( f (z)) is harmonic and sense-preserving in D, and the function a is called

the second dilatation of log f .

The Jacobian of a logharmonic function f with respect to a satisfies

J f = | fz(z)|2 −| fz(z)|2 = | fz(z)|2
(

1−
∣∣∣∣ fz(z) f (z)

f (z) fz(z)

∣∣∣∣2
)

= | fz(z)|2 (1−|a(z)|2).

Thus J f is positive. Therefore, all nonconstant logharmonic mappings are sense-

preserving and locally univalent in D. It is evident that if a = 0, then f ∈ H (D).

Proposition 1.3. Let f and g be logharmonic mappings with respect to a∈ B(D). Then

f g is logharmonic with respect to a.
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Proof. Since

(
( f g)z

f g

)
=

(
fz

f

)
+

(
gz

g

)
= a(z)

(
fz

f
+

gz

g

)
= a(z)

( f g)z

f g
,

it follows that f g is a solution of the equation (1.8). Therefore, the function f g is

logharmonic with respect to a.

Proposition 1.4. Let f and g be logharmonic mappings with respect to a ∈ B(D) and

0 /∈ g(D). Then f/g is logharmonic with respect to a.

Proof. Since(( f
g

)
z

f
g

)
=

(
fz

f

)
−
(

gz

g

)
= a(z)

(
fz

f
− gz

g

)
= a(z)

( f
g

)
z

f
g

,

it follows that f/g is a solution of the equation (1.8). Therefore, the function f/g is

logharmonic with respect to a.

Remark 1.1. Let f be a logharmonic mapping with respect to a ∈ B(D). Then the

translations in the image do not preserve logharmonicity.

To see this, consider f (z) = z|z|2 = z2z, w0 =−1, and F(z) = f (z)−w0 = z|z|2+1.

Then

fz(z)
f (z)

=
2
z
, and

(
fz(z)
f (z)

)
=

1
z
,

and thus

a(z) =

(
fz(z)
f (z)

)
fz(z)
f (z)

=
1
2
.

Hence f is a solution of the equation (1.8). Therefore, f is logharmonic with respect

to a.
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Since

Fz(z)
F(z)

=
2zz

z2z+1
and

(
Fz(z)
F(z)

)
=

(
z2

z2z+1

)
,

it follows that

a(z) =

(
Fz(z)
F(z)

)
Fz(z)
F(z)

=
z2

zz2 +1
z2z+1

2zz
=

z(z2z+1)
2z(zz2 +1)

.

It is evident that a is dependent on z, and thus a is not analytic. Hence, F is not

logharmonic.

Remark 1.2. Let f be a logharmonic mapping with respect to a ∈ B(D). Then the

inverse of a logharmonic mapping is not necessarily logharmonic.

To see this, consider f (z) = (z−1)|z−1|2 = (z−1)2(z−1). Then

fz(z)
f (z)

=
2

z−1
, and

(
fz(z)
f (z)

)
=

(
1

z−1

)
=

1
z−1

,

and thus

a(z) =

(
fz(z)
f (z)

)
fz(z)
f (z)

=
1
2
.

Hence f is a solution of the equation (1.8). Therefore, f is logharmonic with respect

to a. Further, it is known in [7, Theorem 3.4] that f is univalent.

Now, let g(z) = z2/3z−1/3 +1. Then

( f ◦g)(z) = f (z2/3z−1/3 +1) = (z2/3z−1/3)2(z2/3z−1/3) = z,

and

(g◦ f )(z) = g
(
(z−1)2(z−1)

)
=
(
(z−1)2(z−1)

)2/3(
(z−1)2(z−1)

)−1/3
+1

= (z−1)+1 = z.

Thus g is the inverse of the function f .
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Since

gz(z)
g(z)

=
2z−1/3

3z1/3(z2/3z−1/3 +1)
,

and (
gz(z)
g(z)

)
=

(
−z2/3

3z4/3(z2/3z−1/3 +1)

)
,

it follows that

a(z) =

(
gz(z)
g(z)

)
gz(z)
g(z)

=
−z2/3

3z4/3(z2/3z−1/3 +1)
3z1/3(z2/3z−1/3 +1)

2z−1/3 =
−z(z2/3z−1/3 +1)
2z(z2/3z−1/3 +1)

,

which shows that a is dependent on z, and thus a is not analytic. Hence, g is not

logharmonic.

The study of logharmonic mappings was initiated mainly by Abdulhadi and Bshouty

[7]. The basic theory of logharmonic mappings was developed by Abdulhadi and Hen-

gartner in [9, 8, 10, 11, 12, 13] and [14].

A local representation for logharmonic mappings was given by Abdulhadi and

Bshouty in [7]. In particular, the local representation for a logharmonic function f

at a point z0 ∈ D where f vanishes is given in the following result.

Theorem 1.18. [7] Let f be a logharmonic mapping in D with respect to a ∈ B(D).

Suppose that f (z0) = 0 and B(z0,ρ)\{z0} ⊂ D\Z( f ), where B(z0,ρ) = {z : |z− z0|<

ρ} and Z( f ) the zero set of f . Then f admits the representation

f (z) = (z− z0)
m|z− z0|2βmh(z)g(z), z ∈ B(z0,ρ), (1.19)

where m ∈ N, and

β =
a(z0)(1+a(z0))

1−|a(z0)|2
.
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The functions h and g are in H (B(z0,ρ)), with h(z0) ̸= 0 and g(z0) = 1.

Note that

Re β = Re

(
a(z0)(1+a(z0))

1−|a(z0)|2

)

=
Re a(z0)+ |a(z0)|2

1−|a(z0)|2

≥ |a(z0)|2 −|a(z0)|
1−|a(z0)|2

=
−|a(z0)|

1+ |a(z0)|
>−1

2
.

Let f be a nonconstant logharmonic mapping defined in D that vanishes only at

z = 0. Then the representation (1.19) of f becomes

f (z) = zm|z|2βmh(z)g(z), z ∈ D, (1.20)

where m is a nonnegative integer, Re β > −1/2. Further, the functions h and g are

analytic functions in D satisfying h(0) ̸= 0 and g(0) = 1. The exponent β in (1.20)

depends only on a(0) and is given by

β = a(0)
1+a(0)

1−|a(0)|2
.

Note that f (0) ̸= 0 if and only if m = 0, and that a univalent logharmonic mapping

in D vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2β h(z)g(z), z ∈ D,

where Reβ >−1/2, 0 /∈ (hg)(D) and g(0) = 1.

Denote by SLh the class consisting of univalent logharmonic mappings f in D with

respect to some a ∈ B0 of the form
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f (z) = zh(z)g(z),

normalized by h(0) = g(0) = 1 and 0 /∈ (hg)(D). This class has been studied exten-

sively in recent years, for instance, in the works of [1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14,

15] and [82].

Let f = zh(z)g(z) be a univalent logharmonic mapping. Then f is a starlike loghar-

monic of order α if

∂
∂θ

arg f (reiθ )> α, 0 ≤ α < 1.

Since

∂
∂θ

arg f (reiθ ) =
∂

∂θ
Imlog f (reiθ )

= Im
(

∂
∂θ

log f (reiθ )

)
= Im

(
∂ log f (z)

∂ z
∂ z
∂θ

+
∂ log f (z)

∂ z
∂ z
∂θ

)
= Im i

(
z fz − z fz

f

)
= Re

z fz − z fz

f
,

it follows that f is starlike logharmonic of order α if f satisfies the condition

Re
z fz − z fz

f
> α, 0 ≤ α < 1,

for all z ∈D. Denote by ST Lh(α) the subclass of SLh consisting of all starlike loghar-

monic mappings of order α . If α = 0, then ST Lh(0) := ST Lh is the class of starlike

logharmonic mappings.

Two representation theorems for functions in ST Lh were obtained by Abdulhadi

and Abu Muhanna [4]. First, they established a connection between the class of starlike

logharmonic mappings of order α and the class of starlike analytic functions of order
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α.

Theorem 1.19. [4] Let f (z) = zh(z)g(z) be logharmonic in D with 0 /∈ hg(D). Then

f ∈ ST Lh(α) if and only if φ(z) = zh(z)/g(z) ∈ ST (α) for 0 ≤ α < 1.

The second is an integral representation theorem. This result can be found in [4].

Starlike logharmonic mapping is an active subject of investigation, and several recent

works include those of [27, 28] and [120].

Let D be a simply connected domain in C containing the origin. Then D is said to

be α−spirallike, |α| < π/2, if wexp(−teiα) ∈ D for all t ≥ 0 whenever w ∈ D. The

class of α−spirallike was defined by Spacek [137]. Evidently, if α = 0, then D is

starlike with respect to the origin (see page 6).

Definition 1.6. (α−spirallike function) [38, p. 52] A function f ∈ A is called a

α−spirallike function if it maps D onto a α−spirallike domain.

The following theorem gives a sufficient and necessary conditions for analytic

functions to be α−spirallike.

Theorem 1.20. [38, p. 52] Let f ∈ A , and |α| < π/2. Then f is α−spirallike in D if

and only if

Re
(

e−iα z f ′(z)
f (z)

)
> 0, z ∈ D.

Denote by SP α
Lh the subclass of SLh consisting of all α−spirallike logharmonic

mappings. Also, denote by SP α the subclass of SP α
Lh such that f ∈ H (D).

Abdulhadi and Hengartner [9] gave a representation theorem for mappings in the

class SP α
Lh. They also established a connection between the class of α−spirallike

logharmonic mappings SP α
Lh and the class of α−spirallike analytic functions SP α .

This result is stated in the following theorem.
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Theorem 1.21. [9, Theorem 2.1] Let f (z) = z|z|2β h(z)g(z) be logharmonic with re-

spect to a in D with 0 /∈ hg(D), where β = a(0)(1+ a(0))/(1− |a(0)|2). Then f ∈

SP α
Lh if and only if ψ(z) = zh(z)/(g(z))e2iα ∈ SP α .

1.9 Scope of The Thesis

This thesis is composed of six chapters including four research problems followed by

references.

In Chapter 1, some fundamental concepts regarding univalent functions, harmonic,

and logharmonic mappings are presented. The basic notations, definitions and known

results required in this thesis are given.

In Chapter 2, the U -radius is obtained for several classes of functions. These in-

clude the class of normalized analytic functions f satisfying the inequality Re f (z)/g(z)

> 0 or | f (z)/g(z)−1|< 1 in D, where g belongs to a certain class of analytic functions.

The estimation for the U -radius of the class of functions f satisfying the inequality

| f ′(z)−1|< 1 or Re f (z)/z > α, 0 ≤ α < 1, in D is also determined. A conjecture by

Obradović and Ponnusamy concerning the radius of univalence for a product involving

univalent functions is validated.

In Chapter 3, bounds for the second Hankel determinant of the kth-root trans-

form are obtained for several classes of functions defined via subordination. These

classes can be seen as belonging to the genre of Ma-Minda starlike and convex func-

tions. Bounds for the second Hankel determinant are also derived for the kth-root

transform of various other classes, which include the class of α-convex functions and
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α-logarithmically convex functions. Connections are made with earlier known results.

In particular, the bounds obtained by Bansal [29], Janteng et al.[63] and Lee et al. [72]

are shown to be special cases of the results obtained in this chapter.

In Chapter 4, for a starlike logharmonic mapping f (z) = zh(z)g(z), sufficient con-

ditions for a function F(z) = f (z)| f (z)|2γ to be α−spirallike logharmonic mapping

are obtained. A new logharmonic mapping with a specified property is constructed

by taking product combination of two mappings possessing a given property. Specifi-

cally, if f1(z)= zh1(z)g1(z), and f2(z)= zh2(z)g2(z) are univalent starlike logharmonic

with respect to the same a ∈ B0. Then a new univalent starlike logharmonic mapping

F(z) = f λ
1 (z) f 1−λ

2 (z), 0≤ λ ≤ 1, with respect to the same a is established. In addition,

if f1(z) = zh1(z)g1(z) is logharmonic with respect to a1 ∈ B0 , and f2(z) = zh2(z)g2(z)

is logharmonic with respect to a2 ∈ B0, then sufficient conditions are obtained to en-

sure their product F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1 is a univalent starlike logharmonic

mapping with respect to some µ ∈ B0. The work concludes with several examples of

univalent starlike logharmonic mappings constructed from this product.

In Chapter 5, the class of normalized logharmonic mappings f (z)= zh(z)g(z) in the

unit disk satisfying φ(z) = zh(z)g(z) is a typically real analytic function is considered.

An integral representation for such a mapping is given. Moreover, the connection

between this class and the class of logharmonic mappings with positive real part is

established. The radius of starlikeness for this class, as well as an upper estimate

for its arclength are determined. Sufficient and necessary geometric conditions for

φ(z) = zh(z)g(z) to be typically real are also derived when f (z) = zh(z)g(z) has a

dilatation with real coefficients. In the second part of this chapter, we explore an
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integral representation and the radius of starlikeness for a subclass of this class.

In the final chapter, a summary of the work done in this thesis is presented. Some

open problems are suggested for further research.
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CHAPTER 2

THE U -RADIUS FOR CLASSES OF ANALYTIC FUNCTIONS

2.1 Introduction

Let U denote the class of functions f ∈ A satisfying |U f (z)|< 1 for z ∈ D, where

U f (z) =
(

z
f (z)

)2

f ′(z)−1.

Since f ∈U satisfies the condition |(z/ f (z))2 f ′(z)|< 2, it follows that (z/ f (z))2 f ′(z)

is bounded, and f (z) ̸= 0 for z ∈ D\{0}. Furthermore, if f ′(z) = 0, then |U f (z)| = 1,

which contradicts the assumption that |U f (z)| < 1. Thus f ′(z) ̸= 0, and f is locally

univalent. We shall in fact prove in Theorem 2.2 that f is not only locally univalent but

also univalent.

Functions in the class U have the following characterization.

Theorem 2.1. (Characterization for U ) [114] If f ∈ U , then

z
f (z)

= 1−a2z− z
∫ z

0

w(t)
t2 dt,

where a2 = f ′′(0)/2 and w is an analytic function in the unit disk D such that w(0) =

0 = w′(0), and |w(z)|< 1 for z ∈ D.

Proof. Let f (z) = z+∑∞
k=2 akzk in U . Then f (z)/z ̸= 0 and

(
z

f (z)

)2

f ′(z) = 1+(a3 −a2
2)z

2 + . . .

= 1+w(z),
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where w(0) = 0 = w′(0), and |w(z)|= |(z/ f (z))2 f ′(z)−1|< 1. By Schwarz’s lemma

[123, p.240], |w(z)| ≤ |z|2, z ∈ D. Note that

w(z) =
(

z
f (z)

)2

f ′(z)−1 =−z2 d
dz

(
1

f (z)
− 1

z

)
.

It is evident that (
1

f (z)
− 1

z

)∣∣∣
z=0

=− f ′′(0)
2

=−a2,

and thus

∫ z

0

w(t)
t2 dt =−

∫ z

0

(
1

f (t)
− 1

t

)′
dt

=−
(

1
f (z)

− 1
z

)
−a2,

which yields the desired result.

Following the idea of Aksentév [17], functions in the class U can readily be shown

to be univalent in D.

Theorem 2.2. Every f ∈ U is univalent in D, that is, f belongs to S .

Proof. Since f ∈ U , it follows from Theorem 2.1 that

F(z) =
1

f (z)
=

1
z
−a2 +

∫ z

0
a(t)dt,

where a(t) = −w(t)/t2, and w is given by Theorem 2.1. Then for z1,z2 ∈ D, and

z1 ̸= z2,

F(z1)−F(z2) =
1

f (z1)
− 1

f (z2)
=

(
1
z1

− 1
z2

)
−
∫ z2

z1

a(t)dt.

Setting

t = z1 + s(z2 − z1), 0 ≤ s ≤ 1,
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the integral can be written in the form

F(z1)−F(z2) = (z2 − z1)

(
1

z1z2
−
∫ 1

0
a(z1 + s(z2 − z1))ds

)
.

It follows that

|F(z1)−F(z2)| ≥ |z1 − z2|

(∣∣∣ 1
z1z2

∣∣∣−∫ 1

0
|a(z1 + s(z2 − z1))|ds

)

> |z1 − z2|
(

1−
∫ 1

0
ds
)
= 0.

This shows that F(z1) ̸= F(z2) for z1 ̸= z2. Therefore, f is univalent in D.

The converse of the result in Theorem 2.2 does not hold, as illustrated by the func-

tion f (z) =− log(1− z). It is evident that

Re
(

1+ z
f ′′(z)
f ′(z)

)
= Re

(
1

1− z

)
>

1
2
> 0.

Thus f is a univalent convex function in S . However,

∣∣U f (z)
∣∣= ∣∣∣∣ z2

(1− z) log2(1− z)
−1
∣∣∣∣,

which at z0 = 0.95 ∈ D gives
∣∣U f (0.95)

∣∣≈ 1.01127 > 1. Hence f /∈ U .

Functions in U need not be starlike [45, 107]. For example, the function f (z) =

z/(1+ z/2+ z3/2), satisfies

∣∣U f (z)
∣∣= ∣∣∣∣((1− z3)(1+ z/2+ z3/2)

1+ z/2+ z3/2

)
−1
∣∣∣∣= |z3|< 1,

and thus f ∈ U . However,

z f ′(z)
f (z)

=
1− z3

1+ z/2+ z3/2
,
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and at z0 = (−1+ i)/
√

2 ∈ ∂D,

Re
(

z f ′(z)
f (z)

)
= Re

(
1−

√
2

3
+

(1−2
√

2)i
3

)
=

1−
√

2
3

< 0.

Thus Re(z f ′(z)/ f (z))< 0 for z ∈ D near z0, and hence f /∈ ST .

The Koebe function k(z) = z/(1− z)2 is an important example of a function which

belongs to U ∩ ST . It is interesting to note that each function in the set

Sz =

{
z,

z
(1± z)2 ,

z
1± z

,
z

1± z2 ,
z

1± z+ z2

}

belongs to U . For instance, the function f (z) = z/(1+ z+ z2) satisfies

∣∣U f (z)
∣∣= ∣∣∣∣(1− z2)(1+ z+ z2)

1+ z+ z2 −1
∣∣∣∣= |z2|< 1.

Furthermore, functions in Sz are known [46] to be the only functions in S with integer

coefficients in their series expansions. Thus Sz ⊂ U ⊂ S .

The class U has been widely studied in recent years, for example in the works

of [105, 106, 107, 108, 109, 110, 111, 112, 113, 114] and [125]. Several interesting

properties of the class U are shaped by the coefficients of its mappings. If f ∈ S , then

z/ f (z) is nonvanishing in D and has a series representation of the form

z
f (z)

= 1+
∞

∑
n=1

bnzn. (2.1)

It follows from the area theorem [49, Theorem 11, p.193] that

∞

∑
n=2

(n−1)|bn|2 ≤ 1. (2.2)

42



Obradović and Ponnusamy [114] showed that every f ∈ A of the form (2.1) be-

longs to the class U whenever ∑∞
n=2(n− 1)|bn| ≤ 1. They also showed in [110] that

f (z) = z+∑∞
n=2 anzn ∈ A satisfying ∑∞

n=2 n|an| ≤ 1 belongs to U ∩ ST . On the other

hand, it was shown in [24] that functions f ∈ U of the form (2.1) necessarily satisfy

∑∞
n=2(n−1)2|bn|2 ≤ 1.

In [24], Ali et al. showed that condition (2.2) does not ensure univalence, and they

obtained the sharp radius of univalence r0 = 1/
√

2 for functions f ∈ A satisfying (2.2).

In [106], the U -radius for S was determined to be 1/
√

2. Evidently, radius problems

have continued to be an important area of study.

In [79, 80], MacGregor obtained the radius of starlikeness for the class of functions

f ∈ A satisfying either

Re
(

f (z)
g(z)

)
> 0 (z ∈ D) or

∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1 (z ∈ D) (2.3)

for some g ∈ CV . Ratti [128] determined the radius of starlikeness for the class (2.3)

when g belongs to certain classes of analytic functions. MacGregor in [81] also found

the radius of convexity for univalent functions satisfying | f ′(z)−1|< 1.

This chapter finds the U -radius for three classes of functions:

(a) the class of functions f ∈ A satisfying the inequality

Re
(

f (z)
g(z)

)
> 0, z ∈ D, (2.4)

for some g ∈ A with

Re
(

g(z)
z

)
> 0, z ∈ D;
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(b) the class of functions f ∈ A satisfying the inequality

Re
(

f (z)
g(z)

)
> 0, z ∈ D, (2.5)

for some g ∈ A with

Re
(

g(z)
z

)
>

1
2
, z ∈ D;

(c) and the class of functions f ∈ A satisfying the inequality

∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1, z ∈ D,

for some g ∈ A with

Re
(

g(z)
z

)
> 0, z ∈ D.

Additionally, the radius r0 is also investigated in this chapter so that

∣∣U f (z)
∣∣= ∣∣∣∣∣

(
z

f (z)

)2

f ′(z)−1

∣∣∣∣∣< 1

in the disk |z|< r0 for the following two classes of functions:

(a) the subclass of close-to-convex functions f ∈ A satisfying

∣∣ f ′(z)−1
∣∣< 1, z ∈ D; (2.6)

(b) and the class of functions f ∈ A satisfying the inequality

Re
f (z)

z
> α , 0 ≤ α < 1, z ∈ D. (2.7)

It is known [38, p. 251] that each convex function in CV belongs to the class (2.7) for

α = 1/2. Also, Obradović and Ponnusamy in [110] proved that the class defined by

(2.7) contains f ∈ U satisfying f ′′(0) = 0.
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Ratti [128] showed that the radius of starlikeness for the class defined by (2.4)

is
√

5− 2, and that the radius can be improved to 1/3 for the class given by (2.5).

The radius of convexity for the class given by (2.6) was obtained by MacGregor [81].

Several radius constants, which include the radius of starlikeness of a positive order,

radius of parabolic starlikeness, radius of Bernoulli lemniscate starlikeness, and radius

of uniform convexity, have been obtained for the classes defined by (2.4) and (2.5) in

[23].

Obradović and Ponnusamy in [113] also considered the product of functions f and

g belonging to certain subsets of S . They showed that whenever f ,g∈ ST , the product

F(z) = f (z)g(z)/z is starlike in the disk |z| < 1/3, and that this radius is sharp. They

also conjectured that F is univalent in the disk |z| < 1/3 when f ,g ∈ S , and that the

radius 1/3 is best possible. In Section 2.3, this conjecture is shown in the affirmative.

To prove the results in this chapter, the following lemmas are required.

Lemma 2.1. [51] For each f ∈ S ,

∣∣∣∣log
z f ′(z)
f (z)

∣∣∣∣≤ log
1+ r
1− r

, |z|= r < 1.

Lemma 2.2. [83, Theorem 3.1b, p. 71] Let p(z) = 1+ p1z+ · · · be analytic in D, and

h be convex. If

p(z)+
1
γ

zp′(z)≺ h(z), (2.8)

where γ ̸= 0 and Reγ ≥ 0, then

p(z)≺ γ
zγ

∫ z

0
h(t)tγ−1dt.
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Lemma 2.3. [109] Let f be analytic in D of the form

z
f (z)

= 1+b1z+b2z2 + · · · ,

with bn ≥ 0 for all n ≥ 2. Then the following are equivalent:

(a) f ∈ S ,

(b) f (z) f ′(z)
z ̸= 0, z ∈ D,

(c) ∑∞
n=2(n−1)bn ≤ 1,

(d) f ∈ U .

Lemma 2.4. [128] An analytic function f in D satisfies f (0) = 1 and Re( f (z))> α,

0 ≤ α < 1 for z ∈D, if and only if f (z) = (1+(2α −1)zϕ(z))/(1+ zϕ(z)), where ϕ is

analytic satisfying |ϕ(z)| ≤ 1 in D.

2.2 The U -radius for Classes of Analytic Functions

The following result determines the U −radius for the class of functions satisfying

(2.4).

Theorem 2.3. The U -radius for the class of functions f ∈ A satisfying the inequality

Re
(

f (z)
g(z)

)
> 0, z ∈ D,

for some g ∈ A with

Re
(

g(z)
z

)
> 0, z ∈ D,

is rU =
√

5−2 ≈ 0.23607.

Proof. Writing p(z) = g(z)/z and h(z) = f (z)/g(z), it follows that p,h∈ P and f (z) =

zp(z)h(z). A computation shows that

U f (z) = z2 f ′(z)
f 2(z)

−1 =−z2
(

1
f (z)

− 1
z

)′
=−z2

(
1
z

(
1

p(z)h(z)
−1
))′
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=−z2

(
− 1

z2

(
1

p(z)h(z)
−1
)
+

1
z

(
1

h(z)

(
1

p(z)

)′
+

1
p(z)

(
1

h(z)

)′))

=
1

p(z)h(z)
−1− z

h(z)

(
1

p(z)

)′
− z

p(z)

(
1

h(z)

)′

=
1

h(z)

(
1

p(z)
− z
(

1
p(z)

)′
−1

)
+

1
p(z)

(
1

h(z)
− z
(

1
h(z)

)′
−1

)

−
(

1
p(z)

−1
)(

1
h(z)

−1
)
.

Thus

|U f (z)| ≤
∣∣∣∣ 1
h(z)

∣∣∣∣ ∣∣∣∣ 1
p(z)

− z
(

1
p(z)

)′
−1
∣∣∣∣+ ∣∣∣∣ 1

p(z)

∣∣∣∣ ∣∣∣∣ 1
h(z)

− z
(

1
h(z)

)′
−1
∣∣∣∣

+

∣∣∣∣ 1
h(z)

−1
∣∣∣∣ ∣∣∣∣ 1

p(z)
−1
∣∣∣∣ . (2.9)

Since 1/p(z) = 1+∑∞
n=1 cnzn and 1/h(z) = 1+∑∞

n=1 dnzn are in the class P , it

follows that |cn| ≤ 2 and |dn| ≤ 2 for n ≥ 1. Thus for |z|= r,

∣∣∣∣ 1
p(z)

−1
∣∣∣∣≤ ∞

∑
n=1

|cn||z|n ≤ 2
∞

∑
n=1

rn =
2r

1− r
, (2.10)

∣∣∣∣ 1
p(z)

∣∣∣∣≤ 2r
1− r

+1 =
1+ r
1− r

, (2.11)

and

∣∣∣∣ 1
p(z)

− z
(

1
p(z)

)′
−1
∣∣∣∣≤ ∞

∑
n=2

(n−1)|cn||z|n ≤ 2
∞

∑
n=2

(n−1)rn

= 2r2
∞

∑
n=1

nrn−1 =
2r2

(1− r)2 . (2.12)

Similar estimates are obtained for the function 1/h

∣∣∣∣ 1
h(z)

−1
∣∣∣∣≤ 2r

1− r
,

∣∣∣∣ 1
h(z)

∣∣∣∣≤ 1+ r
1− r

, and
∣∣∣∣ 1
h(z)

− z
(

1
h(z)

)′
−1
∣∣∣∣≤ 2r2

(1− r)2 . (2.13)
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Substituting (2.10), (2.11), (2.12) and (2.13) into (2.9) yields

|U f (z)| ≤ 2
(

1+ r
1− r

2r2

(1− r)2

)
+

4r2

(1− r)2 =
8r2

(1− r)3 .

Hence |U f (z)| < 1 if |z| <
√

5− 2, where rU =
√

5− 2 is the root of the equation

r2 +4r−1 = 0.

To demonstrate the sharpness, let f0(z) = z
(
(1− z)/(1+ z)

)2
, and g0(z) = z(1−

z)/(1+ z). Evidently,

|U f0(r)|=

∣∣∣∣∣
(

r
f0(r)

)2

f0
′(r)−1

∣∣∣∣∣
=

∣∣∣∣(1+ r)(1−4r− r2)

(1− r)3 −1
∣∣∣∣= 8r2

(1− r)3 .

Since r2/(1− r)3 is increasing, it follows that |U f0(r)|> 1 for
√

5−2 < r < 1.

The U −radius for the second class is derived in the following result.

Theorem 2.4. The U -radius for the class of functions f ∈ A satisfying the inequality

Re
(

f (z)
g(z)

)
> 0, z ∈ D,

for some g ∈ A with

Re
(

g(z)
z

)
>

1
2
, z ∈ D,

is rU = 1/3.

Proof. Let p(z) = g(z)/z, h(z) = f (z)/g(z), and f (z) = zp(z)h(z). Since p ∈ P (1/2),

it follows from Lemma 2.4 that p(z) = 1/(1+ zϕ(z)), where |ϕ(z)| ≤ 1. For |z| = r,

and |ϕ(z)|= x, 0 ≤ x ≤ 1, it is evident that

∣∣∣∣ 1
p(z)

−1
∣∣∣∣= |z||ϕ(z)|= rx,
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and the Schwarz-Pick inequality [123, p.243] gives

∣∣∣∣ 1
p(z)

− z
(

1
p(z)

)′
−1
∣∣∣∣= |z|2|ϕ ′(z)| ≤ |z|2(1−|ϕ(z)|2)

1−|z|2
=

r2(1− x2)

1− r2 .

The function h ∈ P satisfies the estimates (2.10) and (2.12). It follows from (2.9)

that

|U f (z)| ≤
1+ r
1− r

r2(1− x2)

1− r2 +
2r2(1+ rx)
(1− r)2 +

2r2x
1− r

=
r2(3+2x− x2)

(1− r)2 .

Since λ (x) = 3+2x− x2 is increasing over 0 ≤ x ≤ 1, this leads to

|U f (z)| ≤
4r2

(1− r)2 < 1

if r < rU , where rU = 1/3 is the root of the equation 3r2 +2r−1 = 0.

For the sharpness, consider f0(z) = z(1− z)/(1+ z)2, and g0(z) = z/(1+ z). Then

z
f0(z)

=
(1+ z)2

1− z
= 1+3z+4

∞

∑
n=2

zn.

It follows from Lemma 2.3 that r−1 f0(rz) ∈ U provided 0 < r ≤ 1 satisfies

4
∞

∑
n=2

(n−1)rn = 4r
∞

∑
n=1

nrn =

(
2r

1− r

)2

≤ 1,

that is, if r ≤ rU , where rU = 1/3 is the root of the equation 3r2 +2r−1 = 0.

Next, the U -radius for the third class is obtained.

Theorem 2.5. The U -radius for the class of functions f ∈ A satisfying the inequality

∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1, z ∈ D,

for some g ∈ A with

Re
(

g(z)
z

)
> 0, z ∈ D,
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is rU = (
√

17−3)/4 ≈ 0.28078.

Proof. Let p(z)= g(z)/z, h(z)= f (z)/g(z), and f (z)= zp(z)h(z). Since |h(z)−1|< 1,

it follows that |1−1/h(z)|2 < 1/ |h(z)|2 , that is, 1−2Re(1/h(z))< 0. Thus 1/h(z) =

1+∑∞
n=1 dnzn is in P (1/2), and hence |dn| ≤ 1 for n ≥ 1. Now, for |z|= r,

∣∣∣∣ 1
h(z)

−1
∣∣∣∣≤ ∞

∑
n=1

|dn||z|n ≤
∞

∑
n=1

rn =
r

1− r
,

∣∣∣∣ 1
h(z)

∣∣∣∣≤ r
1− r

+1 =
1

1− r
,

and∣∣∣∣ 1
h(z)

− z
(

1
h(z)

)′
−1
∣∣∣∣≤ ∞

∑
n=1

(n−1)|dn||z|n ≤
∞

∑
n=1

(n−1)rn = r2
∞

∑
n=2

(n−1)rn−2

= r2
∞

∑
n=1

nrn−1 =
r2

(1− r)2 .

Further, the function p satisfies the estimates (2.10) and (2.12). It follows from

(2.9) that

|U f (z)| ≤
1

1− r
2r2

(1− r)2 +
1+ r
1− r

r2

(1− r)2 +
r

1− r
2r

1− r
=

5r2 − r3

(1− r)3 .

Hence |U f (z)| < 1 if r < rU , where rU = (
√

17− 3)/4 is the root of the equation

2r2 +3r−1 = 0.

To demonstrate the sharpness, let f0(z) = z(1 − z)2/(1 + z), and g0(z) = z(1 −

z)/(1+ z). Then

z
f0(z)

=
1+ z

(1− z)2 = 1+
∞

∑
n=1

(2n+1)zn.

Lemma 2.3 will be used to show that r−1 f0(rz) ∈ U . For 0 < r ≤ 1,

rz
f0(rz)

= 1+
∞

∑
n=1

(2n+1)rnzn,
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and

∞

∑
n=2

(n−1)(2n+1)rn = 2
∞

∑
n=2

n(n−1)rn +
∞

∑
n=2

(n−1)rn

= 2r2
∞

∑
n=2

n(n−1)rn−2 + r2
∞

∑
n=1

nrn−1

=
4r2

(1− r)3 +
r2

(1− r)2 =
5r2 − r3

(1− r)3 ≤ 1

if and only if r ≤ (
√

17− 3)/4, where rU = (
√

17− 3)/4 is the root of the equation

2r2 +3r−1 = 0.

The following result estimates the U -radius for functions f ∈ A satisfying inequal-

ity | f ′(z)−1|< 1.

Theorem 2.6. Let f ∈ A satisfying

| f ′(z)−1|< 1, z ∈ D.

Then f ∈ U in the disk |z|< r0, where r0 =
√

(
√

5−1)/2 ≈ 0.78615.

Proof. Evidently the subordination (2.8) translates to f ′(z)≺ 1+ z by choosing γ = 1,

p(z) = f (z)/z, and h(z) = 1+ z. It follows that

f (z)
z

≺ 1+
z
2
.

So there exists an analytic self-map w of D with w(0) = 0 and f (z)/z = 1+w(z)/2.

Direct computations show that

|U f (z)|=

∣∣∣∣∣∣
(

1

1+ w(z)
2

)2(
1+

w(z)
2

+
zw′(z)

2

)
−1

∣∣∣∣∣∣
=

1∣∣∣1+ w(z)
2

∣∣∣2
∣∣∣∣w(z)2

+
zw′(z)

2
−w(z)− w2(z)

4

∣∣∣∣
=

1

4
∣∣∣1+ w(z)

2

∣∣∣2
∣∣2(zw′(z)−w(z)

)
−w2(z)

∣∣
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6 1

4
(

1− |w(z)|
2

)2

(
2
∣∣zw′(z)−w(z)

∣∣+ |w2(z)|
)
.

Thus

|U f (z)| ≤
2 |zw′(z)−w(z)|+ |w2(z)|

4
(

1− |w(z)|
2

)2 . (2.14)

The Schwarz-Pick inequality [123, p.243] applied to w(z)/z yields

|zw′(z)−w(z)| ≤ |z|2 −|w(z)|2

1−|z|2
. (2.15)

Substituting (2.15) into (2.14), and writing |w(z)|= t, |z|= r, 0 ≤ t ≤ r, leads to

|U f (z)|6
1

4
(
1− t

2

)2

(
2
(

r2 − t2

1− r2

)
+ t2

)

=
1

(2− t)2

(
2r2 −2t2 + t2 − r2t2

1− r2

)
=

1
(1− r2)

(
−
(
1+ r2) t2 +2r2

(2− t)2

)

:=
1

(1− r2)
Φ(t,r).

Since

∂Φ(t,r)
∂ t

=
−2(1+ r2)(2− t)2t +2(2− t)(−(1+ r2)t2 +2r2)

(2− t)4

=
−2(1+ r2)(2− t + t)t +4r2

(2− t)3

=
4
(
r2 − (1+ r2)t

)
(2− t)3 ,

the function Φ(t,r) attains its maximum at the point t0 = r2/(1+ r2), that is,

Φ(t,r)≤ Φ(t0,r) = Φ
(

r2

1+ r2 ,r
)
=

−r4(1+r2)
(1+r2)2 +2r2(

2− r2

1+r2

)2

=
r2 (r2 +2

)(
r2 +1

)
(r2 +2)2 =

r2 (r2 +1
)

r2 +2
.
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Thus

|U f (z)| ≤
r2 (r2 +1

)
(1− r2)(r2 +2)

,

and hence |U f (z)|< 1 if |z|< r0, where r0 =
√
(
√

5−1)/2 is the root of the equation

r4 + r2 −1 = 0.

Remark 2.1. Ozaki [115] introduced the class G consisting of functions f ∈ A satis-

fying

Re
(

1+
z f ′′(z)
f ′(z)

)
<

3
2
,

and proved that these functions are necessarily univalent in D. Umezawa [139] showed

that these functions are convex in one direction. Sakaguchi [132] proved that |arg f ′(z)|<

π/2 whenever f ∈ G , and indeed, G ⊂ ST , see [104, 135]. There has been a contin-

ued interest in recent years over the class G , see for example, the works in [124, 126].

It follows from [65, Theorem 2] that | f ′(z)−1| < 1 whenever f ∈ G . Thus Theorem

2.6 shows that the U -radius for f ∈G is
√
(
√

5−1)/2.

The last result in this section estimates the U -radius for functions f ∈ A satisfying

inequality Re( f (z)/z)> α , 0 ≤ α < 1.

Theorem 2.7. Let f ∈ A satisfy

Re
f (z)

z
> α, 0 ≤ α < 1, z ∈ D.

Then f ∈ U in the disk |z|< r(α), where
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r(α) =



√
2(1−α)
1−2α −1, 0 ≤ α ≤ 1

10 ,√√
α(1−α)−α

1−2α , 1
10 ≤ α ≤ 1

2 ,√√
2−4α(1−α)−2(1−α)

2(2α−1) , 1
2 ≤ α ≤ τα ,

1
4α−3

(
1−
√

2(1−α)
2α−1

)
, τα ≤ α < 1,

and τα = (8− 11/ 3
√

71+6
√

177+ 3
√

71+6
√

177)/12 ≈ 0.93804 is the root of the

equation

4α −2−
(
(2α −1)+

√
(2α −1)(10α −9)

)(
(2α −1)+

√
2(1−α)(2α −1)

)
= 0

in the interval [9/10,1). The result is sharp for the case α ∈ [0,1/10].

Proof. Since Re f (z)/z > α, it follows that

f (z)
z

≺ 1+(1−2α)z
1− z

,

there exists an analytic self-map w of D satisfying w(0) = 0 and

f (z)
z

=
1+(1−2α)w(z)

1−w(z)
.

A further computation shows that

(
z

f (z)

)2

f ′(z) =
z

f (z)
z f ′(z)
f (z)

=
1−w(z)

1+(1−2α)w(z)
+

(1−2α)zw′(z)
(
1−w(z)

)(
1+(1−2α)w(z)

)2 +
zw′(z)

1+(1−2α)w(z)

=

(
1−w(z)

)(
1+(1−2α)w(z)

)
+(2−2α)zw′(z)(

1+(1−2α)w(z)
)2

=
1−2αw(z)− (1−2α)w2(z)+2(1−α)zw′(z)(

1+(1−2α)w(z)
)2 ,

and hence

U f (z) =
(

z
f (z)

)2

f ′(z)−1
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=
1−2αw(z)− (1−2α)w2(z)+2(1−α)zw′(z)−

(
1+(1−2α)w(z)

)2

(
1+(1−2α)w(z)

)2

=
(−2+2α)w(z)− (1−2α)(2−2α)w2(z)+2(1−α)zw′(z)(

1+(1−2α)w(z)
)2

=
2(1−α)

((
−w(z)+ zw′(z)

)
− (1−2α)w2(z)

)
(

1+(1−2α)w(z)
)2 .

It follows that

|U f (z)| ≤
2(1−α)

(
|zw′(z)−w(z)|+ |1−2α ||w(z)|2

)(
1−|1−2α ||w(z)|

)2 .

Writing |w(z)|= t, |z|= r, 0 ≤ t ≤ r, |1−2α |= a, and substituting (2.15) leads to

|U f (z)| ≤
2(1−α)

( r2−t2

1−r2 +at2)
(1−at)2

=
2(1−α)

(
r2 +

(
a(1− r2)−1

)
t2
)

(1−at)2(1− r2)

:= Φ(t,r).

Then

∂Φ(t,r)
∂ t

=
2(1−α)

(
2
(
a(1− r2)−1

)
(1−at)2t +2a(1−at)

(
r2 +

(
a(1− r2)−1

)
t2))

(1− r2)(1−at)4

=
4(1−α)

((
a(1− r2)−1

)
t −
(
a(1− r2)−1

)
at2 +ar2 +

(
a(1− r2)−1

)
at2
)

(1− r2)(1−at)3

=
4(1−α)

(
ar2 −

(
1−a(1− r2)

)
t
)

(1− r2)(1−at)3

:=
4(1−α)

(1− r2)(1−at)3 ϕ(t,r),

where

ϕ(t,r) = ar2 −
(
1−a(1− r2)

)
t.

Thus the critical points of Φ(t,r) over t ∈ [0,r] occurs at t = 0, t = r and possibly at
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t0 = ar2/(1−a+ar2), where ϕ(t0,r)= 0. Indeed t0 is a critical point in [0,r] whenever

g(r) = ar2 −ar+1−a (2.16)

is nonnegative.

For a ∈ [0,4/5], it is evident that g(r) ≥ 0 in (0,1). Hence the maximum value of

Φ(t,r) is the largest value of {Φ(0,r);Φ(t0,r);Φ(r,r)}. Since

Φ(t0,r) =
2(1−α)

(
r2 +

(
a(1− r2)−1

) a2r4

(1−a+ar2)2

)
(1− r2)(1−a ar2

1−a+ar2 )2

=
2(1−α)r2(1−a+ar2 −a2r2)(1−a+ar2)

(1− r2)
(
1−a+ar2 −a2r2

)2

=
2(1−α)(1−a+ar2)r2

(1−a)(1− r2)(1+ar2)
,

and

Φ(r,r) =
2(1−α)

(
r2 +

(
a(1− r2)−1

)
r2
)

(1− r2)(1−ar)2

=
2a(1−α)r2

(1−ar)2 ,

it follows that

Φ(t0,r)−Φ(r,r) =
2(1−α)(1−a+ar2)r2

(1−a)(1− r2)(1+ar2)
− 2(1−α)ar2

(1−ar)2

:=
2(1−α)r2

(1−a)(1− r2)(1+ar2)(1−ar)2 h(r),

where

h(r) = (1−a+ar2)(1−ar)2 −a(1−a)(1− r2)(1+ar2)

= (1−2a+a2)+(a2r4 −2a2r3 +a2r2)+2(ar2 −ar−a2r2 +a2r)

= (1−a)2 +a2r2(1− r)2 −2ar(1− r)(1−a)

=
(
(1−a)−ar(1− r)

)2 ≥ 0.

Then
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Φ(t0,r)−Φ(r,r) =
2(1−α)r2((1−a)−ar(1− r)

)2

(1−a)(1− r2)(1+ar2)(1−ar)2 ≥ 0. (2.17)

Also,

Φ(t0,r)−Φ(0,r) =
2(1−α)(1−a+ar2)r2

(1−a)(1− r2)(1+ar2)
− 2(1−α)r2

(1− r2)

=
2a2(1−α)r4

(1−a)(1− r2)(1+ar2)
≥ 0. (2.18)

It is evident from (2.18) and (2.17) that max Φ(t,r) = Φ(t0,r). Thus

|U f (z)| ≤ Φ(t0,r) =
2(1−α)(1−a+ar2)r2

(1−a)(1− r2)(1+ar2)
< 1

provided |z|< r(α), where r(α) is the root of the equation

2(1−α)(1−a+ar2)r2 − (1−a)(1− r2)(1+ar2) = 0,

which is equivalent to

a (3−2α −a)r4 +(1−a)(3−2α −a)r2 − (1−a) = 0.

Hence

r(α) =

√√
(1−a)2(3−2α −a)2 +4a(1−a)(3−2α −a)− (1−a)(3−2α −a)

2a(3−2α −a)
.

There are two cases to consider for a = |1−2α | ∈ [0,4/5]. First, when 1/10 ≤ α ≤

1/2. In this case a = 1−2α. Further simplification leads to

r(α) =

√√
16α2 +16(1−2α)α −4α

4(1−2α)

=

√√
α(1−α)−α

1−2α
.
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The second case occurs when 1/2 ≤ α ≤ 9/10. Then a = 2α −1. It follows that

r(α) =

√√
64(1−α)4 +32(2α −1)(1−α)2 −8(1−α)2

8(2α −1)(1−α)

=

√√
2−4α(1−α)−2(1−α)

2(2α −1)
.

For a ∈ [4/5,1], the roots of g in (2.16) occurs at

r1 =
a−
√

a(5a−4)
2a

, r2 =
a+
√

a(5a−4)
2a

. (2.19)

Evidently g(r)≥ 0 over the intervals [0,r1] and [r2,1), and so the maximum of Φ(t,r)

occurs at Φ(t0,r). On the other hand, g(r) < 0 over (r1,r2). Since t0 is not a critical

point, the maximum of Φ(t,r) occurs at either Φ(0,r) or Φ(r,r).

Consider

K(r) = Φ(0,r)−Φ(r,r) =
2(1−α)r2

(1− r2)
− 2(1−α)ar2

(1−ar)2

=
2r2(1−α)

(
a(1+a)r2 −2ar+1−a

)
(1− r2)(1−ar)2

:=
2r2(1−α)

(1− r2)(1−ar)2 k(r),

where

k(r) = a(1+a)r2 −2ar+1−a, a ∈ [4/5,1].

The roots of k are

r′1 =
a−
√

a3 +a(a−1)
a(1+a)

, r′2 =
a+
√

a3 +a(a−1)
a(1+a)

.

Observe that K(r)≤ 0 over (r′1,r
′
2). Now

r1 − r′1 =
a−
√

a(5a−4)
2a

− a−
√

a3 +a(a−1)
a(1+a)
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=
a(a−1)− (1+a)

√
a(5a−4)+2

√
a3 +a2 −a)

2a(1+a)
.

It is clear that a(1+ a) > 0 when a ∈ [4/5,1] and a Mathematica plot in Figure 2.1

shows that y1(a) = a(a−1)− (1+a)
√

a(5a−4)+2
√

a3 +a2 −a)≥ 0. This leads to

r1 ≥ r′1.

y = y1HaL

0.8 1 1.6 2.4 3.2
a0

0.5

1

y

Figure 2.1: Graph of y1(a) = a(a−1)− (1+a)
√

a(5a−4)+2
√

a3 +a2 −a).

On the other hand,

r′2 − r2 =
a+
√

a3 +a(a−1)
a(1+a)

−
a+
√

a(5a−4)
2a

=
a(1−a)− (1+a)

√
a(5a−4)+2

√
a3 +a2 −a)

2a(1+a)
.

Figure 2.2 shows that y2(a) = a(1− a)− (1+ a)
√

a(5a−4) + 2
√

a3 +a2 −a) ≥ 0

when a ∈ [4/5,1], and thus r′2 ≥ r2. It follows that (r1,r2) ⊆ (r′1,r
′
2), where r1,r2 are

given by (2.19). Thus K(r) ≤ 0 over (r1,r2), and the maximum value of Φ(t,r) is

Φ(r,r).
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y = y2HaL

0.8 1 1.6 2.4 3.2
a0

0.5

1

y

Figure 2.2: Graph of y2(a) = a(1−a)− (1+a)
√

a(5a−4)+2
√

a3 +a2 −a).

There are also two cases to consider for a= |1−2α | ∈ [4/5,1], that is, α ∈ [0,1/10]

and α ∈ [9/10,1). Consider first when α ∈ [0,1/10], in this case a = 1− 2α, and it

follows that

r1(α) =
(1−2α)−

√
(1−2α)

(
5(1−2α)−4

)
2(1−2α)

=
(1−2α)−

√
(1−2α)(1−10α)

2(1−2α)
,

and

r2(α) =
(1−2α)+

√
(1−2α)(5−10α −4)

2(1−2α)

=
(1−2α)+

√
(1−2α)(1−10α)

2(1−2α)
.

If r ∈ [0,r1], then g given by (2.16) satisfies g(r)≥ 0. Thus

|U f (z)| ≤ Φ(t0,r)< 1

for all |z|< R1(α), where

R1(α) =

√√
α(1−α)−α

1−2α
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is the root of the equation Φ(t0,r) = 1. A Mathematica plot in Figure 2.3 shows that

R1(α)≥ r1(α). Then

|U f (z)|< 1

whenever |z|< r1(α).

y = y3HΑL

0 0.02 0.04 0.06 0.08 0.1
Α

0.1

0.2

0.3

y

Figure 2.3: Graph of y3(α) =

√√
α(1−α)−α

1−2α − (1−2α)−
√

(1−2α)(1−10α)

2(1−2α) .

When r ∈ (r1,r2), then g(r)< 0 and

|U f (z)| ≤ Φ(r,r)< 1

for all |z|< R2(α), where R2(α) is the root of the equation Φ(r,r) = 1, that is,

R2(α) =

√
2(1−α)(1−2α)− (1−2α)

(1−2α)
(
2(1−α)− (1−2α)

)
=

√
2(1−α)

1−2α
−1.

Figure 2.4 and Figure 2.5 show that r1(α)< R2(α)< r2(α), hence |U f (z)|< 1 for all

|z|< R2(α) when α ∈ [0,1/10].
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y = y4HΑL

0 0.02 0.04 0.06 0.08 0.1
Α

0.1

0.2

0.3

0.4

y

Figure 2.4: Graph of y4(α) =
√

2(1−α)
1−2α −1− (1−2α)−

√
(1−2α)(1−10α)

2(1−2α) .

y = y5HΑL

0 0.02 0.04 0.06 0.08 0.1
Α

0.1
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0.3

0.4

0.5

0.6

y

Figure 2.5: Graph of y5(α) =
(1−2α)+

√
(1−2α)(1−10α)

2(1−2α) −
√

2(1−α)
1−2α +1.

Next, consider the second case when α ∈ [9/10,1), then a = 2α −1. It follows that

r1(α) =
(2α −1)−

√
(2α −1)

(
5(2α −1)−4

)
2(2α −1)

=
(2α −1)−

√
(2α −1)(10α −9)

2(2α −1)
, (2.20)

and

r2(α) =
(2α −1)+

√
(2α −1)(10α −5−4)

2(2α −1)
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=
(2α −1)+

√
(2α −1)(10α −9)

2(2α −1)
. (2.21)

Likewise as in the first case, if r ∈ [0,r1], where r1 is given by (2.20), then g(r) ≥ 0

and

|U f (z)| ≤ Φ(t0,r)< 1

for all |z|< R′
1(α), where

R′
1(α) =

√√
2−4α(1−α)−2(1−α)

2(2α −1)
(2.22)

is the root of the equation Φ(t0,r) = 1. A Mathematica plot in Figure 2.6 shows that

R′
1(α)> r1(α), then

|U f (z)|< 1

whenever |z|< r1(α).

y = y6HΑL

0 0.9 1.8 2.7 3.6 4.5 5.4
Α

0.5

1

1.5

2

2.5

y

Figure 2.6: Graph of y6(α) =

√√
2−4α(1−α)−2(1−α)

2(2α−1) − (2α−1)−
√

(2α−1)(10α−9)
2(2α−1) .

If r ∈ (r1,r2), where r1 and r2 are given by (2.20) and (2.21). Then g(r)< 0 and

|U f (z)| ≤ Φ(r,r)< 1

for all |z|< R′
2(α), where R′

2(α) is the root of the equation Φ(r,r) = 1, that is,
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R′
2(α) =

√
2(1−α)(2α −1)− (2α −1)

(2α −1)
(
2(1−α)− (2α −1)

)
=

1
4α −3

(
1−
√

2(1−α)

2α −1

)
.

A closer scrutiny of R′
2(α) from Figure 2.7 and Figure 2.8, evidently, r1(α) <

R′
2(α)< r2(α) whenever α ∈ (τα ,1), where τα =(8−11/ 3

√
71+6

√
177+ 3

√
71+6

√
177)

/12 ≈ 0.93804 is the root of the equation R′
2(α)− r2(α) = 0, or equivalently τα is the

root of the equation

4α −2−
(
(2α −1)+

√
(2α −1)(10α −9)

)(
(2α −1)+

√
2(1−α)(2α −1)

)
= 0.

Thus in this case, |U f (z)|< 1 for |z|< R′
2(α).

y = y7HΑL

0.85 0.9 0.93804 1 1.1
Α0

0.5

1

y

Figure 2.7: Graph of y7(α) = 1
4α−3

(
1−
√

2(1−α)
2α−1

)
− (2α−1)−

√
(2α−1)(10α−9)

2(2α−1) .
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y = y8HΑL

0.9 0.93804 1
Α0

0.05

0.1

y

Figure 2.8: Graph of y8(α) =
(2α−1)+

√
(2α−1)(10α−9)

2(2α−1) − 1
4α−3

(
1−
√

2(1−α)
2α−1

)
.

On the other hand, Figure 2.9 shows that R′
2(α)≥ r2(α) whenever α ∈ [9/10,τα ].

Thus if r ∈ [r2,1), then g(r)≥ 0 and

|U f (z)| ≤ Φ(t0,r)< 1

for all |z| < R′
1(α), where R′

1(α) is given by (2.22). A Mathematica plot in Figure

2.10 and Figure 2.11 show that r2(α) ≤ R′
1(α) < 1 , it follows that |U f (z)| < 1 for

|z|< R′
1(α) when α ∈ [9/10,τα ].

y = y9HΑL

0.85 0.9 0.93804 1 1.1
Α0

0.1

0.2

0.3

y

Figure 2.9: Graph of y9(α) = 1
4α−3

(
1−
√

2(1−α)
2α−1

)
− (2α−1)+

√
(2α−1)(10α−9)

2(2α−1) .
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y = y10HΑL

0.85 0.9 0.93804 1 1.1
Α0

0.1
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0.3

y

Figure 2.10: Graph of y10(α) =

√√
2−4α(1−α)−2(1−α)

2(2α−1) − (2α−1)+
√

(2α−1)(10α−9)
2(2α−1) .

y = y11HΑL

0 0.2 0.4 0.6 0.8 1
Α

0.2

0.4

y

Figure 2.11: Graph of y11(α) = 1−
√√

2−4α(1−α)−2(1−α)

2(2α−1) .

For α ∈ [0,1/10], the extremal function is f0(z) = z
(
1− (1− 2α)z

)
/(1+ z). In this

case,
z

f0(z)
=

(1+ z)
1− (1−2α)z

= (1+ z)
∞

∑
n=0

(1−2α)nzn

= 1+
∞

∑
n=1

(1−2α)nzn +
∞

∑
n=1

(1−2α)n−1zn
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= 1+2(1−α)
∞

∑
n=1

(1−2α)n−1zn.

Thus

Rz
f0(Rz)

= 1+2(1−α)
∞

∑
n=1

(1−2α)n−1Rnzn = 1+
∞

∑
n=1

bnzn.

for 0 < R ≤ 1. Evidently,

∞

∑
n=2

(n−1)bn = 2(1−α)(1−2α)R2
∞

∑
n=2

(n−1)((1−2α)R)n−2

= 2(1−α)(1−2α)R2
∞

∑
n=1

n((1−2α)R)n−1

=
2(1−α)(1−2α)R2

(1− (1−2α)R)2 ≤ 1

if and only if R ≤ R(α), where R(α) =
√

2(1−α)/(1−2α)− 1 is the root of the

equation

(1−2α)R2 +2(1−2α)R−1 = 0.

It follows from Lemma 2.3 that R−1 f0(Rz) ∈ U if R ≤
√

2(1−α)/(1−2α)−1.

2.3 Product of Univalent Functions

For f ∈ F1 and g ∈ F2, where F1 and F2 are appropriate subsets of S , it is interesting

to consider the function

F(z) =
f (z)g(z)

z
, z ∈ D, (2.23)

and determine the largest radius of univalence for F . Also, it is interesting to find the

radius r so that the function F belongs to particular subclasses of S , such as ST and

U .

67



In [113], Obradović and Ponnusamy considered functions defined by (2.23), where

f ∈ F1 =U and g∈ F2 =U , and proved that the U -radius for F is |z|= 1/3, and that

this radius is sharp. They also showed that the U -radius for F is |z|= r0, where r0 ≈

0.30294, whenever f ,g ∈ S . In [112], they improved the value of r0 to r0 ≈ 0.326302,

where r0 is the positive root of a certain equation. Additionally, they [113] showed that

whenever f ,g ∈ ST , then the product F is starlike in the disk |z| < 1/3, and that this

radius is sharp. Indeed if f ,g ∈ S , they conjectured that F is also univalent in the disk

|z|< 1/3, and that the radius 1/3 is best possible. In this section we shall validate the

conjecture. Also, the radius of starlikeness for such functions F is shown to be 1/3.

The following lemma is required.

Lemma 2.5. If f ∈ S , then

Re
(

z f ′(z)
f (z)

)
≥ 1− r

1+ r
,

for |z|= r < tanh(1/2)≈ 0.46212.

Proof. Let f ∈ S . It follows from Lemma 2.1 that for |z| ≤ r < 1, the region of values

of ζ = log(z f ′(z)/ f (z)) is the disk

Dr =

{
ζ : |ζ | ≤ log

1+ r
1− r

}
.

The function w(z)= ez is univalent in D. Thus if r is chosen so that log((1+ r)/(1− r))

< 1, that is, r < tanh(1/2), then w is univalent in Dr. Evidently the function q(z) =

w(z)−1 is convex in D, that is, w is a convex function with positive coefficients in its

series expansion. Thus

inf
ζ∈Dr

Re w(ζ ) = inf
ζ∈∂ Dr

Re w(ζ ) = inf
ζ∈∂ Dr

w(Re ζ )

= inf
ζ∈∂ Dr

|w(ζ )|= inf
0≤θ≤2π

∣∣∣∣∣exp
(

log
(1+ r

1− r

)
eiθ
)∣∣∣∣∣
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= inf
0≤θ≤2π

exp
(

log
(1+ r

1− r

)
cosθ

)
= exp

(
−
(

log
1+ r
1− r

))
=

1− r
1+ r

for |z|= r < tanh(1/2).

Remark 2.2. Upon completion of the proof of Lemma 2.5, we found a similar result

by Krzyż and Reade in [70]. However, our proof differs from Krzyż.

Theorem 2.8. If f ,g ∈ S , then the function F defined by (2.23) is starlike in the disk

|z|< 1/3. The radius 1/3 is sharp.

Proof. It follows from Lemma 2.5 that

Re
(

zF ′(z)
F(z)

)
= Re

(
z f ′(z)
f (z)

)
+Re

(
zg′(z)
g(z)

)
−1 = 2

(
1− r
1+ r

)
−1 =

1−3r
1+ r

.

Thus F is starlike in the disk |z|< 1/3.

To demonstrate the sharpness, let f0(z) = z/(1− z)2 = g0(z). Then F0(z) = z/(1−

z)4. It follows that for |z|= r,

Re
(

zF ′
0(z)

F0(z)

)
=

1+2r cosθ −3r2

1−2r cosθ + r2 >
1−2r−3r2

(1+ r)2 =
(1−3r)(1+ r)

(1+ r)2 =
1−3r
1+ r

.

Hence Re(zF ′
0(z)/F0(z))> 0 for r < 1/3. Furthermore, F ′

0 (−1/3) = 0, and thus F0 is

not univalent in any disk r ≥ 1/3.
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CHAPTER 3

ON THE SECOND HANKEL DETERMINANT FOR THE
KTH-ROOT TRANSFORM OF ANALYTIC FUNCTIONS

3.1 Introduction

For positive integers q and n, the Hankel determinant Hq(n) for an analytic function

f (z) = ∑∞
n=0 anzn is defined by

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Hankel determinants play an important role in the study of singularities [37] as

well as in the study of power series with integral coefficients [32]. Earlier investiga-

tions include those of [42, 43, 44, 58, 71, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102,

121] and [122], while recent works are those of [26, 29, 54, 55, 56, 63, 64, 72, 85, 87]

and [88]. In [72], Lee et al. provided a brief survey on the Hankel determinants for

analytic univalent functions and obtained bounds for H2(2) for functions belonging to

several classes defined by subordination.

Let f (z) = z+∑∞
n=2 anzn with f (z) ̸= 0 in D\{0}. Further, let k ≥ 2 be a fixed

integer. The kth-root transform of f is defined by

F(z) :=
(

f
(

zk
)) 1

k
= z

(
f
(
zk)

zk

) 1
k

.
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Since f
(
zk)/zk = 1+∑∞

n=2 anzk(n−1) := 1+ x, and

(1+ x)
1
k = 1+

1
k

x− (k−1)
2k2 x2 +

(k−1)(2k−1)
3!k3 x3 + · · · ,

it follows that

F(z) = z

(
f
(
zk
)

zk

) 1
k

= z

1+
1
k

∞

∑
n=2

anzk(n−1)− (k−1)
2k2

(
∞

∑
n=2

anzk(n−1)

)2

+
(k−1)(2k−1)

3!k3

(
∞

∑
n=2

anzk(n−1)

)3

+ · · ·


= z
(

1+
1
k

(
a2zk +a3z2k +a4z3k + · · ·

)
− (k−1)

2k2

(
a2

2z2k +2a2a3z3k + . . .
)

+
(k−1)(2k−1)

3!k3

(
a3

2z3k + · · ·
)
+ · · ·

)
= z+

a2

k
zk+1 +

1
k

(
a3 −

(k−1)
2k

a2
2

)
z2k+1

+
1
k

(
a4 −

(k−1)
k

a2a3 +
(k−1)(2k−1)

3!k2 a3
2

)
z3k+1 + · · ·

= z+
∞

∑
n=2

b(n−1)k+1z(n−1)k+1,

where the initial coefficients are

bk+1 =
a2

k
, b2k+1 =

1
k

(
a3 −

(k−1)
2k

a2
2

)
b3k+1 =

1
k

(
a4 −

(k−1)
k

a2a3 +
(k−1)(2k−1)

3!k2 a3
2

)
.

(3.1)

Thus the Hankel determinants Hq(n) for F(z) = z+∑∞
n=2 b(n−1)k+1z(n−1)k+1 = z+

∑∞
n=2 Bnz(n−1)k+1 is

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bn Bn+1 · · · Bn+q−1

Bn+1 Bn+2 · · · Bn+q

...
...

...

Bn+q−1 Bn+q · · · Bn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b(n−1)k+1 bnk+1 · · · b(n+q−2)k+1

bnk+1 b(n+1)k+1 · · · b(n+q−1)k+1

...
...

...

b(n+q−2)k+1 b(n+q−1)k+1 · · · b(n+2q−3)k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

With n = 2, the Hankel determinants Hq(2) for F is

Hq(2) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bk+1 b2k+1 · · · bqk+1

b2k+1 b3k+1 · · · b(q+1)k+1

...
...

...

bqk+1 b(q+1)k+1 · · · b(2q−1)k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It follows that the second Hankel determinant H2(2) for F is

H2(2) :=

∣∣∣∣∣∣∣∣
bk+1 b2k+1

b2k+1 b3k+1

∣∣∣∣∣∣∣∣= bk+1b3k+1 −b2
2k+1.

In this chapter, bounds for the second Hankel determinant of the kth-root transform

are obtained for several classes of functions defined via subordination. These classes

can be seen as belonging to the genre of Ma-Minda starlike and convex functions,

which will be made apparent in the next section. The results in this chapter are derived

through several meticulous lengthy computations, and thus in several instances, these

computations were validated by using of the computer algebra system Mathematica.

72



The following lemmas are needed to establish the results in subsequent sections.

Lemma 3.1. (Lemma 1.1) If p(z) = 1+ c1z+ c2z2 + c3z3 + · · · ∈ P , then

|cn| ≤ 2.

This bound is sharp.

Lemma 3.2. [50, p.152] If p(z) = 1+ c1z+ c2z2 + c3z3 + · · · ∈ P , then

2c2 = c2
1 + x(4− c2

1), (3.2)

4c3 = c3
1 +2c1(4− c2

1)x− c1(4− c2
1)x

2 +2(4− c2
1)(1−|x|2)y, (3.3)

for some x,y ∈ D.

The following result on the optimal value of a quadratic expression is also needed

in the sequel. These estimates are obtained by standard calculus computations.

max
0≤t≤4

(Lt2 +Mt +N) =



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

(3.4)

3.2 The Second Hankel Determinant of The kth-root Transform of Ma-Minda

Starlike and Convex Functions

This section considers the class of Ma-Minda starlike and convex functions. For each

class, a bound is obtained for its second Hankel determinant of the kth-root transform.

Definition 3.1. [77] Let φ ∈ P be given by

φ(z) = 1+B1z+B2z2 +B3z3 + · · · , (B1 > 0,z ∈ D). (3.5)
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Further, assume that φ is univalent in D, maps D onto a region starlike with respect

to 1, and φ(D) is symmetric with respect to the real axis. The class ST (φ) consists of

functions f ∈ A satisfying z f ′(z)/ f (z)≺ φ(z).

In the literature, this class ST (φ) is widely called the Ma-Minda starlike functions

with respect to φ . For the particular case when φ is given by

φα(z) :=
1+(1−2α)z

1− z
= 1+2(1−α)z+2(1−α)z2+2(1−α)z3+ · · · , 0≤α < 1,

the class ST (φ) := ST (φα) is the well-known class of starlike functions of order α .

For the function

φPAR(z) := 1+
2

π2

(
log

1+
√

z
1−√

z

)2

= 1+
8

π2 z+
16

3π2 z2 +
184

45π2 z3 + · · · ,

ST (φPAR) is the class ST P of parabolic starlike functions introduced by Rønning

[131]:

ST P :=
{

f ∈ A : Re
(

z f ′z
f (z)

)
>

∣∣∣∣z f ′(z)
f (z)

−1
∣∣∣∣} .

Ali and Ravichandran [21] gave a survey on parabolic starlike functions and its related

class of uniformly convex functions.

When

φβ (z) :=
(

1+ z
1− z

)β
= 1+2β z+2β 2z2 +

2
3

β (1+2β 2)z3 + · · · , 0 < β ≤ 1,

the class ST (φβ ) is the familiar class ST β of strongly starlike functions of order β :

ST β :=
{

f ∈ A :
∣∣∣∣arg

(
z f ′(z)
f (z)

)∣∣∣∣< βπ
2

}
.

The class ST (
√

1+ z) is the class of lemniscate of Bernoulli starlike functions
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studied in [136]:

ST L :=

{
f ∈ A :

∣∣∣∣∣
(

z f ′(z)
f (z)

)2

−1

∣∣∣∣∣< 1

}
.

The first result in this chapter finds the bound for the second Hankel determinant

of the kth-root transform for Ma-Minda starlike functions.

Theorem 3.1. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ ST (φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform. Further, let δ = 1/k2.

1. If B1,B2 and B3 satisfy the conditions

|B2| ≤ B1, and |4B1B3 −δB4
1 −3B2

2|−3B2
1 ≤ 0,

then the second Hankel determinant satisfies

|H2(2)|= |bk+1b3k+1 −b2
2k+1| ≤

B2
1

4k2 .

2. If B1,B2 and B3 satisfy the conditions

|B2| ≥ B1, and |4B1B3 −δB4
1 −3B2

2|−B1|B2|−2B2
1 ≥ 0,

or the conditions

|B2| ≤ B1, and |4B1B3 −δB4
1 −3B2

2|−3B2
1 ≥ 0,

then the second Hankel determinant satisfies

|bk+1b3k+1 −b2
2k+1| ≤

1
12k2 |4B1B3 −δB4

1 −3B2
2|.

3. If B1,B2 and B3 satisfy the conditions

|B2|> B1, and 2B2
1 +B1|B2|− |4B1B3 −δB4

1 −3B2
2| ≥ 0,

then the second Hankel determinant satisfies

|bk+1b3k+1−b2
2k+1| ≤

B2
1

12k2

(
3|4B1B3 −δB4

1 −3B2
2|−4B2

1 −|B2|2 −4B1|B2|
|4B1B3 −δB4

1 −3B2
2|−2B1|B2|−B2

1

)
.
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Proof. Since f ∈ ST (φ), there exists an analytic self-map w of D with w(0) = 0

satisfying

z f ′(z)
f (z)

= φ(w(z)). (3.6)

Define the function P1 ∈ P by

P1(z) =
1+w(z)
1−w(z)

= 1+ c1z+ c2z2 + · · · ,

or equivalently,

w(z) =
P1(z)−1
P1(z)+1

=
1
2

(
c1z+

(
c2 −

c2
1

2
)
z2 +

(
c3 − c1c2 +

c3
1

4
)
z3 + · · ·

)
. (3.7)

By using (3.7) along with (3.5) lead to the expansion

φ(w(z)) = 1+B1w(z)+B2w2(z)+ · · ·

= 1+B1

(
P1(z)−1
P1(z)+1

)
+B2

(
P1(z)−1
P1(z)+1

)2

+B3

(
P1(z)−1
P1(z)+1

)3

+ · · ·

= 1+
B1

2

(
c1z+

(
c2 −

c2
1

2
)
z2 +

(
c3 − c1c2 +

c3
1

4
)
z3 + · · ·

)
+

B2

2

((
c1z+

(
c2 −

c2
1

2
)
z2 +

(
c3 − c1c2 +

c3
1

4
)
z3 + · · ·

))2

+
B3

2

( (
c1z+

(
c2 −

c2
1

2
)
z2 +

(
c3 − c1c2 +

c3
1

4
)
z3 + · · ·

))3

+ · · ·

= 1+
B1

2
c1z+

(
B1

2
(
c2 −

c2
1

2
)
+

B2

4
c2

1

)
z2

+

(
B1
(c3

2
− c1c2

2
+

c3
1

8
)
+B2c1

(c2

2
−

c2
1

4
)
+

B3c3
1

8

)
z3 + · · · . (3.8)

Now

z f ′(z)
f (z)

= 1+a2z+
(
2a3 −a2

2
)

z2 +
(
3a4 −3a2a3 +a3

2
)

z3 + · · · . (3.9)

Comparing with (3.6), (3.8) and (3.9), it follows that

a2 =
B1c1

2
,

a3 =
1
2

((1
2

B1(c2 −
c2

1
2
)+

1
4

B2c2
1
)
+

B2
1c2

1
4

)
,
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=
1
8

((
B2

1 −B1 +B2)c2
1 +2B1c2

)
,

a4 =
1
3

(−B3
1c3

1
8

+
3B1c3

1
16

(
B2

1 −B1 +B2
)
+

3B2
1c1c2

8
+B1

(4c3 −4c1c2 + c3
1

8
)

+B2c1
(2c2 − c2

1
4

)
+

B3c3
1

8

)
,

=
1
48

((
−4B2 +2B1 +B3

1 −3B2
1 +3B1B2 +2B3

)
c3

1

+2
(
3B2

1 −4B1 +4B2
)
c1c2 +8B1c3

)
. (3.10)

Consequently (3.10) and (3.1) yield

bk+1 =
B1c1

2k
,

b2k+1 =
1
8k

((
B2

1 −B1 +B2
)
c2

1 +2B1c2

)
+

(1− k)
8k2 B2

1c2
1,

b3k+1 =
1

48k

((
B3

1 −3B2
1 +2B1 −4B2 +3B1B2 +2B3

)
c3

1 +2
(
3B2

1 −4B1 +4B2
)
c1c2

+8B1c3

)
+

(1− k)B1c1

16k2

((
B2

1 −B1 +B2
)
c2

1 +2B1c2

)
+

(1− k)(1−2k)
48k3 B3

1c3
1.

Lengthy computations, validated by Mathematica, show that

bk+1b3k+1 −b2
2k+1 =

(
1

96k2 −
1

64k2 +
(1− k)2

64k4 +
(k−1)(2k−1)

96k4

)
B4

1c4
1

+

(
1

32k2 −
1

32k2 +
(1− k)
32k3 +

(k−1)
32k3

)
B2

1B2c4
1

+

(
1

48k2 −
1

64k2

)
B2

1c4
1 +

(
1

32k2 −
1

24k2

)
B1B2c4

1+

+

(
1

32k2 +
(1− k)
32k3 − (1− k)

32k3 − 1
32k2

)
B3

1c4
1

+
1

48k2 B1B3c4
1 −

1
64k2 B2

2c4
1 +

(
− 1

12k2 +
1

16k2

)
B2

1c2
1c2

+

(
− 1

16k2 +
(1− k)
16k3 +

1
16k2 +

(k−1)
16k3

)
B3

1c2
1c2

+

(
1

12k2 −
1

16k2

)
B1B2c2

1c2 −
1

16k2 B2
1c2

2 +
1

12k2 B2
1c1c3.
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Thus

bk+1b3k+1 −b2
2k+1 =

B1

192k2

(
4
(
B2 −B1

)
c2

1c2 +
(
B1 −

1
k2 B3

1 −2B2 +4B3 −3
B2

2
B1
)
c4

1

+16B1c1c3 −12B1c2
2

)
.

Next, for ease of computations, let

d1 = 16B1, d2 = 4(B2 −B1) , d3 =−12B1,

d4 = B1 −δB3
1 −2B2 +4B3 −3

B2
2

B1
, and T =

B1

192k2 . (3.11)

It follows that,

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1
∣∣ . (3.12)

Substituting the values of c2 and c3 respectively from (3.2) and (3.3) in (3.12), then

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1

4
(
c3

1 +2c1x(4− c2
1)− c1x2(4− c2

1)+2(4− c2
1)(1−|x|2)y

)
+

d2c2
1

2
(
c2

1 + x(4− c2
1)
)
+

d3

4
(
c4

1 +2c2
1x(4− c2

1)+ x2(4− c2
1)

2)
+d4c4

1
∣∣

=
T
4

∣∣∣d1
(
c4

1 +2c2
1x(4− c2

1)− c2
1x2(4− c2

1)+2c(4− c2
1)(1−|x|2)y

)
+d2

(
2c4

1 +2xc2
1(4− c2

1)
)
+d3

(
c4

1 +2xc2
1(4− c2

1)+ x2(4− c2
1)

2)
+4d4c4

1
∣∣.

Since the function p
(
eiθ z
)
(θ ∈R) is in the class P for any p ∈ P , there is no loss

of generality in assuming c1 = c > 0, c ∈ [0,2], it follows that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣∣c4(d1 +2d2 +d3 +4d4
)
+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2)
)
+2d1c(4− c2)(1−|x|2)y

∣∣∣
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for some x,y ∈ D. With s = |x|, (3.11) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
4

(
c4
∣∣∣∣16B3 −4δB3

1 −12
B2

2
B1

∣∣∣∣+8sc2(4− c2) |B2|

+ s2(4− c2)(4B1c2 +48B1)+32B1c(4− c2)(1− s2)

)

= T

(
c4
∣∣∣∣4B3 −δB3

1 −3
B2

2
B1

∣∣∣∣+8B1c(4− c2)+2 |B2|sc2(4− c2)

+B1s2(4− c2)(c−2)(c−6)

)

:= F(c,s),

where (c,s) ∈ [0,2]× [0,1]. Now

∂F
∂ s

= T
(
2 |B2|c2(4− c2)+2B1s(4− c2)(c−2)(c−6)

)
,

For 0 < s < 1 and for any fixed c with 0 < c < 2, it is evident that ∂F/∂ s > 0, and

thus F(c,s) is an increasing function of s. Hence

max
0≤s≤1

F(c,s) = F(c,1) := G(c).

Upon simplification, we find that,

G(c) =
B1

192k2

(
c4
(∣∣∣∣4B3 −δB3

1 −
3B2

2
B1

∣∣∣∣−2 |B2|−B1

)
+8c2 (|B2|−B1)+48B1

)
.

Writing c2 = t and

L =

∣∣∣∣4B3 −δB3
1 −

3B2
2

B1

∣∣∣∣−2 |B2|−B1, M = 8(|B2|−B1) , and N = 48B1,

it follows from (3.4) that,
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192k2

B1

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

These conditions now lead to the desired bounds for the second Hankel determi-

nant.

Thus for |B2| ≤ B1 and |4B1B3 −δB4
1 −3B2

2|−3B2
1 ≤ 0, the second Hankel deter-

minant satisfies

|bk+1b3k+1 −b2
2k+1| ≤

B2
1

4k2 .

For |B2| ≥ B1 and |4B1B3 − δB4
1 − 3B2

2|−B1|B2|− 2B2
1 ≥ 0, or for |B2| ≤ B1 and

|4B1B3 −δB4
1 −3B2

2|−3B2
1 ≥ 0, the second Hankel determinant satisfies

|bk+1b3k+1 −b2
2k+1| ≤

1
12k2 |4B1B3 −δB4

1 −3B2
2|.

For |B2| > B1 and 2B2
1 +B1|B2| − |4B1B3 − δB4

1 − 3B2
2| ≥ 0, the second Hankel

determinant satisfies

|bk+1b3k+1 −b2
2k+1| ≤

B2
1

12k2

(
3|4B1B3 −δB4

1 −3B2
2|−4B2

1 −|B2|2 −4B1|B2|
|4B1B3 −δB4

1 −3B2
2|−2B1|B2|−B2

1

)
.

The special case k = 1 in Theorem 3.1 reduces to the result obtained by Lee et al.

[72].

Corrollary 3.1. [72, Theorem 1] Let f (z) = z+∑∞
n=2 anzn ∈ ST (φ).

1. If B1,B2 and B3 satisfy the conditions

|B2| ≤ B1, and |4B1B3 −B4
1 −3B2

2|−3B2
1 ≤ 0,
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then the second Hankel determinant satisfies

|a2a4 −a2
3| ≤

B2
1

4
.

2. If B1,B2 and B3 satisfy the conditions

|B2| ≥ B1, and |4B1B3 −B4
1 −3B2

2|−B1|B2|−2B2
1 ≥ 0,

or the conditions

|B2| ≤ B1, and |4B1B3 −B4
1 −3B2

2|−3B2
1 ≥ 0,

then the second Hankel determinant satisfies

|a2a2 −a2
3| ≤

1
12

|4B1B3 −B4
1 −3B2

2|.

3. If B1,B2 and B3 satisfy the conditions

|B2|> B1, and 2B2
1 +B1|B2|− |4B1B3 −B4

1 −3B2
2| ≥ 0,

then the second Hankel determinant satisfies

|a2a4 −a2
3| ≤

B2
1

12

(
3|4B1B3 −B4

1 −3B2
2|−4B2

1 −|B2|2 −4B1|B2|
|4B1B3 −B4

1 −3B2
2|−2B1|B2|−B2

1

)
.

With k = 1 and the choice φ(z) = (1 + z)/(1 − z), that is, B1 = B2 = B3 = 2,

Theorem 3.1 reduces to the following corollary.

Corrollary 3.2. [64, Theorem 3.1] Let f (z) = z+∑∞
n=2 anzn ∈ ST . Then |a2a4−a2

3| ≤

1.

Judicious choices of φ in Theorem 3.1 lead to the following results for the special

cases.

Corrollary 3.3.

1. If f ∈ ST (α), then |bk+1b3k+1 −b2
2k+1| ≤ (1−α)2/k2.

2. If f ∈ ST L, then |bk+1b3k+1 −b2
2k+1| ≤ 1/(16k2).
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3. If f ∈ ST P, then |bk+1b3k+1 −b2
2k+1| ≤ 16/(π4k2).

4. If f ∈ ST β , then |bk+1b3k+1 −b2
2k+1| ≤ β 2/k2.

Proof. 1. If f ∈ ST (α), then φ(z) = (1+ (1− 2α)z)/(1− z). Thus B1 = B2 =

B3 = 2(1−α), by applying Theorem 3.1, |bk+1b3k+1 −b2
2k+1| ≤ (1−α)2/k2.

2. If f ∈ ST L, then φ(z) =
√

1+ z. Thus B1 = 1/2, B2 = −1/8, B3 = 1/16, by

applying Theorem 3.1, |bk+1b3k+1 −b2
2k+1| ≤ 1/(16k2).

3. If f ∈ ST P, then φ(z)= 1+2/π2
(

log
(
(1+

√
z)/(1−√

z)
))2

. Thus B1 = 8/π2,

B2 = 16/3π2, B3 = 184/45π2, by applying Theorem 3.1, |bk+1b3k+1−b2
2k+1| ≤

16/(π4k2).

4. If f ∈ ST β , then φ(z) =
(
(1+ z)/(1− z)

)β
. Thus B1 = 2β , B2 = 2β 2, B3 =

2β (1+2β 2)/3, by applying Theorem 3.1, |bk+1b3k+1 −b2
2k+1| ≤ β 2/k2.

Definition 3.2. [77] Let φ ∈ P satisfy the condition in Definition 3.1. The class CV (φ)

of Ma-Minda convex functions with respect to φ consists of functions f satisfying the

subordination

1+
z f ′′(z)
f ′(z)

≺ φ(z).

The bound for the second Hankel determinant of the kth-root transform for Ma-

Minda convex functions is determined in the next theorem.

Theorem 3.2. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ CV (φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform.

1. If B1,B2 and B3 satisfy the conditions

(3k2 +4k−6)
k

B2
1 +4|B2|−2B1 ≤ 0, and
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∣∣∣∣∣6(k+1)− (k+3)2

4k2 B4
1 +(3k2 −5k+2)B3

1 +
(9k−8)

k
B2

1B2 +6B1B3 −4B2
2

∣∣∣∣∣
−4B2

1 ≤ 0,

then the second Hankel determinant satisfies

|bk+1b3k+1 −b2
2k+1| ≤

B2
1

36k2 .

2. If B1,B2 and B3 satisfy the conditions

(3k2 +4k−6)
k

B2
1 +4|B2|−2B1 ≥ 0, and

2

∣∣∣∣∣6(k+1)− (k+3)2

4k2 B4
1 +(3k2 −5k+2)B3

1 +
(9k−8)

k
B2

1B2 +6B1B3 −4B2
2

∣∣∣∣∣
− (3k2 +4k−6)

k
B3

1 −4B1|B2|−6B2
1 ≥ 0,

or the conditions

(3k2 +4k−6)
k

B2
1 +4|B2|−2B1 ≤ 0, and∣∣∣∣∣6(k+1)− (k+36)2

4k2 B4
1 +(3k2 −5k+2)B3

1 +
(9k−8)

k
B2

1B2 +6B1B3 −4B2
2

∣∣∣∣∣
−4B2

1 ≥ 0,

then the second Hankel determinant satisfies

|bk+1b3k+1 −b2
2k+1|

≤ B1

144k2

∣∣∣∣∣(6(k+1)− (k+3)2)

4k2 B3
1 +(3k2 −5k+2)B2

1 +
(9k−8)

k
B1B2 +6B3 −4

B2
2

B1

∣∣∣∣∣.
3. If B1,B2 and B3 satisfy the conditions

(3k2 +4k−6)B2
1 +4|B2|−2B1 > 0 and

2

∣∣∣∣∣(6(k+1)− (k+3)2)

4k2 B3
1 +(3k2 −5k+2)B2

1 +
(9k−8)

k
B1B2 +6B3 −4

B2
2

B1

∣∣∣∣∣
− (3k2 +4k−6)

k
B3

1 −4B1|B2|−6B2
1 ≤ 0,
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then the second Hankel determinant satisfies

|bk+1b3k+1 −b2
2k+1|

≤ B2
1

576k2



16

∣∣∣∣∣6(k+1)−(k+3)2

4k2 B4
1 +(3k2 −5k+2)B3

1 +
(9k−8)

k B2
1B2 +6B1B3 −4B2

2

∣∣∣∣∣−16|B2|2

−48B1|B2|−36B2
1 −

12(3k2+4k−6)
k B3

1 −
(3k2+4k−6)2

k2 B4
1 −

8(3k2+4k−6)
k B2

1|B2|∣∣∣∣∣6(k+1)−(k+3)2

4k2 B4
1 +(3k2 −5k+2)B3

1 +
(9k−8)

k B2
1B2 +6B1B3 −4B2

2

∣∣∣∣∣
− (3k2+4k−6)

k B3
1 −4B1|B2|−2B2

1


.

Proof. Since f ∈ CV (φ), there exists an analytic self-map w of D with w(0) = 0

satisfying

1+
z f ′′(z)
f ′(z)

= φ(w(z)). (3.13)

Define the function P1 ∈ P by

P1(z) =
1+w(z)
1−w(z)

= 1+ c1z+ c2z2 + · · · .

Now

1+
z f ′′(z)
f ′(z)

= 1+2a2z+(−4a2
2 +6a3)z2 +(8a3

2 −18a2a3 +12a4)z3 + · · · . (3.14)

Comparing with (3.8), (3.13) and (3.14), it follows that

a2 =
B1c1

4
,

a3 =
1

24
(
(B2

1 −B1 +B2)c2
1 +2B1c2

)
,

a4 =
1

192
(
(−4B2 +2B1 +B3

1 −3B2
1 +3B1B2 +2B3)c3

1

+2(3B2
1 −4B1 +4B2)c1c2 +8B1c3

)
. (3.15)

Consequently (3.15) and (3.1) yield

bk+1 =
B1c1

4k
,

b2k+1 =
1

24k

(
(B2 −B1)c2

1 +2B1c2
)
+

(k+3)
96k2 B2

1c2
1,
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b3k+1 =
1

192k

(((4k2 −3k+1)
2k2 B3

1 −3B2
1 +2B1 −4B2 +3B1B2 +2B3

)
c3

1

)
+

1
96k

(((k+2)
k

B2
1 −4B1 +4B2

)
c1c2

)
+

1
24k

B1c3

+
(1− k)B1c3

1
96k2

(
B2

1 −B1 +B2
)
.

Lengthy computations, validated by Mathematica, show that

bk+1b3k+1 −b2
2k+1 =

B1

768k2

(
c4

1

(
(6(k+1)− (k+3)2)

12k2 B3
1 +

(8k−9k2)

3k2 (B2
1 −B1B2)

− 4
3
(
B2 +

B2
2

B1

)
+

2
3
(B1 +3B3)

)
+

2c2
1c2

3
((3k2 +4k−6)

k
B2

1 −4B1 +4B2
)
+8B1c1c3 −

16
3

B1c2
2

)
.

Next, for ease of computations, let

d1 = 8B1, d2 =
2
3

(
(3k2 +4k−6)B2

1
k

+4(B2 −B1)

)
, d3 =−16B1

3
,

d4 = 4
((6(k+1)− (k+3)2)

48k2 B3
1 +

(8k−9k2)

12k2 (B2
1 −B1B2)

− 1
3
(B2 +

B2
2

3B1
+

1
6
(B1 +3B3)

)
, and T =

B1

768k2 . (3.16)

Then ∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1
∣∣ . (3.17)

Since the function p
(
eiθ z
)
(θ ∈R) is in the class P for any p ∈ P , there is no loss

of generality in assuming c1 = c > 0, c ∈ [0,2]. Substituting the values of c2 and c3

respectively from (3.2) and (3.3) in (3.17), it follows that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣c4 (d1 +2d2 +d3 +4d4)+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2))+2d1c(4− c2)(1−|x|2)y
∣∣
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for some x,y ∈ D. With s = |x|, (3.16) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
4

(
16c4

∣∣∣∣∣(6(k+1)− (k+3)2)

48k2 B3
1 +

(3k3 −5k2 +2k)
12k

B2
1

−
B2

2
3B1

+
(9k2 −8k)

12k2 B1B2 +
B3

2

∣∣∣∣∣+32sc2(4− c2)(
|B2|

6
+

(3k2 +4k−6)B2
1

24k

)
+16s2 (4− c2)(B1

6
c2 +

4B1

3

)
+16B1c

(
4− c2)(1− s2))

= T

(
c4

3

∣∣∣∣∣(6(k+1)− (k+3)2)

4k2 B3
1 +(3k2 −5k+2)B2

1

+(9k−8)B1B2 +6B3 −4
B2

2
B1

∣∣∣∣∣+4B1c
(
4− c2)

+
1
3

sc2 (4− c2)((3k2 +4k−6)B2
1 +4|B2|

)
+

2B1

3
s2 (4− c2)(c−2)(c−4)

)

:= F(c,s),

(c,s) ∈ [0,2]× [0,1]. Now

∂F
∂ s

= T
(

c2

3
(
4− c2)((3k2 +4k−6)

k
B2

1 +4|B2|
)
+

4B1

3
s
(
4− c2)(c−2)(c−4)

)
,

it is clear that ∂F/∂ s > 0 for 0 < s < 1 and for any fixed c with 0 < c < 2. Thus F(c,s)

is an increasing function of s Hence

max
0≤s≤1

F(c,s) = F(c,1) := G(c).

Upon simplification, we find that

G(c) = T

(
c4

3

(∣∣∣(6(k+1)− (k+3)2)

4k2 B3
1 +(3k2 −5k+2)B2

1 +
(9k−8)

k
B1B2

+6B3 −4
B2

2
B1

∣∣∣− (3k2 +4k−6)
k

B2
1 −4|B2|−2B1

)
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+
4
3

c2((3k2 +4k−6)
k

B2
1 +4|B2|−2B1

)
+

64B1

3

)
.

Writing c2 = t and

L =
1
3

(∣∣∣∣∣(6(k+1)− (k+3)2)

4k2 B3
1 +(3k2 −5k+2)B2

1 +
(9k−8)

k
B1B2

+6B3 −4
B2

2
B1

∣∣∣∣∣− (3k2 +4k−6)
k

B2
1 −4|B2|−2B1

)
,

M =
4
3

((3k2 +4k−6)
k

B2
1 +4|B2|−2B1

)
, and

N =
64B1

3
,

it follows from (3.4) that

768k2

B1

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

These conditions now lead to the desired bounds for the second Hankel determinant.

The special case k = 1 in Theorem 3.2 reduces to the following corollary.

Corrollary 3.4. [72, Theorem 2] Let f (z) = z+∑∞
n=2 anzn ∈ CV (φ).

1. If B1, B2 and B3 satisfy the conditions

B2
1 +4|B2|−2B1 ≤ 0, and |6B1B3 +B2

1B2 −B4
1 −4B2

2|−4B2
1 ≤ 0,

then the second Hankel determinant of f satisfies

|a2a4 −a2
3| ≤

B2
1

36
.
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2. If B1, B2 and B3 satisfy the conditions

B2
1+4|B2|−2B1 ≥ 0, and 2|6B1B3+B2

1B2−B4
1−4B2

2|−B3
1−4B1|B2|−6B2

1 ≥ 0,

or the conditions

B2
1 +4|B2|−2B1 ≤ 0, and |6B1B3 +B2

1B2 −B4
1 −4B2

2|−4B2
1 ≥ 0,

then the second Hankel determinant of f satisfies

|a2a4 −a2
3| ≤

1
144

|6B1B3 +B2
1B2 −B4

1 −4B2
2|.

3. If B1, B2 and B3 satisfy the conditions

B2
1+4|B2|−2B1 > 0, and 2|6B1B3+B2

1B2−B4
1−4B2

2|−B3
1−4B1|B2|−6B2

1 ≤ 0,

then the second Hankel determinant of f satisfies

|a2a4 −a2
3|

≤ B2
1

576

(
16|6B1B3 +B2

1B2 −B4
1 −4B2

2|−12B3
1 −48B1|B2|−36B2

1−B4
1 −8B2

1|B2|−16|B2|2

|6B1B3 +B2
1B2 −B4

1 −4B2
2|−B3

1 −4B1|B2|−2B2
1

)
.

With k = 1 and the choice φ(z) = (1 + z)/(1 − z), that is, B1 = B2 = B3 = 2,

Theorem 3.2 reduces to the following corollary.

Corrollary 3.5. [64, Theorem 3.2] Let f (z) = z + ∑∞
n=2 anzn ∈ CV ((1 + z)/(1 −

z)) =CV . Then |a2a4 −a2
3| ≤ 1/8.

3.3 Further Results on The Second Hankel Determinant

In this section, several classes of normalized analytic functions are considered. For

each class, a bound is obtained for its second Hankel determinant.

Definition 3.3. Let φ ∈ P satisfy the condition in Definition 3.1, and b be a non-

zero complex number. The class Rb(φ) consists of functions f ∈ A satisfying the
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subordination

1+
1
b

(
f ′(z)−1

)
≺ φ(z).

This class was considered in [22] for the more general case of p-valent functions.

The case b = 1 and φ(z) = (1+ z)/(1− z) gives the subclass of close-to-convex func-

tions studied by MacGregor [78], consisting of functions whose derivative has positive

real part. Al Amiri et al. [18] introduced the general class of analytic functions satis-

fying Re{1+1/b((z f ′(z)/g(z)) −1)} > 0, for some starlike function g. It is evident

that Rb(φ) coincides with this class for g(z) = z and φ(z) = (1+ z)/(1− z).

The following theorem gives the bound for the second Hankel determinant of the

kth-root transform for functions in class Rb(φ).

Theorem 3.3. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ Rb(φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform. Further, let

λ =
∣∣9B1B3 −8B2

2 +δB4
1
∣∣ , and δ =

3
(
k2 −1

)
23k2 b2.

1. If B1,B2 and B3 satisfy the conditions

|B2| ≤
7
2

B1, and 8B2
1 −λ ≥ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ B2
1b2

9k2 .

2. If B1,B2 and B3 satisfy the conditions

|B2| ≥
7
2

B1, and
9
2

B2
1 +B1 |B2|−λ ≤ 0,

or the conditions

|B2| ≤
7
2

B1, and 8B2
1 −λ ≤ 0,
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then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ b2λ
2332k2 .

3. If B1,B2 and B3 satisfy the conditions

|B2|>
7
2

B1, and
9
2

B2
1 +B1 |B2|−λ ≥ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ b2B2
1

2532k2

(
32λ −36B1 |B2|−81B2

1 −4|B2|2

λ −2B1 |B2|−B2
1

)
.

Proof. The proof is similar to Theorem 3.2. There exists an analytic self-map w of D

satisfying

1+
1
b

(
f ′(z)−1

)
= φ (w(z)) . (3.18)

Now

1+
1
b

(
f ′(z)−1

)
= 1+

2
b

a2z+
3
b

a3z2 +
4
b

a4z3 + · · · . (3.19)

Comparing with (3.8), (3.18) and (3.19), we find that

a2 = b
B1c1

4
,

a3 = b

(
2B1c2 −B1c2

1 +B2c2
1
)

12
,

a4 = b

(
4B1c3 −4B1c1c2 +B1c3

1 +4B2c1c2 −2B2c3
1 +B3c3

1
)

32
. (3.20)

Consequently (3.20) and (3.1) yield

bk+1 = b
B1c1

4k
,

b2k+1 =
b

12k

(
2B1c2 −B1c2

1 +B2c2
1
)
+

(1− k)b2

32k2 B2
1c2

1,

b3k+1 =
b

32k

(
4B1c3 −4B1c1c2 +B1c3

1 +4B2c1c2 −2B2c3
1 +B3c3

1
)
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+
(1− k)b2

48k2

(
2B2

1c1c2 −B2
1c3

1 +B1B2c3
1
)
+

(k−1)(2k−1)
384

b3B3
1c3

1.

Thus

bk+1b3k+1 −b2
2k+1 =

b2

2732k2

((
B2

1 −2B1B2 +32B1B3 −23B2
2 +

3
(
k2 −1

)
23k2 b2B4

1

)
c4

1

+22(B1B2 −B2
1
)
c2

1c2 +2232B2
1c1c3 −25B2

1c2
2

)
.

Writing

d1 = 36B2
1, d2 = 4B1 (B2 −B1) , d3 =−32B2

1,

d4 = B2
1 −2B1B2 +9B1B3 −8B2

2 +δB4
1, and T =

|b|2

2732k2 , (3.21)

then ∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1
∣∣ .

Equations (3.2) and (3.3) show that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣c4(d1 +2d2 +d3 +4d4)+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2)
)
+2d1c(4− c2)(1−|x|2)y

∣∣
for some x,y ∈ D. With s = |x|, (3.21) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
(

c4λ +2sc2(4− c2)B1|B2|+18B2
1c(4− c2)(1− s2)

+(4− c2)s2B2
1
(
9c2 +8(4− c2)−18c

))
= T

(
c4λ +2sc2(4− c2)B1|B2|+18B2

1c(4− c2)

+(4− c2)s2B2
1(c−2)(c−16)

)
:= F(c,s),

(c,s) ∈ [0,2]× [0,1]. Now

∂F
∂ s

= T
(
2c2(4− c2)B1|B2|+2sB2

1(4− c2)(c−2)(c−16)
)
,

it is evident that ∂F/∂ s > 0 for 0 < s < 1 and for any fixed c with 0 < c < 2. Thus
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F(c,s) is an increasing function of s, and hence

max
0≤s≤1

F(c,s) = F(c,1) := G(c).

Routine simplifications yield

G(c) = T
(

c4(λ −2B1|B2|−B2
1)+4c2B1

(
2|B2|−7B1

)
+128B2

1

)
.

With c2 = t and

L = λ −2B1 |B2|−B2
1, M = 4B1 (2 |B2|−7B1) , and N = 128B2

1,

it follows from (3.4) that

2732k2

b2

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

Inserting the values of the parameters L,M and N yield the desired conditions and

bounds.

When k = 1 and b = τ , Theorem 3.3 is equivalent to Theorem 3 in [72] for γ = 0.

Corrollary 3.6. [72, Theorem 3] Let f (z) = z+∑∞
n=2 anzn ∈ Rτ(φ). Further, let λ =∣∣9B1B3 −8B2

2

∣∣. Then

1. If B1,B2 and B3 satisfy the conditions

|B2| ≤
7
2

B1, and 8B2
1 −λ ≥ 0,

then the second Hankel determinant satisfies

∣∣a2a4 −a2
3
∣∣≤ B2

1|b|2

9
.

2. If B1,B2 and B3 satisfy the conditions

|B2| ≥
7
2

B1, and
9
2

B2
1 +B1 |B2|−λ ≤ 0,
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or the conditions

|B2| ≤
7
2

B1, and 8B2
1 −λ ≤ 0,

then the second Hankel determinant satisfies

∣∣a2a4 −a2
3
∣∣≤ |b|2λ

2332 .

3. If B1,B2 and B3 satisfy the conditions

|B2|>
7
2

B1, and
9
2

B2
1 +B1 |B2|−λ ≥ 0,

then the second Hankel determinant satisfies

∣∣a2a4 −a2
3
∣∣≤ |b|2B2

1
2532

(
32λ −36B1 |B2|−81B2

1 −4|B2|2

λ −2B1 |B2|−B2
1

)
.

For k = 1, b = 1 and the choice φ(z) = (1+ z)/(1− z), that is, B1 = B2 = B3 = 2,

Theorem 3.3 is equivalent to Theorem 2.1 in [63] for γ = 0.

Corrollary 3.7. [63, Theorem 3.1] Let f (z) = z+∑∞
n=2 anzn ∈ R1((1+z)/(1−z)) = R.

Then
∣∣a2a4 −a2

3

∣∣≤ 4
9 .

For k = 1, b = τ and the choice φ(z) = (1+Az)/(1+Bz), −1 ≤ B < A ≤ 1, The-

orem 3.3 is equivalent to Theorem 2.1 in [29] for γ = 0.

Corrollary 3.8. [29, Theorem 2.1] Let f (z) = z+∑∞
n=2 anzn ∈ Rτ((1+Az)/(1+Bz)).

Then
∣∣a2a4 −a2

3

∣∣≤ |τ|2(A−B)2/9.

Definition 3.4. Let φ ∈ P satisfy the condition in Definition 3.1, and α ≥ 0. The class

ST (α,φ) consists of functions f ∈ A satisfying the subordination

z f ′(z)
f (z)

+α
z2 f ′′(z)

f (z)
≺ φ(z).
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Padmanabhan [117] introduced the class ST (α,φ) in 2001 and investigated suffi-

cient conditions for starlikeness. The special case when α = 1 and φ = (1+ z)/(1− z)

was considered in [127]. It is evident that ST (0,φ) reduces to the class ST (φ) treated

in Definition 3.1.

Theorem 3.4. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ ST (α,φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform. Further, let

λ =
∣∣δB4

1 −2αB2
1B2 +4(1+2α)(1+3α)3B1B3 −3(1+2α)2(1+4α)B2

2
∣∣ ,

u = (1+2α)(12α2 +6α +1), and

δ =
−1−10α +

(
5k2 −33

)
α2 +12

(
k2 −3

)
α3

((1+2α)k)2 .

1. If B1,B2 and B3 satisfy the conditions

u |B2|− (1+2α)
(
1+6α +6α2)B1 +αB2

1 ≤ 0, and

λ −3(1+2α)2(1+4α)B2
1 ≤ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ B2
1

(2(1+3α)k)2 .

2. If B1,B2 and B3 satisfy the conditions

u |B2|− (1+2α)
(
1+6α +6α2)B1 +αB2

1 ≥ 0, and

λ −B1

(
u |B2|+αB2

1 −2(1+2α)
(
1+6α +9α2)B1

)
≥ 0,

or the conditions

u |B2|− (1+2α)
(
1+6α +6α2)B1 +αB2

1 ≤ 0, and

λ −3(1+2α)2(1+4α)B2
1 ≥ 0,
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then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ λ

3(1+4α)
(

2(1+2α)(1+3α)k
)2 .

3. If B1,B2 and B3 satisfy the conditions

u |B2|− (1+2α)
(
1+6α +6α2)B1 +αB2

1 > 0, and

λ −B1

(
u |B2|+αB2

1 −2(1+2α)
(
1+6α +9α2)B1

)
≤ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ P
Q
,

where

P = B2
1

(
−3(1+2α)(1+6α +8α2)

(
−λ +(u+2αB1)B2

1 +2uB1|B2|
)

−
(
αB2

1 − (1+2α)(1+6α +6α2)B1 +u|B2|
)2
)
,

and

Q = 12k2(1+2α)2(1+3α)2(1+4α)
(
λ −B2

1(u+2αB1)−2uB1|B2|
)
.

Proof. Let

z f ′(z)+α2z2 f ′′(z)
f (z)

= φ (w(z)) (3.22)

for an analytic self-map w of D. Since

z f ′(z)+α2z2 f ”(z)
f (z)

= 1+(1+2α)a2z+
(
2(1+3α)a3 − (1+2α)a2

2
)

z2

+
(
3(1+4α)a4 − (3+8α)a2a3 +(1+2α)a3

2
)

z3 + · · · ,

(3.23)
it follows from (3.8), (3.22) and (3.23) that

a2 =
1

2(1+2α)
B1c1,

a3 =
1

23(1+2α)(1+3α)

(
(1+2α)

(
2B1c2 − (B1 −B2)c2

1
)
+B2

1c2
1

)
,
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a4 =
1

24 ·3(1+4α)

(
8(B1c3 −B1c1c2 +B2c1c2)−4B2c3

1 +2(B1c3
1 +B3c3

1)

+
(3+8α)

(1+2α)2(1+3α)

(
(1+2α)(2B2

1c1c2 −B2
1c3

1 +B1B2c3
1)+B3

1c3
1
)
−

2B3
1c3

1
(1+2α)2

)
.

Consequently (3.1) yields

bk+1 =
B1c1

2k(1+2α)
,

b2k+1 =

(
2B1c2 +(B2 −B1)c2

1
)

23k(1+3α)
+

(3− k)α +1
8k2(1+2α)2(1+3α)

B2
1c2

1,

b3k+1 =

(
4(B1c3 −B1c1c2 +B2c1c2)−2B2c3

1 +B1c3
1 +B3c3

1
)

233k(1+4α)

+

(
4α(3− k)+3

)(
2B2

1c1c2 −B2
1c3

1 +B1B2c3
1
)

24 ·3k2(1+2α)(1+3α)(1+4α)

+

(
12α2 +7α +1

)
−αk (4α(3− k)+3)

24 ·3k3(1+2α)3(1+3α)(1+4α)
B3

1c3
1.

Routine computations show that

bk+1b3k+1 −b2
2k+1 =

(12α3k2 +5α2k2 −36α3 −33α2 −10α −1)
26 ·3k4(1+2α)4(1+3α)2(1+4α)

B4
1c4

1

+
αk
(
B2

1(B1 −B2)c4
1 −2B3

1c2
1c2
)

25 ·3k3(1+2α)2(1+3α)2(1+4α)

+
(12α2 +6α +1)

(
B1(B1 −2B2)c4

1 +4B1(B2 −B1)c2
1c2
)

26 ·3k2(1+2α)(1+3α)2(1+4α)

+
(4B2

1c1c3 +B1B3c4
1)

24 ·3k2(1+2α)(1+4α)
−

(4B2
1c2

2 +B2
2c4

1)

26k2(1+3α)2 ,

which yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣∣c4

1

(
B1
(
u(B1 −2B2)+4(1+2α)(1+3α)2B3

+2αB1(B1 −B2)+δB3
1
)
−3(1+2α)2(1+4α)B2

2

)
+ c2

1c2

(
4B1
(
u(B2 −B1)−αB2

1
))

+16(1+2α)(1+3α)2B2
1c1c3 −12(1+2α)2(1+4α)B2

1c2
2

∣∣∣,
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where

T =
1

263k2(1+2α)2(1+3α)2(1+4α)
.

By writing

d1 = 24(1+2α)(1+3α)2B2
1,

d2 = 4B1
(
u(B2 −B1)−αB2

1
)
,

d3 =−12(1+2α)2(1+4α)B2
1,

d4 = B1
(
u(B1 −2B2)+4(1+2α)(1+3α)2B3

+2αB1(B1 −B2)+δB3
1
)
−3(1+2α)2(1+4α)B2

2, (3.24)

then ∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1
∣∣ .

Proceeding similarly as in the previous proofs, it can be shown that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣∣c4(d1 +2d2 +d3 +4d4)+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2)
)
+2d1c(4− c2)(1−|x|2)y

∣∣∣
for some x,y ∈ D. With s = |x|, (3.24) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
(

c4λ +2B1sc2(4− c2)(u|B2|+αB2
1 )

+ s2(1+2α)(4− c2)
(
4(1+3α)2B2

1c2

+3(1+2α)(1+4α)B2
1(4− c2)

)
+8(1+2α)(1+3α)2B2

1c(4− c2)(1− s2)
)

= T
(

c4λ +2sB1c2 (4− c2)(u|B2|+αB2
1)

+8(1+2α)(1+3α)2B2
1c(4− c2)

+ s2u(4− c2)B2
1(c−2)(c− p)

)
:= F(c,s),
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where

p =
6(1+6α +8α2)

1+6α +12α2 > 2.

It is evident that ∂F/∂ s > 0 for 0 < s < 1 and for any fixed c with 0 < c < 2. Thus

F(c,s) is an increasing function of s. Hence

max
0≤s≤1

F(c,s) = F(c,1) := G(c),

with

G(c) = T
(

c4
(

λ −B1
(
u(B1 +2|B2|)+2αB2

1
))

+8B1c2(u|B2|− (1+2α)(1+6α +6α2)B1 +αB2
1
)

+48(1+2α)(1+6α +8α2)B2
1

)
.

Writing c2 = t and

L = λ −B1
(
u(B1 +2|B2|)+2αB2

1
)
,

M = 8B1
(
u|B2|− (1+2α)(1+6α +6α2)B1 +αB2

1
)
, and

N = 48(1+2α)(1+6α +8α2)B2
1. (3.25)

Now, (3.4) yields∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ 1
263k2(1+2α)2(1+3α)2(1+4α)

×



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

where L,M and N are given by (3.25).
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Definition 3.5. Let φ ∈ P satisfy the condition in Definition 3.1, and α ∈ [0,1]. The

class L(α,φ) consists of functions f ∈ A satisfying the subordination

(
z f ′(z)
f (z)

)α(
1+

z f ′′(z)
f ′(z)

)1−α
≺ φ(z).

This class is analogous to the α-logarithmically convex functions Lα introduced

by Lewandowski et al. [73]. In [35], Darus et al. found bounds for |a2|, |a3| and

|a3 − µa2|, µ real, for f ∈ L(α,(1+ z)/(1− z)) = Lα . Evidently, L(1,φ) reduces to

the class ST (φ) considered in Definition 3.1 and L(0,φ) reduces to the class CV (φ)

considered in Definition 3.2.

Theorem 3.5. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ L(α ,φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform. Further, let

λ =
∣∣δB4

1 + vB2
1B2 +4(2−α)(3−2α)2B1B3 −3(2−α)2(4−3α)B2

2
∣∣ ,

u = (2−α)(7α2 −18α +12),

v = (7α3 −13α2 −6α +12), and

δ =
(

4(2α −3)
(
2k2α(15−17α +6α2 −4α3)−9k(8−10α −α2 +3α3)

−6(12−17α +6α2)
)
+9(3α −4)

(
−6+4α + k(−2+α +α2)

)2
)/

3
(
2k(2−α)

)2
.

1. If B1,B2 and B3 satisfy the conditions

vB2
1 +2u|B2|−2(2−α)(6−6α +α2)B1 ≤ 0, and

λ +3(2−α)2(3α −4)B2
1 ≤ 0,

99



then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ ( B1

2(3−2α)k

)2

.

2. If B1,B2 and B3 satisfy the conditions

vB2
1 +2u|B2|−2(2−α)(6−6α +α2)B1 ≥ 0, and

2λ −B1
(
vB2

1 +2u|B2|+4(2−α)(3−2α)2B1
)
≥ 0,

or the conditions

vB2
1 +2u|B2|−2(2−α)(6−6α +α2)B1 ≤ 0, and

λ +3(2−α)2(3α −4)B2
1 ≥ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ λ
3(4−3α)(2(2−α)(3−2α)k)2 .

3. If B1,B2 and B3 satisfy the conditions

vB2
1 +2u|B2|−2(2−α)(6−6α +α2)B1 > 0, and

2λ −B1
(
vB2

1 +2u|B2|+4(2−α)(3−2α)2B1
)
≤ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ P
Q
,

where

P = B2
1

(
−
(
vB2

1 +2(α −2)(6−6α +α2)B1 +2u|B2|
)2

+12(α −2)2(3α −4)

×
(
uB2

1 + vB3
1 −λ +2uB1|B2|

))
,

and

Q = 3(4−3α)
(
22(2−α)(3−2α)k

)2 (λ −uB2
1 − vB3

1 −2uB1|B2|
)
.
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Proof. Since f ∈ L(α ,φ), there exists an analytic self-map w of D with w(0) = 0

satisfying (
z f ′(z)
f (z)

)α(
1+

z f ′′(z)
f ′(z)

)(1−α)

= φ (w(z)) .

Now

(
z f ′(z)
f (z)

)α(
1+

z f ′′(z)
f ′(z)

)(1−α)

=1+(1−2α)a2z+
(

2(3−2α)a3 +
(2−α)2 −3(4−3α)

2
a2

2

)
z2

+

(
3(4−3α)a3 −

(α3 +21α2 +20α −48)
6

a3
2

+(4α2 +11α −18)a2a3
)

z3 + · · · ,

the above equation and (3.8) yield

a2 =
B1c1

2(2−α)
,

a3 =
1

2(3−2α)

(
−(α2 +5α −8)

2 ·4(2−α)2 B2
1c2

1 +
B1c2

2
−

B1c2
1

4
+

B2c2
1

4

)
,

a4 =
1

23 ·3(4−3α)

(
4B2c1c2 −2B2c3

1 +B3c3
1 +B3c3

1 +4B1c3 −4B1c1c2 +B1c3
1
)

+

(
α3 +21α2 +20α −48

)
24 ·32(2−α)3(4−3α)

B3
1c3

1 +

(
4α2 +11α −18

)
25 ·3(2−α)3(3−2α)(4−3α)(

(α2 +5α −8)B3
1c3

1 −4(2−α)2B2
1c1c2 +2(2−α)2B2

1c3
1

− 2(2−α)2B1B2c3
1
)
. (3.26)

From (3.26) and (3.1), and after some lengthy computations (validated by Mathe-

matica), we find that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
(

c4(δB4
1c4

1 +u(B2
1c4

1 −4B2
1c2

1c2 −2B1B2c4
1 +4B1B3c2

1c2)

+ v(B2
1B2c4

1 −B3
1c4

1 +2B3
1c2

1c2)+4(2−α)(3−2α)2B1B3c4
1

−12(2−α)2(4−3α)B2
1c2

2 +16(2−α)(3−2α)2B2
1c1c3

−3(2−α)2(4−3α)B2
2c4

1

)
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= T
∣∣∣c4

1
(
δB4

1 +uB1 (B1 −2B2)+ vB2
1 (B2 −B1)

+4(2−α)(3−2α)2B1B3 −3(2−α)2(4−3α)B2
2
)

+2B1c2
1c2
(
2u(B2 −B1)+ vB2

1
)
+16c1c3

(
(2−α)(3−2α)2B2

1
)

−12c2
2
(
(2−α)2(4−3α)B2

1
)∣∣∣,

where

T =
1

3(4−3α)(23(2−α)(3−2α)k)2 .

Let

d1 = 16(2−α)(3−2α)2B2
1,

d2 = 2
(
2u(B2 −B1)+ vB2

1
)

B1,

d3 =−12(2−α)2(4−3α)B2
1,

d4 = δB4
1 +uB1 (B1 −2B2)+ vB2

1 (B2 −B1)+4(2−α)(3−2α)2B1B3

−3(2−α)2(4−3α)B2
2.

(3.27)

It follows that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T (d1c1c3 +d2c2
1c2 +d3c2

2 +d4c4
1).

Consequently,

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣∣c4(d1 +2d2 +d3 +4d4)+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2)
)
+2d1c(4− c2)(1−|x|2)y

∣∣∣
for some x,y ∈ D. With s = |x|, (3.27) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
(

c4λ + sc2(4− c2)B1(2u|B2|+ vB2
1)

+ s2(4− c2)(2−α)B2
1
(
(7α2 −18α +12)c2

+12(2−α)(4−3α)
)
+8c(4− c2)(2−α)(3−2α)2B2

1(1− s2)
)
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= T
(

c4λ + sc2(4− c2)B1(2u|B2|+ vB2
1)+8c(4− c2)(2−α)

(3−2α)2B2
1 + s2u(4− c2)B2

1(c−2)(c− p)
)

:= F(c,s),

where u > 0, v > 0, and

p =
6(8−10α +3α2)

12−18α +7α2 > 2.

Since ∂F/∂ s > 0 for 0 < s < 1 and for any fixed c with 0 < c < 2, it follows that

F(c,s) is increasing relative to s, and so

max
0≤s≤1

F(c,s) = F(c,1) := G(c),

with

G(c) = T
(

c4
(

λ −B1
(
vB2

1 +u(2|B2|+B1)
))

+ c2
(

4B1
(
2u|B2|+ vB2

1 −2(2−α)(α2 −6α +6)B1
))

+48(2−α)2(4−3α)B2
1

)
.

Letting c2 = t and

L = λ −B1
(
vB2

1 +u(2|B2|+B1)
)
,

M = 4B1

(
2
(
u|B2|− (2−α)(α2 −6α +6)B1

)
+ vB2

1

)
, and

N = 48(2−α)2(4−3α)B2
1.

(3.28)

Now, (3.4) leads to
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∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ 1

3(4−3α)(23(2−α)(3−2α)k)2

×



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

where L,M and N are given by (3.28).

Remark 3.1.

1. For α = 1, Theorem 3.5 reduces to Theorem 3.1, and for α = 0, Theorem 3.5

reduces to Theorem 3.2.

2. If k = 1 and α = 1, then δ =−1, u = 1, v = 0 and λ = |4B1B3−B4
1−3B2

2|. Thus

Theorem 3.5 reduces to [72, Theorem 1].

3. If k = 1 and α = 0, then δ =−12, u = 24, v = 12 and λ = |72B1B3+12B2
1B2−

12B4
1 −48B2

2|. Thus Theorem 3.5 reduces to [72, Theorem 2].

With k = 1, α = 1, and the choice of φ(z) = (1+ z)/(1− z), that is, B1 = B2 =

B3 = 2, Theorem 3.5 reduces to the following corollary.

Corrollary 3.9. [64, Theorem 3.1] Let f (z)= z+∑∞
n=2 anzn ∈L(1,(1+z)/(1−z))=ST .

Then
|a2a4 −a2

3| ≤ 1.

With k = 1, α = 0, and the choice of φ(z) = (1+ z)/(1− z), that is, B1 = B2 =

B3 = 2, Theorem 3.5 reduces to the following corollary.

Corrollary 3.10. [64, Theorem 3.2] Let f (z) = z + ∑∞
n=2 anzn ∈ L(0,(1 + z)/(1 −

z)) =CV . Then
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|a2a4 −a2
3| ≤

1
8
.

The last theorem gives the bound for the second Hankel determinant of the kth-root

transform for the class M(α,φ).

Definition 3.6. Let φ ∈ P satisfy the condition in Definition 3.1, and α ≥ 0. The class

M(α ,φ) consists of functions f ∈ A satisfying the subordination

(1−α)
z f ′(z)
f (z)

+α
(

1+
z f ′′(z)
f ′(z)

)
≺ φ(z).

The class M(α ,φ) is analogous to the α-convex functions of Mocanu et al.[86],

who investigated geometric properties of the class in the case φ = (1+ z)/(1− z).

Theorem 3.6. Let φ be given by (3.5), f (z) = z+∑∞
n=2 anzn ∈ M(α,φ), and F(z) =

z+∑∞
n=1 bkn+1zkn+1 be its kth-root transform. Further, let

λ =
∣∣δB4

1 +6αB2
1B2 +4(1+2α)2B1B3 −3(1+α)(1+3α)B2

2
∣∣ ,

δ =−

(
1+
(
7+4k2)α +

(
16+7k2)α2 +

(
12+ k2)α3

)
(1+α)3k2 ,

and u = (7α2 +4α +1).

1. If B1,B2 and B3 satisfy the conditions

u|B2|+3αB2
1 − (α2 +4α +1)B1 ≤ 0, and λ −3(1+α)(1+3α)B2

1 ≤ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ ( B1

2(1+2α)k

)2

.

2. If B1,B2 and B3 satisfy the conditions

u|B2|+3αB2
1 − (α2 +4α +1)B1 ≥ 0, and
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λ −B1
(
2(1+2α)2B1 +3αB2

1 +u|B2|
)
≥ 0,

or the conditions

u|B2|+3αB2
1 − (α2 +4α +1)B1 ≤ 0, and λ −3(1+α)(1+3α)B2

1 ≥ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ λ
3(1+α)(1+3α)(2(1+2α)k)2 .

3. If B1,B2 and B3 satisfy the conditions

u|B2|+3αB2
1 − (α2 +4α +1)B1 > 0, and

λ −B1
(
2(1+2α)2B1 +3αB2

1 +u|B2|
)
≤ 0,

then the second Hankel determinant satisfies

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ P
Q
,

where

P = B2
1

(
−
(
6αB2

1 − (1+4α +α2)B1 +u|B2|
)2

−3(1+α)(1+3α)
(
−λ +(u+12αB1)B2

1 +2uB1|B2|
))

, and

Q = 3(1+α)(1+3α)(4(1+2α)k)2 (λ − (u+12αB1)B2
1 −2uB1|B2|

)
.

Proof. Let

(1−α)
z f ′(z)
f (z)

+α
(

1+
z f ′′(z)
f ′(z)

)
= φ (w(z)) (3.29)

for an analytic self-map w of D. Since

(1−α)
z f ′(z)
f (z)

+α
(

1+
z f ′′(z)
f ′(z)

)
= 1+(1+α)a2z+

(
(2+4α)a3 − (1+3α)a2

2
)

z2

+
(
(3+9α)a4 − (3+15α)a2a3 +(1+7α)a3

2
)

z3

+ · · · , (3.30)
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it follows from (3.8), (3.29) and (3.30) that

a2 =
1

2(1+α)
B1c1,

a3 =
1

(1+2α)

((1+3α)B2
1c2

1
4(1+α)2 +

B1c2

2
−

B1c2
1

4
+

B2c4
1

4

)
,

a4 =
1

3(1+3α)

(
(3+15α)

4(1+α)(1+2α)

(
(1+3α)B3

1c3
1

4(1+α)2 +
B2

1c1c2

2
−

B2
1c3

1
4

+
B1B2c3

1
4

)

−
(1+7α)B3

1c3
1

8(1+α)3 +
B1c3

2
− B1c1c2

2
+

B1c3
1

8
+

B2c1c2

2
−

B2c3
1

4
+

B3c3
1

8

)
.

(3.31)

From (3.31) and (3.1), direct lengthy computations (validated by Mathematica)

reveal that

∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣∣δB4

1c4
1 −6αB3

1 +12αB3
1c2

1c2 +6αB2
1B2c4 −4uB2

1c2
1c2

+uB2
1c4

1 +4uB1B2c2
1c2 −2uB1B2c4

1 +16(1+2α)2B2
1c1c3

+4(1+2α)2B1B3c4
1 −12(1+α)(1+3α)B2

1c2
2

−3(1+α)(1+3α)B2
2c4

1

∣∣∣
= T

∣∣∣c4
1
(
δB4

1 +6αB2
1(B2 −B1)+uB1(B1 −2B2)

+4(1+2α)2B1B3 −3(1+α)(1+3α)B2
2
)

+4c2
1c2B1

(
3αB2

1 +u(B2 −B1)
)
+16(1+2α)2B2

1c1c3

−12(1+α)(1+3α)B2
1c2

2

∣∣∣,
where

T =
1

3(1+α)(1+3α)(23(1+2α)k)2 .
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By writing

d1 = 16(1+2α)2B2
1,

d2 = 4B1
(
3αB2

1 +u(B2 −B1)
)
,

d3 =−12(1+α)(1+3α)B2
1,

d4 = δB4
1 +6αB2

1(B2 −B1)+uB1(B1 −2B2)

+4(1+2α)2B1B3 −3(1+α)(1+3α)B2
2,

(3.32)

then ∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
∣∣d1c1c3 +d2c2

1c2 +d3c2
2 +d4c4

1
∣∣ .

Consequently,∣∣bk+1b3k+1 −b2
2k+1

∣∣= T
4

∣∣∣c4(d1 +2d2 +d3 +4d4)+2xc2(4− c2)(d1 +d2 +d3)

+(4− c2)x2(−d1c2 +d3(4− c2)
)
+2d1c(4− c2)(1−|x|2)y

∣∣∣
for some x,y ∈ D. With s = |x|, (3.32) yields

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ T
(

c4λ +2sc2(4− c2)B1
(
3αB2

1 +u|B2|
)

+ s2(4− c2)B2
1
(
uc2 +12(1+α)(1+3α)

)
+8c(4− c2)(1+2α)2B2

1(1− s2)
)

= T
(

c4λ +2sc2(4− c2)B1
(
3αB2

1 +u|B2|
)

+8c(4− c2)(1+2α)2B2
1 + s2u(4− c2)B2

1(c−2)(c− p)
)

:= F(c,s),

where

p =
6(1+α)(1+3α)

u
> 2.

It is clear that ∂F/∂ s > 0 for 0 < s < 1 and for any fixed c with 0 < c < 2. Thus F(c,s)

is an increasing function of s. Hence
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max
0≤s≤1

F(c,s) = F(c,1) := G(c),

with

G(c) = T
(

c4 (λ −B1
(
6αB2

1 +u(B1 +2|B2|)
))

+ c2
(

4B1
(
6αB2

1 +2u|B2|−2(1+4α +α2)B1
))

+48(1+α)(1+3α)B2
1

)
.

Next let c2 = t and

L = λ −B1
(
6αB2

1 +u(B1 +2|B2|)
)
,

M = 8B1
(
3αB2

1 +u|B2|− (1+4α +α2)B1
)
, and

N = 48(1+α)(1+3α)B2
1.

(3.33)

From (3.4), it follows that

∣∣bk+1b3k+1 −b2
2k+1

∣∣≤ 1

3(1+α)(1+3α)(23(1+2α)k)2

×



4LN−M2

4L , M > 0, L ≤−M
8 ,

N, M ≤ 0, L ≤−M
4 ,

16L+4M+N, M ≥ 0, L ≥−M
8 or M ≤ 0, L ≥−M

4 .

where L,M and N are given by (3.33). The rest of the proof is now evident.

Remark 3.2.

1. With α = 0, Theorem 3.6 reduces to Theorem 3.1, and with α = 1, Theorem 3.6

reduces to Theorem 3.2.

2. If k = 1 and α = 0, then δ = −1, u = 1, and λ = |4B1B3 −B4
1 − 3B2

2|. Thus

Theorem 3.6 reduces to [72, Theorem 1].

3. If k = 1 and α = 1, then δ = −6, u = 12, and λ = |36B1B3 + 6B2
1B2 − 6B4

1 −

24B2
2|. Thus Theorem 3.6 reduces to [72, Theorem 2].
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With k = 1, α = 0, and the choice of φ(z) = (1+ z)/(1− z), that is, B1 = B2 =

B3 = 2, Theorem 3.6 reduces to the following corollary.

Corrollary 3.11. [64, Theorem 3.1] Let f (z) = z + ∑∞
n=2 anzn ∈ M(0,(1 + z)/(1 −

z)) =ST . Then
|a2a4 −a2

3| ≤ 1.

With k = 1, α = 1, and the choice of φ(z) = (1+ z)/(1− z), that is, B1 = B2 =

B3 = 2, Theorem 3.6 reduces to the following corollary.

Corrollary 3.12. [64, Theorem 3.2] Let f (z) = z + ∑∞
n=2 anzn ∈ M(1,(1 + z)/(1 −

z)) =CV . Then
|a2a4 −a2

3| ≤
1
8
.
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CHAPTER 4

PRODUCT OF UNIVALENT LOGHARMONIC MAPPINGS

4.1 Introduction

Recall that B(D) is the set of functions a ∈ H (D) satisfying |a(z)| < 1 for z ∈ D, and

B0 is its subclass consisting of a ∈ B with a(0) = 0.

Suppose 0 /∈ f (D), and log( f (z)) is harmonic and sense-preserving in D. Then f

is a solution of the equation

∂
∂ z

log( f (z)) = a(z)
∂
∂ z

log( f (z))

for some a ∈ B(D), that is, (
fz(z)
f (z)

)
= a(z)

fz(z)
f (z)

. (4.1)

Thus a nonconstant function f in D which is a solution of the nonlinear elliptic partial

differential equation (4.1) is called loghamonic. The function a is called the second

dilatation of log f .

In this work, emphasis is given on the class SLh of univalent and sense-preserving

logharmonic mappings in D with respect to a ∈ B0. These mappings are of the form

f (z) = zh(z)g(z), (4.2)

normalized by h(0) = g(0) = 1, and 0 /∈ (hg)(D). This class has been studied exten-

sively in recent years, for instance, in the works of [1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15]

and [82].
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In addition, recall that ST Lh is the subclass of univalent starlike logharmonic map-

pings. The classical family ST of univalent analytic starlike functions is evidently a

subclass of ST Lh [1, 4, 6], and [9]. The representation in (4.2) is essential to the

present work as it allows the treatment of logharmonic mappings f through their as-

sociated analytic representations h and g. In 2006, Abdulhadi and AbuMuhanna [4]

established a connection between starlike logharmonic mappings of order α and star-

like analytic functions of order α . Studies on starlike logharmonic mapping is an active

subject of investigation, several recent works can be found in [27, 28] and [120].

Taking the logarithmic differentiation on (4.2) gives

fz(z)
f (z)

=
1
z
+

h′(z)
h(z)

,

(
fz(z)
f (z)

)
=

(
(g(z))z

g(z)

)
=

g′(z)
g(z)

. (4.3)

It follows from (4.1) and (4.3) that the functions h, g and the dilatation a satisfy

g′(z)
g(z)

= a(z)
(zh(z))′

zh(z)
. (4.4)

Thus

zg′(z)
g(z)

= a(z)
(

1+
zh′(z)
h(z)

)
. (4.5)

Given an analytic function ψ with a specified geometric property and an a ∈ B0,

a common method to construct a logharmonic mapping f (z) = zh(z)g(z) in SLh is to

solve for h and g via the equation ψ(z) = zh(z)/g(z) and (4.5).

Since

ψ ′(z)
ψ(z)

=
1
z
+

h′(z)
h(z)

− g′(z)
g(z)

,

it follows from (4.5) that
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ψ ′(z)
ψ(z)

=
1

a(z)
g′(z)
g(z)

− g′(z)
g(z)

,

which in turn implies

g′(z)
g(z)

=
a(z)

1−a(z)
ψ ′(z)
ψ(z)

.

Thus the solution is f (z) = zh(z)g(z) with

g(z) = exp
∫ z

0

a(s)
1−a(s)

ψ ′(s)
ψ(s)

ds, and h(z) =
ψ(z)g(z)

z
.

In this chapter, sufficient conditions for the function F(z) = f (z)| f (z)|2γ to be

α−spirallike logharmonic function are obtained. By taking the product combination

of two functions f1(z) = zh1(z)g1(z), and f2(z) = zh2(z)g2(z) which are univalent star-

like logharmonic with respect to the same a ∈ B0, we construct a new univalent starlike

logharmonic mapping F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, with respect to the same a. In

addition, if f1(z) = zh1(z)g1(z) is a logharmonic mapping with respect to a1 ∈ B0 , and

f2(z) = zh2(z)g2(z) is a logharmonic mapping with respect to a2 ∈ B0, sufficient con-

ditions are obtained for the product combination F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1 to

be univalent starlike logharmonic with respect to some µ ∈ B0. We conclude the work

by providing several examples of univalent starlike logharmonic mappings constructed

from this product.

4.2 Product of Logharmonic Mappings

Let Ω be a simply connected domain in C containing the origin. Then Ω is said to be

α−spirallike, |α|< π/2, if wexp(−teiα)∈ Ω for all t ≥ 0 whenever w ∈ Ω. Evidently,

if α = 0, then Ω is starlike.
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Lemma 4.1. (Theorem 1.20) [38, p. 52] Let f ∈A , and |α|< π/2. Then f is α−spirallike

in D if and only if

Re
(

e−iα z f ′(z)
f (z)

)
> 0, z ∈ D.

Recall that SP α
Lh is the subclass of SLh consisting of all α−spirallike logharmonic

mappings. Further, recall that SP α is the subclass of SP α
Lh such that f ∈ H (D).

To prove the results in this section, the following lemmas are required.

Lemma 4.2. (Theorem 1.19) Let f (z) = zh(z)g(z) be logharmonic in D with 0 /∈

hg(D). Then f ∈ ST Lh(α) if and only if ψ(z) = zh(z)/g(z) ∈ ST (α).

Lemma 4.3. (Theorem 1.21) Let f (z) = z|z|2β h(z)g(z) be logharmonic in D with

0 /∈ hg(D), where β = a(0)(1+ a(0))/(1− |a(0)|2). Then f ∈ SP α
Lh if and only if

ψ(z) = zh(z)/(g(z))e2iα ∈ SP α .

The first result is to obtain sufficient conditions for the function F(z) = f (z)| f (z)|2γ

to be α−spirallike logharmonic mapping.

Theorem 4.1. Let f (z) = zh(z)g(z)∈ ST Lh with respect to a∈B0, and γ be a constant

with Reγ >−1/2. Then F(z) = f (z)| f (z)|2γ is an α−spirallike logharmonic mapping

with respect to

∧
a(z) =

(1+ γ)a(z)+ γ
1+ γ + γa(z)

,

where α = tan−1(2 Imγ/(1+2 Reγ)).

Proof. Since f is logharmonic with respect to a, it follows that the function F(z) =

f (z)| f (z)|2γ = f 1+γ f γ satisfies

Fz

F
= (1+ γ)

fz

f
+ γ

( f )z

f
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= (1+ γ)
fz

f
+ γ
(
( f )z

f

)
= (1+ γ)

fz

f
+ γa(z)

fz

f
,

and (
(F)z

F

)
= (1+ γ)

(
( f )z

f

)
+ γ
(
( f )z

f

)
= (1+ γ)

(
( f )z

f

)
+ γ

(
( fz)

f

)

= (1+ γ)a(z)
fz

f
+ γ

fz

f
.

Therefore,

∧
a(z) =

(
(F)z

F

)
Fz
F

=

(1+ γ)a(z)
fz

f
+ γ

fz

f

(1+ γ)
fz

f
+ γa(z)

fz

f

=
1+ γ
1+ γ

a(z)+
γ

1+ γ

1+a(z)
γ

1+ γ

.

Since Reγ >−1/2, it follows that |γ/(1+ γ)|2 < 1. Then

∣∣∣∣ γ
1+ γ

∣∣∣∣2 (1−|a(z)|2)< 1−|a(z)|2,

and thus

|a(z)|2 +
∣∣∣∣ γ
1+ γ

∣∣∣∣2 < 1+ |a(z)|2
∣∣∣∣ γ
1+ γ

∣∣∣∣2 .
It yields that ∣∣∣∣a(z)+ γ

1+ γ

∣∣∣∣2 < ∣∣∣∣1+a(z)
γ

1+ γ

∣∣∣∣2 .
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Evidently,

∣∣∣∧a(z)∣∣∣=
∣∣∣∣∣∣∣∣

a(z)+
γ

1+ γ

1+a(z)
γ

1+ γ

∣∣∣∣∣∣∣∣< 1,

and hence the function F(z) = f (z)| f (z)|2γ is logharmonic with respect to
∧

a(z). Now

F(z)= f (z)| f (z)|2γ = f 1+γ(z) f γ
(z)= z|z|2γh1+γ(z)gγ(z)hγ(z)g1+γ(z)= z|z|2γH(z)G(z),

where H(z) = h1+γ(z)gγ(z), and G(z) = hγ(z)g1+γ(z).

Consider the analytic function

Ψ(z) = zH(z)/(G(z))e2iα
= zh1+γ(z)gγ(z)/(hγ(z)g1+γ(z))e2iα

.

It is evident that Ψ(0) = 0 and Ψ′(0) = 1. Furthermore,

e−iα zΨ′(z)
Ψ(z)

= e−iα

(
1+(1+ γ)

zh′(z)
h(z)

+ γ
zg′(z)
g(z)

− e2iα
(

γ
zh′(z)
h(z)

+(1+ γ)
zg′(z)
g(z)

))

= e−iα
(

1+
(
(1+ γ)− γe2iα)zh′(z)

h(z)
−
(
(1+ γ)e2iα − γ

)zg′(z)
g(z)

)
= e−iα +

(
(1+ γ)e−iα − γeiα)zh′(z)

h(z)
−
(
(1+ γ)eiα − γe−iα)zg′(z)

g(z)
.

Then

Re
(

e−iα zΨ′(z)
Ψ(z)

)
= cosα

(
1+Re

((
(1+ γ)e−iα − γeiα)

cosα
zh′(z)
h(z)

−
(
(1+ γ)eiα − γe−iα)

cosα
zg′(z)
g(z)

))
.

Since

(1+ γ)e−iα − γeiα

cosα
=

(1+ γ − γ)cosα − i(1+ γ + γ)sinα
cosα

= 1+2i Imγ − i(1+2 Reγ) tanα ,

and

(1+ γ)eiα − γe−iα

cosα
=

(1+ γ − γ)cosα + i(1+ γ + γ)sinα
cosα

= 1−2i Imγ + i(1+2 Reγ) tanα ,
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the condition on α ensures that

(1+ γ)e−iα − γeiα

cosα
=

(1+ γ)eiα − γe−iα

cosα
= 1.

Therefore,

Re
(

e−iα zΨ′(z)
Ψ(z)

)
= cosα

(
1+Re

zh′(z)
h(z)

−Re
zg′(z)
g(z)

)
= cosα Re

(
1+

zh′(z)
h(z)

− zg′(z)
g(z)

)
= cosα Re

(
zψ ′(z)
ψ(z)

)
.

Since f ∈ ST Lh, Lemma 4.2 shows that ψ(z) = zh(z)/g(z) ∈ ST , and thus

Re
(

e−iα zΨ′(z)
Ψ(z)

)
> 0.

Hence, Ψ is an α−spirallike analytic function. Then Lemma 4.3 shows that F is an

α−spirallike logharmonic with respect to
∧
a(z).

Corrollary 4.1. Let f (z) = zh(z)g(z) ∈ ST Lh. The function F(z) = f (z)| f (z)|2γ in

Theorem 4.1 is a univalent starlike function if and only if γ >−1/2.

Proof. Since

F(z)= f (z)| f (z)|2γ = f 1+γ(z) f γ
(z)= z|z|2γh1+γ(z)gγ(z)hγ(z)g1+γ(z)= z|z|2γH(z)G(z)

is a univalent logharmonic mapping, where H(z)= h1+γ(z)gγ(z), and G(z)= hγ(z)g1+γ(z),

it follows from Theorem 1.18 that Reγ >−1/2. Further, F in Theorem 4.1 is starlike

implies α = 0. Thus Imγ = 0, that is, γ is real. Hence γ >−1/2.

Conversely, let γ > −1/2 in Theorem 4.1, that is, γ is real. Then tanα = 0. Since

|α|< π/2, it follows that α = 0. Hence F is a univalent starlike function.
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The following result derives a sufficient condition for starlikeness for the product

F(z) = f λ
1 (z) f 1−λ

2 (z).

Theorem 4.2. Let fk(z) = zhk(z)gk(z) ∈ ST Lh (k = 1,2) with respect to the same

a ∈ B0. Then F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, is a univalent starlike logharmonic

mapping with respect to the same a.

Proof. Let µ = ((F)z/F)/(Fz/F). Then

µ =
λ
(
( f1)z

f1

)
+(1−λ )

(
( f2)z

f2

)
λ
( f1)z

f1
+(1−λ )

( f2)z

f2

.

Since

( f1)z

f1
=

(zh1)
′

zh1
,

( f2)z

f2
=

(zh2)
′

zh2
, (4.6)

and (
( f1)z

f1

)
=

g′1
g1

,

(
( f2)z

f2

)
=

g′2
g2

, (4.7)

it follows from (4.4), (4.6) and (4.7) that

µ =

λ
g′1
g1

+(1−λ )
g′2
g2

λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

=
λa

(zh1)
′

zh1
+(1−λ )a

(zh2)
′

zh2

λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

= a.

Thus F is a logharmonic mapping with respect to a.

Now

F(z) = f λ
1 (z) f 1−λ

2 (z) =
(

zh1(z)g1(z)
)λ (

zh2(z)g2(z)
)1−λ

= zhλ
1 (z)h

1−λ
2 (z)gλ

1 (z)g
1−λ
2 (z) := zh(z)g(z),
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where h(z) = hλ
1 (z)h

1−λ
2 (z) and g(z) = gλ

1 (z)g
1−λ
2 (z).

The associated analytic function for F is

ψ(z) =
zh(z)
g(z)

=
zhλ

1 (z)h
1−λ
2 (z)

gλ
1 (z)g

1−λ
2 (z)

=

(
zh1(z)
g1(z)

)λ (zh2(z)
g2(z)

)1−λ
= (ψ1(z))λ (ψ2(z))1−λ .

Then ψ(0) = 0 and ψ ′(0) = 1. By Lemma 4.2, ψk = zhk/gk ∈ ST , and thus

Re
(

zψ ′(z)
ψ(z)

)
= λ Re

(
zψ ′

1(z)
ψ1(z)

)
+(1−λ )Re

(
zψ ′

2(z)
ψ2(z)

)
> 0.

Hence ψ is a univalent starlike analytic function, and now again Lemma 4.2 yields the

desired result.

The following corollary is an immediate consequence of Theorem 4.2.

Corrollary 4.2. Let fk(z) = zhk(z)gk(z) ∈ ST Lh (k = 1,2, . . . ,n) with respect to the

same a ∈ B0. Then F = f λ1
1 f λ2

2 · · · f λn
n is a univalent starlike logharmonic mapping

with respect to the same a, where 0 ≤ λk ≤ 1 and λ1 +λ2 + · · ·+λn = 1.

Sufficient conditions for the product F(z) = f λ
1 (z) f 1−λ

2 (z) to be univalent starlike

logharmonic mapping is obtained in the following result.

Theorem 4.3. Let fk(z) = zhk(z)gk(z) ∈ ST Lh (k = 1,2) with respect to ak ∈ B0.

Suppose also that

Re(1−a1a2)
(zh1)

′

zh1

(
(zh2)

′

zh2

)
≥ 0. (4.8)

Then F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, is a univalent starlike logharmonic mapping.

Proof. The argument is similar to the proof of Theorem 4.2. Let (Fz/F)µ(z) = (Fz/F).
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In view of (4.4), it is follows that

|µ(z)|=

∣∣∣∣∣∣∣∣
λ

g′1
g1

+(1−λ )
g′2
g2

λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
λa1

(zh1)
′

zh1
+(1−λ )a2

(zh2)
′

zh2

λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

∣∣∣∣∣∣∣∣ . (4.9)

By assumption,

∣∣∣∣ λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

∣∣∣∣2 − ∣∣∣∣λa1
(zh1)

′

zh1
+(1−λ )a2

(zh2)
′

zh2

∣∣∣∣2
= λ 2

∣∣∣∣(zh1)
′

zh1

∣∣∣∣2 +(1−λ )2
∣∣∣∣(zh2)

′

zh2

∣∣∣∣2 +2λ (1−λ )Re

(
(zh1)

′

zh1

(
(zh2)

′

zh2

))

−λ 2|a1|2
∣∣∣∣(zh1)

′

zh1

∣∣∣∣2 − (1−λ )2|a2|2
∣∣∣∣(zh2)

′

zh2

∣∣∣∣2
−2λ (1−λ )Re

(
a1(zh1)

′

zh1

(
a2(zh2)

′

zh2

))

= λ 2(1−|a1|2)
∣∣∣∣(zh1)

′

zh1

∣∣∣∣2 +(1−λ )2(1−|a2|2)
∣∣∣∣(zh2)

′

zh2

∣∣∣∣2
+2λ (1−λ ) Re

(
(1−a1a2)

(zh1)
′

zh1

(
(zh2)

′

zh2

))
.

Since |ak|< 1, it is evident from (4.8) that

∣∣∣∣ λ
(zh1)

′

zh1
+(1−λ )

(zh2)
′

zh2

∣∣∣∣2 − ∣∣∣∣λa1
(zh1)

′

zh1
+(1−λ )a2

(zh2)
′

zh2

∣∣∣∣2 > 0.

Thus |µ(z)|< 1, and hence F is logharmonic mapping with respect to µ.

The associated analytic function for F is ψ(z)= (zhλ
1 h1−λ

2 )/(gλ
1 g1−λ

2 ). Then ψ(0)=

0 and ψ ′(0) = 1. It follows from Lemma 4.2 that ψk = zhk/gk ∈ ST , and thus

Re
(

zψ ′(z)
ψ(z)

)
= λ Re

(
zψ ′

1(z)
ψ1(z)

)
+(1−λ )Re

(
zψ ′

2(z)
ψ2(z)

)
> 0.
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Hence ψ is a univalent starlike analytic function. It is now evident from Lemma 4.2

that F is a univalent starlike logharmonic mapping.

Another sufficient conditions for starlikeness of the product F(z) = f λ
1 (z) f 1−λ

2 (z)

is derived in the following result.

Theorem 4.4. Let fk = zhkgk ∈ SLh (k = 1,2) with respect to ak ∈ B0 satisfying

zhkgk = z. Then F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, is a univalent starlike logharmonic

mapping.

Proof. Since

(zhk(z))′

zhk(z)
+

g′k(z)
gk(z)

=
1
z
,

it follows from (4.4) that

(zhk(z))′

zhk(z)
+ak(z)

(
(zhk(z))′

zhk(z)

)
=

1
z
.

Equivalently,

(zhk(z))′

zhk(z)
=

1
z(1+ak(z))

. (4.10)

Now F(z) = f λ
1 (z) f 1−λ

2 (z), then (4.9) and (4.10) readily yield

|µ(z)|=

∣∣∣∣∣∣∣∣
λa1

z(1+a1)
+

(1−λ )a2

z(1+a2)

λ
z(1+a1)

+
(1−λ )

z(1+a2)

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣

λa1(1+a2)+(1−λ )a2(1+a1)
z(1+a1)(1+a2)

λ (1+a2)+(1−λ )(1+a1)
z(1+a1)(1+a2)

∣∣∣∣∣∣
=

∣∣∣∣λa1 +(1−λ )a2 +a1a2

1+(1−λ )a1 +λa2

∣∣∣∣ .
Evidently, |µ(z)|< 1 is equivalent to

K(λ ) = |1+(1−λ )a1 +λa2|2 −|λa1 +(1−λ )a2 +a1a2|2 > 0.
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A further computation shows that

K(λ ) = (1+(1−λ )a1 +λa2)(1+(1−λ )a1 +λa2)

− (λa1 +(1−λ )a2 +a1a2)(λa1 +(1−λ )a2 +a1a2)

= 1+(1−λ )a1 +λa2 +(1−λ )a1 +(1−λ )2|a1|2

+λ (1−λ )a1a2 +λa2 +λ (1−λ )a1a2 +λ 2|a2|2

−
(
λ 2|a1|2 +λ (1−λ )a1a2 +λ |a1|2a2 +λ (1−λ )a1a2 +(1−λ )2|a2|2

+(1−λ )a1|a2|2 +λ |a1|2a2 +(1−λ )|a2|2a1 + |a1|2|a2|2
)

= 1+(1−λ )(a1 +a1)+λ (a2 +a2)+(1−2λ )(|a1|2 −|a2|2)

− (1−λ )|a2|2(a1 +a1)−λ |a1|2(a2 +a2)−|a1|2|a2|2

= 1+2(1−λ )Rea1 +2λ Rea2 −2λ |a1|2 +2λ |a2|2 −2(1−λ )|a2|2 Rea1

−2λ |a1|2 Rea2 −|a1|2|a2|2 + |a1|2 −|a2|2

= 2λ Rea2 −2λ |a1|2 Rea2 −2λ Rea1 +2λ |a2|2 Rea1 −2λ |a1|2 +2λ |a2|2

+
(
1−|a2|2

)
(1+2Rea1 + |a1|2)

= 2λ
((

1−|a1|2
)

Rea2 −
(
1−|a2|2

)
Rea1 −

(
|a1|2 −|a2|2

))
+
(
1−|a2|2

)
|1+a1|2.

It is evident that K is a continuous monotonic function of λ in the interval [0,1]. Also,

K(0) =
(
1−|a2|2

)
|1+a1|2 > 0,

and

K(1) = 2
(
(1−|a1|2)Rea2 − (1−|a2|2)Rea1 + |a2|2 −|a1|2

)
+(1−|a2|2)|1+a1|2

= 2Rea2 −2|a1|2 Rea2 −2Rea1 +2|a2|2 Rea1 +2|a2|2 −2|a1|2

+(1−|a2|2)(1+2Rea1 + |a1|2)

= 1+2Rea2 + |a2|2 −|a1|2 −2|a1|2 Rea2 −|a1|2|a2|2
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= (1−|a1|2)(1+2Rea2 + |a2|2)

=
(
1−|a1|2

)
|1+a2|2 > 0.

Thus K(λ )> 0 for all λ ∈ [0,1], and hence F is logharmonic with respect to µ.

Let ψk(z) = zhk(z)/gk(z). Then ψk(0) = 0 and ψ ′
k(0) = 1. In view of (4.4) and

(4.10), it is clear that

Re
(

zψ ′
k(z)

ψk(z)

)
= Re

(
z(zhk(z))′

zhk(z)
−

zg′k(z)
gk(z)

)
= Re

(
z(zhk(z))′

zhk(z)
−ak

z(zhk(z))′

zhk(z)

)
= Re

(
(1−ak(z))

z(zhk(z))′

zhk(z)

)
= Re

(
1−ak(z)
1+ak(z)

)
=

1−|ak(z)|2

|1+ak(z)|2
> 0.

Hence ψk is a univalent starlike function.

The associated analytic function for F is given by ψ(z) = (zhλ
1 h1−λ

2 )/(gλ
1 g1−λ

2 ).

Then ψ(0) = 0 and ψ ′(0) = 1. Further,

Re
(

zψ ′(z)
ψ(z)

)
= λ Re

(
zψ ′

1(z)
ψ1(z)

)
+(1−λ ) Re

(
zψ ′

2(z)
ψ2(z)

)
> 0.

Thus ψ is a univalent starlike analytic function, and therefore Lemma 4.2 yields the

required result.

The proof of Theorem 4.4 gives the following result.

Corrollary 4.3. Let fk = zhkgk ∈ SLh (k = 1,2) with respect to ak ∈ B0, and suppose

that zhkgk = z. Then ψk(z) = z(hk(z))2 ∈ ST .

Proof. it follows from (4.10) that

(hk(z))′

hk(z)
+

1
z
=

1
z(1+ak(z))

.
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Then

z(hk(z))′

hk(z)
=

1
1+ak(z)

−1 =
−ak(z)

1+ak(z)
. (4.11)

Since

zψ ′
k(z)

ψk(z)
= 1+2

z(hk(z))′

hk(z)
,

it follows from (4.11) that

Re
(

zψ ′
k(z)

ψk(z)

)
= 1+2Re

(
z(hk(z))′

hk(z)

)
= 1−2Re

(
ak(z)

1+ak(z)

)
=Re

(
1−ak(z)
1+ak(z)

)
> 0.

Thus ψk ∈ ST .

4.3 Examples

This section gives several illustrative examples.

Example 4.1. Let

f (z) = z
(

1− z
1− z

)
.

The associated analytic function for f is ψ(z) = z/(1 − z)2. Evidently, ψ(0) = 0,

ψ ′(0) = 1, and zψ ′(z)/ψ(z) = (1 + z)/(1 − z). Thus ψ is a univalent starlike ana-

lytic function. Then by Lemma 4.2, f is a univalent starlike logharmonic mapping

with respect to

a(z) =

(
fz(z)
f (z)

)
fz(z)
f (z)

=

( −1
1−z

)
1

z(1−z)

=−z.

Now Theorem 4.1 shows that the function F(z) = f (z)| f (z)|2γ is an α−spirallike

logharmonic mapping with respect to

∧
a(z) =

1+ γ
1+ γ

−z+
γ

1+ γ

1− γ
1+ γ

z
,
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where α = tan−1(2 Imγ/(1+ 2 Reγ)). In particular, if γ = i, then α = tan−1(2) =

0.352π , and
∧
a(z) =

1− i
1+ i

(
−z− i

1−i

1− iz
1+i

)
=

−i− (1− i)z
1+ i− iz

.

The image of circles in the unit disk under f is shown in Figure 4.1, and Figure 4.2

shows the image of the radial slits in D by F .

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.1: Graph of circles in D by f (z) =
z(1− z)

1− z
.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.2: Graph of radial slits by F(z) = f (z)| f (z)|2i, f (z) =
z(1− z)

1− z
.
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Example 4.2. Consider the functions

f1(z) = z
(

1− z
1− z

)
exp
{

Re
4z

1− z

}
, and f2(z) = z

(
1+ z
1+ z

)
,

where

h1(z) =
exp
{ 2z

1−z

}
1− z

, and g1(z) = exp
{

2z
1− z

}
(1− z).

It is evident that ψ1(z) = z/(1− z)2. Then ψ1(0) = 0, ψ ′
1(0) = 1, and zψ ′

1(z)/ψ1(z) =

(1+ z)/(1− z). Thus ψ1 is a univalent starlike analytic function, and it follows from

Lemma 4.2 that f1 is a univalent starlike logharmonic mapping with respect to

a1(z) =

(
( f1)z

f1

)
( f1)z

f1

=

(
−1
1−z +

2
(1−z)2

)
1
z +

1
1−z +

2
(1−z)2

=

(
1+z

(1−z)2

)
1+z

z(1−z)2

= z.

Further, ψ2(z) = z/(1+ z)2. Then ψ2(0) = 0, ψ ′
2(0) = 1, and zψ ′

2(z)/ψ2(z) = (1−

z)/(1+z). Thus ψ2 is a univalent starlike analytic function, and it follows from Lemma

4.2 that f2 is a univalent starlike logharmonic mapping with respect to

a2(z) =

(
( f2)z

f2

)
( f2)z

f2

=

( 1
1+z

)
1
z −

1
1+z

=
1

1+z
1

z(1+z)

= z.

Now Theorem 4.2 shows that F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, is a univalent

starlike logharmonic mapping with respect to a(z) = z.
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The image of F is shown in Figure 4.3 for λ = 1/3.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.3: Graph of circles in D by F(z) =z
(

1− z
1− z

exp
{

Re
4z

1− z

})1/3(1+ z
1+ z

)2/3

.

Example 4.3. Let

f1(z) = z
(

1− z
1− z

)
, and f2(z) = z

(
1− z
1− z

)
exp
{

Re
4z

1− z

}
.

Simple calculations show that f1 and f2 are respectively starlike logharmonic with

dilatations a1(z)=−z and a2(z)= z. Also, zh1(z)= z/(1−z), and zh2(z)= zexp{2z/(1− z)}

/(1− z). Then

(zh1(z))′

zh1(z)
=

1
z(1− z)

, and
(zh2(z))′

zh2(z)
=

1+ z
z(1− z)2 .

Since

Re

(
(1−a1a2)

(zh1)
′

(zh1)

(
(zh2)

′

(zh2)

))
= Re

(
(1+ |z|2) 1

z(1− z)
1+ z

z(1− z)2

)

=
(1+ |z|2)
|z|2|1− z|2

Re
1+ z
1− z

> 0,

the conditions of Theorem 4.3 are satisfied and thus F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1
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is a univalent starlike logharmonic mapping with respect to

µ(z) =
−zλ

(zh1(z))′

(zh1(z))
+(1−λ )z

(zh2(z))′

(zh2(z))

λ
(zh1(z))′

(zh1(z))
+(1−λ )

(zh2(z))′

(zh2(z))

=

−λ z
z(1−z) +

(1−λ )z(1+z)
z(1−z)2

λ
z(1−z) +

(1−λ )(1+z)
z(1−z)2

=
z((1−2λ )+ z)
1+(1−2λ )z

.

The image of circles in D under F for λ = 1/3 is shown in Figure 4.4.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.4: Graph of F(z) = z
(

1− z
1− z

)1/3(1− z
1− z

exp
{

Re
4z

1− z

})2/3

.

Example 4.4. Let f1(z) = zh1(z)g1(z), where zh1(z)g1(z) = z, and a1(z) = z. Then

(4.4) shows that

h1(z) =
1

1+ z
, and g1(z) = 1+ z.

Thus

f1(z) =
z(1+ z)

1+ z
.

Further, let f2(z) = zh2(z)g2(z), where zh2(z)g2(z) = z, and a2(z) = z2. Then (4.4)

shows that

h2(z) =
1√

1+ z2
, and g2(z) =

√
1+ z2.
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In this case,

f2(z) =
z
√

1+ z2
√

1+ z2
.

It is shown in Example 4.2 that f1 is a univalent starlike logharmonic mapping with

respect to z.

The associated analytic function for f2 is ψ2(z) = z/(1 + z2). Then ψ2(0) = 0,

ψ ′
2(0) = 1 and zψ ′

2(z)/ψ2(z) = (1− z2)/(1+ z2). Thus ψ2 is a univalent starlike an-

alytic function, Lemma 4.2 shows that f2 is a univalent starlike logharmonic mapping

with respect to z2.

Now f1 and f2 satisfy the conditions of Theorem 4.4, and thus F(z)= f λ
1 (z) f 1−λ

2 (z),

0 ≤ λ ≤ 1 is a univalent starlike logharmonic mapping.

The image of D under F for λ = 1/3 is shown in Figure 4.5.
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0.0

0.5

1.0

Figure 4.5: Graph of F(z) = z
(

1+ z
1+ z

)1/3
(√

1+ z2
√

1+ z2

)2/3

.
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CHAPTER 5

ON ROTATIONALLY TYPICALLY REAL LOGHARMONIC
MAPPINGS

5.1 Introduction

Recall that B(D) is the set of self-maps a ∈ H (D), and B0 is its subclass consisting of

a ∈ B with a(0) = 0. A logharmonic mapping in D with respect to a is a solution of the

nonlinear elliptic partial differential equation

(
fz(z)
f (z)

)
= a(z)

fz(z)
f (z)

, (5.1)

where the second dilatation function a lies in B.

Recall that SLh is the class consisting of univalent logharmonic mappings f in D

with respect to some a ∈ B0 of the form

f (z) = zh(z)g(z),

normalized by h(0) = 1 = g(0), and h and g are nonvanishing analytic functions in D.

In addition, recall that ST Lh is the subclass of SLh consisting of all starlike loghar-

monic mappings.

An analytic function φ in D is said to be typically real if φ(z) is real whenever z

is real and nonreal elsewhere. Similarly, a logharmonic mapping f in D is said to be

typically real if f (z) is real whenever z is real and nonreal elsewhere. Typically real

logharmonic mappings have been studied by Abdulhadi in [2].
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Let HG denote the class consisting of functions φ(z) = zh(z)g(z), where h and g

are in H (D), and normalized by h(0) = 1 = g(0). This chapter treats the class T Lh

of all logharmonic mappings f (z) = zh(z)g(z) satisfy φ(z) = zh(z)g(z) ∈ HG and is

analytically typically real in D. If f1(z) = zh1(z)g1(z) and f2(z) = zh2(z)g2(z) are

logharmonic with respect to the same a ∈ B, then f (z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1 is

logharmonic with respect to a. It is evident that mappings φ(z) = zh(z)g(z) in the class

HG are rotations of the corresponding logharmonic mappings f (z) = zh(z)g(z).

In Section 5.2, mappings f in T Lh are shown to admit an integral representation.

Every mapping f ∈ T Lh is shown to be a product of two particular logharmonic map-

pings. The radius of starlikeness for this class, as well as an upper estimate for its

arclength are determined.

In Section 5.3, we explore conditions on the dilatation a that would ensure univalent

logharmonic mappings f (z) = zh(z)g(z) ∈ T Lh necessarily satisfies f (D) is a domain

symmetric with respect to the real axis. Sufficient conditions for univalent logharmonic

mappings to be in the class T Lh are determined.

In Section 5.4, an integral representation and the radius of starlikeness for a sub-

class of T Lh are obtained.

The following lemmas are needed to establish the results in subsequent sections.

Lemma 5.1. If f has real coefficients, then f (D) is a domain symmetric with respect

to the real axis.

Proof. Let ( f (D))∗ = {w : w ∈ f (D)}, and let w = f (z) ∈ f (D). Since D is symmetric

and f has real coefficients, it follows that f (z) = f (z) ∈ f (D), that is, w ∈ f (D). Thus

w ∈ ( f (D))∗. Hence f (D)⊂ ( f (D))∗.
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Conversely, let w ∈ ( f (D))∗. Then w ∈ f (D), that is, w = f (z) for some z ∈ D.

Since D is symmetric and f has real coefficients, it follows that f (z) = f (z) ∈ f (D),

that is, w = w ∈ f (D), and thus ( f (D))∗ ⊂ f (D). Therefore, ( f (D))∗ = f (D), that is,

f (D) is a domain symmetric with respect to the real axis.

Lemma 5.2. [8, Lemma 2.4] Let Ω1 be a bounded strictly starlike domain of C with

respect to the origin, that is, each radial ray from 0 intersects the boundary ∂Ω of

Ω = f (D) in exactly one point of C. Suppose that

f j(z) = z|z|β h j(z)g j(z) z ∈ D, h j(0)> 0, g j(0) = 1, j = 1,2

are two univalent logharmonic mappings with respect to the same a satisfying f1(D) =

Ω1, and f2(D)⊂ f1(D). Then h2(0)≤ h1(0), and equality holds if and only if f1 = f2.

Lemma 5.3. (Theorem 1.19) Let f (z) = zh(z)g(z) be logharmonic in D with 0 /∈

hg(D). Then f ∈ ST Lh(α) if and only if ψ(z) = zh(z)/g(z) ∈ ST (α) for 0 ≤ α < 1.

Lemma 5.4. [133] Let f ∈P (α). Then

∣∣∣∣zp′(z)
p(z)

∣∣∣∣≤ 2r(1−α)

(1− r)(1+(1−2α)r)
, |z| ≤ r.

Recall that PR is the class consisting of all normalized analytic functions with

positive real part and with real coefficients in D.

Lemma 5.5. (Theorem 1.13) A function φ ∈ T if and only if there exists a function

p ∈ PR such that φ(z) = zp(z)/(1− z2).
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5.2 An Integral Representation and Radius of Starlikeness

The first result is to establish an integral representation for logharmonic mappings.

Lemma 5.6. Let f (z) = zh(z)g(z) be a logharmonic mapping with respect to a ∈ B,

and let φ(z) = zh(z)g(z), where h,g ∈ H (D). Then

f (z) = φ(z)exp
(
−2i Im

∫ z

0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds
)
.

Proof. Since

f (z) = φ(z)
g(z)
g(z)

, (5.2)

taking the logarithmic differentiation on (5.2) gives

fz(z)
f (z)

=
φ ′(z)
φ(z)

− g′(z)
g(z)

, (5.3)

and (
fz(z)
f (z)

)
=

(
(g(z))z

g(z)

)
=

g′(z)
g(z)

. (5.4)

Substituting the equations (5.3) and (5.4) into (5.1) yields

g′(z)
g(z)

= a(z)
(

φ ′(z)
φ(z)

− g′(z)
g(z)

)
.

Thus

g′(z)
g(z)

=
a(z)

1+a(z)
φ ′(z)
φ(z)

, (5.5)

which leads to

g(z) = exp
∫ z

0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds. (5.6)
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Substituting the equation (5.6) into (5.2) yields

f (z) = φ(z)
exp

∫ z
0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds

exp
∫ z

0
a(s)

1+a(s)
φ ′(s)
φ(s)

ds

= φ(z)exp

(∫ z

0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds−
∫ z

0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds

)

= φ(z)exp
(
−2i Im

∫ z

0

a(s)
1+a(s)

φ ′(s)
φ(s)

ds
)
.

Let T Lh0 denote the subclass of T Lh consisting of logharmonic mappings f in D

with respect to a ∈ B of the form f (z) = zh(z)g(z) and satisfying φ(z) = zh(z)g(z) =

z/(1− z2). It follows from Lemma 5.6 that

f (z) =
z

1− z2 exp
(
−2i Im

∫ z

0

a(s)
1+a(s)

1+ s2

s(1− s2)
ds
)
. (5.7)

Denote by PLh the class consisting of logharmonic mappings w with respect to

a ∈ B of the form w(z) = h(z)g(z), where h and g are analytic in D, normalized by

h(0) = g(0) = 1 and satisfy p(z) = h(z)g(z) ∈ PR. Similar to the proof of Lemma 5.6,

it can readily be established that

w(z) = p(z)exp
(
−2i Im

∫ z

0

a(s)
1+a(s)

p′(s)
p(s)

ds
)
. (5.8)

It is evident that the class PLh contains the class PR.

The following result gives a representation formula for functions in the class T Lh

in terms of functions in T Lh0 and PLh.

Theorem 5.1. A function f belongs to T Lh with respect to the same a ∈ B if and only
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if f (z) = F(z)R(z) for some F ∈ T Lh0 and R ∈ PLh with respect to the same a ∈ B.

Proof. Let f (z) = zh(z)g(z) ∈ T Lh be a logharmonic with respect to a ∈ B. It fol-

lows from Lemma 5.5 that every typically real analytic function φ has the form (1−

z2)φ(z) = zp(z) for some p ∈ PR. Thus Lemma 5.6 yields

f (z) =
zp(z)
1− z2 exp

(
−2iIm

∫ z

0

a(s)
1+a(s)

(
1+ s2

s(1− s2)
+

p′(s)
p(s)

)
ds
)

=

(
z

1− z2 exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

1+ s2

s(1− s2)
ds
))

×
(

p(z)exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

p′(s)
p(s)

ds
))

:= F(z)R(z),

where

F(z) =
z

1− z2 exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

1+ s2

s(1− s2)
ds
)
∈ T Lh0,

and

R(z) = p(z)exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

p′(s)
p(s)

ds
)
∈ PLh.

Conversely, let f (z) = F(z)R(z) where F ∈ T Lh0 and R ∈ PLh. Since F and R are

logharmonic with respect to a ∈ B, it follows from Proposition 1.3 in Section 1.8 that

f is logharmonic with respect to a ∈ B. Further, it is evident from (5.7) and (5.8) that

f (z) = F(z)R(z) =
z

1− z2 exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

1+ s2

s(1− s2)
ds
)

× p(z)exp
(
−2iIm

∫ z

0

a(s)
1+a(s)

p′(s)
p(s)

ds
)

=
zp(z)
1− z2 exp

(
−2iIm

∫ z

0

a(s)
1+a(s)

(
1+ s2

s(1− s2)
+

p′(s)
p(s)

)
ds

)

=
zp(z)
1− z2

exp
∫ z

0
a(s)

1+a(s)

(
1+s2

s(1−s2)
+

p′(s)
p(s)

)
ds

exp
∫ z

0
a(s)

1+a(s)

(
1+s2

s(1−s2)
+

p′(s)
p(s)

)
ds
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= zh(z)g(z),

where

p(z) = h(z)(1− z2)exp
∫ z

0

a(s)
1+a(s)

(
1+ s2

s(1− s2)
+

p′(s)
p(s)

)
ds,

and

g(z) = exp
∫ z

0

a(s)
1+a(s)

(
1+ s2

s(1− s2)
+

p′(s)
p(s)

)
ds.

Thus φ(z) = zh(z)g(z) = zp(z)/(1− z2), p ∈ PR. It follows from Lemma 5.5 that

φ ∈ T, and hence f ∈ T Lh.

Corrollary 5.1. A function f belongs to T Lh with respect to the same a ∈ B if and only

if F2/ f ∈ T Lh for some F ∈ T Lh0 with respect to the same a ∈ B ,and f (z) = F(z)R(z)

for some R ∈ PLh with respect to the same a ∈ B.

Proof. Let f (z) = F(z)R(z) ∈ T Lh, where R = HG ∈ PLh. Since

(( 1
R

)
z

1
R

)
=

( −(R)z
R2

1
R

)
=

(
−(R)z

R

)
=

−a(R)z

R
= a

( 1
R

)
z

1
R

,

it follows that 1/R is logharmonic with respect to the same a. Furthermore, 1/R =

1/(HG) = (1/H)(1/G), and

Re
(

1
HG

)
= Re

(
HG
|HG|2

)
=

Re (HG)

|HG|2
> 0.

Also, 1/R has real coefficients. Thus the function 1/R is in the class PLh. Hence

Theorem 5.1 shows that F/R = F2/ f ∈ T Lh.

Conversely, let F2/ f ∈ T Lh. Then by Theorem 5.1, F2/ f =F1R1, where F1 ∈ T Lh0

and R1 ∈ PLh. Now F2/F1 ∈ T Lh0, and 1/R1 ∈ PLh. Thus Theorem 5.1 shows that

f = F2/(F1R1) ∈ T Lh.
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Next, the radius of starlikeness of mappings f ∈ T Lh is determined.

Theorem 5.2. Let f (z) = zh(z)g(z) ∈ T Lh. Then f maps the disk |z| < 3−2
√

2 onto

a starlike domain.

Proof. A function f maps the circle |z|= r onto a starlike curve provided

∂
∂θ

arg f (reiθ ) = Re
z fz − z fz

f
> 0.

Let φ(z) = zh(z)g(z). In view of (5.3), (5.4) and (5.5), it is evident that

Re
z fz − z fz

f
= Re

(
zφ ′(z)
φ(z)

− zg′(z)
g(z)

−
(zg′(z)

g(z)

))

= Re
(

zφ ′(z)
φ(z)

− 2zg′(z)
g(z)

)
= Re

(
zφ ′(z)
φ(z)

− 2a(z)
1+a(z)

zφ ′(z)
φ(z)

)
= Re

(
1−a(z)
1+a(z)

zφ ′(z)
φ(z)

)

for some a ∈ B. Kirwan [68] has shown that the radius of starlikeness for typically real

analytic functions φ is ρ0 =
√

2−1.

Now, let

q(z) =
1−a(z)
1+a(z)

zφ ′(z)
φ(z)

,

and σ(z) = ρ0z, and whence q(σ(z)) is subordinate to ((1+ z)/(1− z))2 in D.

Writing p(z) = (1+ z)/(1− z), it follows from [48, p. 84] that

∣∣∣∣p(z)− 1+ r2

1− r2

∣∣∣∣≤ 2r
1− r2 .

Then |arg(p(z))| ≤ π/4 for 2r/(1+ r2)≤ 1/
√

2, that is, |arg((1+ z)/(1− z))| ≤ π/4

provided |z| ≤ ρ0, where ρ0 is the root of the equation r2 − 2
√

2r+ 1 = 0. It follows
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that |arg((1+ z)/(1− z))2|< π/2 for |z|< ρ0. Therefore, Re q(σ(z))> 0 for |z|< ρ0,

which is equivalent to Re q(w) > 0 for |w| = |ρ0z| < ρ2
0 . Hence f (z) = zh(z)g(z) is

starlike in the disk |z|< ρ2
0 = 3−2

√
2.

In the next result, an upper estimate is established for arclength of all mappings f

in the class T Lh.

Theorem 5.3. Let f (z) = zh(z)g(z) ∈ T Lh be a logharmonic mapping with respect to

a ∈ B, and | f (z)| ≤ M(r), 0 < r < 1. Then an upper bound for its arclength L(r) is

given by

L(r)≤ 4πM(r)
1+ r+2r2 −2r3

(1− r)(1− r2)
.

Proof. Let Cr denote the image of the circle |z| = r < 1 under the mapping w = f (z).

Then

L(r) =
∫

Cr

|d f | =
∫ 2π

0
|z fz − z fz|dθ

≤ M(r)
∫ 2π

0

∣∣∣∣z fz − z fz

f

∣∣∣∣dθ .

Since φ(z) = zh(z)g(z) = zp(z)/(1− z2) for some p ∈ PR, it follows from (5.3),

(5.4) and (5.5) that

z fz − z fz

f
=

zφ ′(z)
φ(z)

− zg′(z)
g(z)

−
(

zg′(z)
g(z)

)
=

zφ ′(z)
φ(z)

−2Re
(

zg′(z)
g(z)

)
=

zφ ′(z)
φ(z)

−2Re
(

a(z)
1+a(z)

zφ ′(z)
φ(z)

)
= Re

(
1−a(z)
1+a(z)

zφ ′(z)
φ(z)

)
+ i Im

(
zφ ′(z)
φ(z)

)
= Re

(
1−a(z)
1+a(z)

(
zp′(z)
p(z)

+
1+ z2

1− z2

))
+ i Im

(
zp′(z)
p(z)

+
1+ z2

1− z2

)
.
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Therefore,

L(r)
M(r)

≤
∫ 2π

0

∣∣∣∣Re
(

1−a(z)
1+a(z)

(
zp′(z)
p(z)

))∣∣∣∣dθ

+
∫ 2π

0

∣∣∣∣Re
(

1−a(z)
1+a(z)

(
1+ z2

1− z2

))∣∣∣∣dθ

+
∫ 2π

0

∣∣∣∣Im zp′(z)
p(z)

∣∣∣∣dθ +
∫ 2π

0

∣∣∣∣Im 1+ z2

1− z2

∣∣∣∣dθ ,

that is,

L(r)≤ M(r)(I1 + I2 + I3 + I4) . (5.9)

The function p is subordinate to (1+z)/(1−z), and thus zp′(z)/p(z)= 2zw′(z)/(1−

w2(z)) for some analytic self-map w of D with w(0) = 0. It also follows from the

Schwarz-Pick inequality that [123, p.243]

|w′(z)|
1−|w(z)|2

≤ 1
1−|z|2

.

Thus

I1 =
∫ 2π

0

∣∣∣∣Re
(

1−a(z)
1+a(z)

(
zp′(z)
p(z)

))∣∣∣∣dθ ≤
∫ 2π

0

∣∣∣∣1+a(z)
1−a(z)

∣∣∣∣ ∣∣∣∣zp′(z)
p(z)

∣∣∣∣dθ

≤
∫ 2π

0

∣∣∣∣1+ z
1− z

∣∣∣∣ ∣∣∣∣ 2zw′(z)
1−w2(z)

∣∣∣∣dθ ≤ 1+ |z|
1−|z|

∫ 2π

0

2|z||w′(z)|
1−|w(z)|2

dθ

≤ 1+ |z|
1−|z|

∫ 2π

0

2|z|
1−|z|2

dθ =
4π|z|(1+ |z|)

(1−|z|)(1−|z|2)
=

4πr
(1− r)2 .

Since [(1−a(z)/(1+a(z))][(1+ z2)/(1− z2)] is subordinate to ((1+ z)/(1− z))2,

it follows from Parseval’s theorem that

I2 =
∫ 2π

0

∣∣∣∣Re
(

1−a(z)
1+a(z)

(
1+ z2

1− z2

))∣∣∣∣dθ

≤
∫ 2π

0

∣∣∣∣∣
(

1+ z
1− z

)2
∣∣∣∣∣dθ ≤ 2π

(
1+4

∞

∑
n=1

r2n

)

= 2π
(

1+
4r2

1− r2

)
= 2π

(
1+3r2

1− r2

)
.
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Also,

I3 =
∫ 2π

0

∣∣∣∣ Im
zp′(z)
p(z)

∣∣∣∣dθ ≤
∫ 2π

0

∣∣∣∣zp′(z)
p(z)

∣∣∣∣dθ

≤
∫ 2π

0

∣∣∣∣ 2zw′(z)
1−w2(z)

∣∣∣∣dθ ≤
∫ 2π

0

2|z|
1−|z|2

dθ =
4πr

1− r2 .

Finally,

I4 =
∫ 2π

0

∣∣∣∣Im 1+ z2

1− z2

∣∣∣∣dθ ≤
∫ 2π

0

∣∣∣∣1+ z2

1− z2

∣∣∣∣dθ

≤ 2π
1+ |z|2

1−|z|2
= 2π

1+ r2

1− r2 .

Substituting the bounds for I1, I2, I3 and I4 into (5.9) yields

L(r)≤ 2πM(r)
(

2r
(1− r)2 +

2+2r+4r2

1− r2

)
= 4πM(r)

1+ r+2r2 −2r3

(1− r)(1− r2)
.

5.3 Univalent Logharmonic Mappings in The Class T Lh

For an analytic univalent functions f (z) = z+∑∞
n=2 anzn, it is known that f is typically

real if and only if the image f (D) is a domain symmetric with respect to the real axis.

However, it is not true that a univalent logharmonic mapping F(z) = zh(z)g(z)∈ T Lh if

and only if the image of F(D) is a symmetric domain with respect to the real axis. The

following example shows a univalent logharmonic mapping F(z) = zh(z)g(z) ∈ T Lh

but F(D) is not a symmetric domain.

140



Example 5.1. Let

F(z) = zh(z)g(z) = z
(

1+
iz
3

)(
1+

iz
3

)
.

It is evident that F(0) = 0, and h(0) = g(0) = 1, where h(z) = 1+ iz/3 and g(z) =

1− iz/3.

Since

Fz(z)
F(z)

=
3+2iz

z(3+ iz)
, and

(
Fz(z)
F(z)

)
=

(
i

3+ iz

)
=

−i
3− iz

,

it follows that

|a(z)|=

∣∣∣∣∣∣∣
(

Fz(z)
F(z)

)
Fz(z)
F(z)

∣∣∣∣∣∣∣ =
∣∣∣∣ −iz(3+ iz)
(3− iz)(3+2iz)

∣∣∣∣ .
Furthermore,

|z|2|3+ iz|2 < |3− iz|2|3+2iz|2,

and thus |a(z)|< 1. Hence F is logharmonic in D with respect to a ∈ B0.

Let

ψ(z) =
zh(z)
g(z)

=
z(3+ iz)
(3− iz)

.

Then ψ(0) = 0, ψ ′(0) = 1, and

zψ ′(z)
ψ(z)

=
z2 +6iz+9

z2 +9
.

Thus for z = reiθ ∈ D,

Re
(

zψ ′(z)
ψ(z)

)
=

(9− r2)2 +36r2 cos2 θ −6r(9− r2)sinθ
(9+ r2 cos2θ)2 + r4 sin2 2θ

>
10

(9+ r2 cos2θ)2 + r4 sin2 2θ
> 0.

Hence ψ ∈ ST . It follows from Lemma 5.3 that F is a univalent starlike logharmonic
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mapping.

Next, let φ(z) = zh(z)g(z) = z
(
1+ z2/9

)
. Evidently, for z = x+ iy

Im(φ(z)) =
y
9
(
3x2 +9− y2) .

Then

Im(z)Im(φ(z)) = y2
(

3x2 +(9− y2)

9

)
> 0

whenever Im (z) ̸= 0. Hence φ is typically real, and thus F ∈ T Lh.

A simple calculation shows that

F(z) = z
(

1+
2i
3

Re z− |z|2

9

)
.

With

I(t) = Im F(eit) =
2cos2 t

3
+

8
9

sin t,

then

I′(t) =
4
3

cos t
(

2
3
− sin t

)
.

It follows that I′(t) = 0, whence t =±π/2 or t = sin−1(2/3). Thus

M = max
|t|≤π

I(t) = I
(

sin−1 2
3

)
=

2
3

(√
5

3

)2

+
16
27

=
26
27

,

and

m = min
|t|≤π

I(t) = I
(
−π

2

)
=

−8
9
.

Hence F(D) is not symmetric with respect to the real axis.
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Figure 5.1 shows the mapping F(z) = z(1+ iz/3)(1+ iz/3) which is not symmetric

with respect to the real axis.

Figure 5.1: Graph of F(z) = z(1+ iz
3 )(1+

iz
3 ).

Our next example illustrates a univalent logharmonic mappings from D onto a sym-

metric domain Ω which does not belong to the class T Lh.

Example 5.2. Consider the function

F(z) = z
1− z
1− z

exp
{

Re
(

4z
1− z

)}
.

Then F(0) = 0, and h(0) = g(0) = 1, where

h(z) =
exp
{ 2z

1−z

}
1− z

, and g(z) = exp
{

2z
1− z

}
(1− z).

Since

Fz(z)
F(z)

=
1+ z

z(1− z)2 , and
(

Fz(z)
F(z)

)
=

(
1+ z

(1− z)2

)
=

1+ z
(1− z)2 ,

it follows that

|a(z)|=

∣∣∣∣∣∣∣
(

Fz(z)
F(z)

)
Fz(z)
F(z)

∣∣∣∣∣∣∣ = |z|< 1.
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Thus F is logharmonic in D with respect to a ∈ B0.

Let

ψ(z) =
zh(z)
g(z)

=
z

(1− z)2 .

Then

Re
(

zψ ′(z)
ψ(z)

)
= Re

(
1+ z
1− z

)
> 0.

Thus ψ ∈ S∗, and hence Lemma 5.3 shows that F is a univalent starlike logharmonic

mapping.

It is evident that F has real coefficients , that is,

F(z) = z
1− z
1− z

exp
{

2z
1− z

}
exp
{

2z
1− z

}
= F(z).

Then Lemma 5.1 shows that F(D) is a symmetric with respect to the real axis.

Let φ(z) = zh(z)g(z) = zexp{4z/(1− z)} . Then for z0 = (1−2/π)+2i/π ∈ D,

Re
(

1− z2
0

z0
φ(z0)

)
= Re

(
(1− z2

0)exp
{

4z0

1− z0

})
= Re

(
4
π

(
1− i

(
1− 2

π

))(
− exp{π −4}

))
=− 4

π
exp{(4−π)}Re

(
1− i

(
1− 2

π

))
=− 4

π
exp{(4−π)}< 0.

Thus (1− z2)φ(z)/z /∈ PR for some z ∈ D.. It follows from Lemma 5.5 that φ is not

typically real, and hence F /∈ T Lh.
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Figure 5.2 shows the mapping F(z)= zexp{Re (4z/(1− z))}(1−z)/(1−z) which

does not belong to the class T Lh, but yet maps D onto a symmetric domain with respect

to the real axis F(D).

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Figure 5.2: Graph of F(z) = z
1− z
1− z

exp
{

Re
(

4z
1− z

)}
.

The final result in this section describes when a univalent logharmonic function

belongs to the class T Lh.

Theorem 5.4. Let f (z) = zh(z)g(z) ∈ SLh, and suppose that the second dilatation

function a has real coefficients, that is, a(z) = a(z).

(a) If f ∈ T Lh, then f (D) is symmetric with respect to the real axis.

(b) Suppose f (D) is a strictly starlike Jordan domain symmetric with respect to the

real axis, then f ∈ T Lh in the disk |z|<
√

2−1.

Proof. (a) Let φ(z) = zh(z)g(z) be analytically typically real. Then φ has real coeffi-

cients. It follows from (5.5) that

g′(z)
g(z)

=
a(z)

1+a(z)
φ ′(z)
φ(z)

,
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which readily yields the solution g. Thus g has real coefficients. It is also evident that

h has real coefficients since h(z) = φ(z)/zg(z). Therefore, f (z) = zh(z)g(z) has real

coefficients. It follows from Lemma 5.1 that f (D) is symmetric with respect to the

real axis.

(b) Suppose F(z) = f (z), and f (z) = zh(z)g(z) is a univalent logharmonic mapping

with respect to a ∈ B0. Then F is univalent in D. Further, let w ∈ F(D), that is, w =

f (z)∈ F(D). Since f (D) is a symmetric domain with respect to the real axis, it follows

that f (z) ∈ f (D) for all f (z) ∈ f (D). Moreover, D is symmetric, and thus f (z) ∈ f (D)

whenever f (z) ∈ f (D). Hence F(D)⊂ f (D).

Let F(z) = zH(z)G(z) = zh(z)g(z) with H(z) = h(z) and G(z) = g(z). Then F(0) =

0, H(0) = 1, and G(0) = 1.

Let a∗(z) = FFz/FzF . Then

a∗(z) =

(
Fz(z)
F(z)

)
Fz(z)
F(z)

=

(
(g(z))z

g(z)

)
1
z +

(h(z))z

h(z)

=

(g(z))z

g(z)

1
z +
(
(h(z))z

h(z)

) = a(z).

Since a has real coefficients, it is evident that a∗(z) = a(z). Therefore, F is a loghar-

monic mapping with respect to the same a. Also, H(0) = h(0) = 1. Then by Lemma

5.2, there is only one univalent logharmonic mapping from D onto f (D) which is a so-

lution of (5.1) normalized by f (0) = 0, h(0) = 1, and g(0) = 1. In other words, f (z) =

F(z) = f (z), and thus f has real coefficients. Hence ψ(z) = zh(z)/g(z) = f (z)/|g(z)|2

has real coefficients.

Direct calculations yield

ψ ′(z)
ψ(z)

=
1
z
+

h′(z)
h(z)

− g′(z)
g(z)

. (5.10)
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Since f is a solution of (5.1), it follows that

g′(z)
g(z)

= a(z)
(

1
z
+

h′(z)
h(z)

)
. (5.11)

Combining (5.10) and (5.11) we obtain

g′(z)
g(z)

=
a(z)

1−a(z)
ψ ′(z)
ψ(z)

,

which by integration leads to

g(z) = exp
∫ z

0

a(t)
1−a(t)

ψ ′(t)
ψ(t)

dt.

Then g, and so does h, have real coefficients, and thus φ(z) = zh(z)g(z) also has real

coefficients.

It is known in [6] that if f0(z) = zh0(z)g0(z) is a starlike univalent logharmonic

mapping in D, then φ0(z) = zh0(z)g0(z) is a starlike univalent analytic in the disk |z|<

ρ =
√

2− 1. Thus φ(ρz) ∈ S . Furthermore, φ has real coefficients. It follows from

Proposition 1.1 in Section 1.3 that φ is typically real in |z|< ρ . Therefore, f ∈ T Lh in

|z|<
√

2−1.

5.4 On A Subclass of T Lh

Let T Lh1 be the subclass of T Lh consisting of all mappings F(z) = z(φ(z)/z), where

φ ∈ T.

The following result determines necessary and sufficient conditions for a mapping

F(z) = z(φ(z)/z) to be in the class T Lh1.

Lemma 5.7. Let F(z) = z(φ(z)/z), where φ ∈ T. Then F is logharmonic mapping with

respect to a ∈ B0, that is, F ∈ T Lh1 if and only if |zφ ′(z)/φ(z)−1|< 1.
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Proof. A simple calculation shows that

Fz(z)
F(z)

=
1
z
, and

(
Fz(z)
F(z)

)
=

(
(φ(z))z

φ(z)
− 1

z

)
=

φ ′(z)
φ(z)

− 1
z
. (5.12)

Then

a(z) =

(
Fz(z)
F(z)

)
Fz(z)
F(z)

=

φ ′(z)
φ(z)

− 1
z

1
z

=
zφ ′(z)
φ(z)

−1. (5.13)

and a(0) = 0, since φ(z) = z+∑∞
n=2 anzn. Hence the required result follows.

An integral representation for T Lh1 is established in the following result.

Theorem 5.5. Let F(z) = z(φ(z)/z) ∈ T Lh1 be a logharmonic with respect to a ∈ B0.

Then F admits the representation

F(z) = zexp
∫ z

0

a(s)
s

ds. (5.14)

Proof. It is evident from (5.13) that

d
dz

log
(

φ(z)
z

)
=

a(z)
z

.

Thus

φ(z)
z

= exp
∫ z

0

a(s)
s

ds,

yields the desired result, which completes the proof of this theorem.

Next, the radius of starlikeness of mappings in the class T Lh1 is determined.

Theorem 5.6. Let F(z) = z(φ(z)/z) ∈ T Lh1. Then F maps the disk |z| < 1/3 onto a

starlike domain.
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Proof. It is follows from (5.12) that

zFz(z)
F(z)

= 1, and
zFz(z)
F(z)

=

(
zφ ′(z)
φ(z)

)
−1.

Therefore,

Re
zFz(z)− zFz(z)

F(z)
= Re

(
2− zφ ′(z)

φ(z)

)
.

Since φ ∈ T, it follows from Lemma 5.5 that φ(z) = zp(z)/(1− z2), where p ∈ PR.

Simple calculations give

zφ ′(z)
φ(z)

=
1+ z2

1− z2 +
zp′(z)
p(z)

.

Now

Re
(

1+ z2

1− z2

)
≤ 1+ |z|2

1−|z|2
,

and Lemma 5.4 shows that

Re
(

zp′(z)
p(z)

)
≤ 2|z|

1−|z|2
.

Therefore,

Re
(

zφ ′(z)
φ(z)

)
≤ 1+ |z|2

1−|z|2
+

2|z|
1−|z|2

=
1+ |z|
1−|z|

.

Thus

Re
zFz(z)− zFz(z)

F(z)
≥ 2−

(
1+ |z|
1−|z|

)
=

1−3|z|
1−|z|

,

and hence Re
((

zFz − zFz
)
/F
)
> 0 provided |z| < 1/3. Thus F maps {z : |z| < 1/3}

onto a starlike domain.
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CHAPTER 6

CONCLUSION

This chapter presents a summary of work that was done in this thesis. Four research

problems were discussed which will motivate other researchers in this field for more

intense research in the future.

The class U consists of all functions f ∈ A satisfying |(z/ f (z))2 f ′(z)−1|< 1 in

the unit disk. One of the research problems investigated in this thesis is the radius prob-

lem. The sharp radius of the class U for several classes of functions is determined.

These include the class of normalized analytic functions f satisfying the inequality

Re f (z)/g(z) > 0 or | f (z)/g(z)−1|< 1 in D, where g belongs to a certain class of an-

alytic functions. The estimation for the U -radius of the class of functions f satisfying

the inequality | f ′(z)−1|< 1 or Re f (z)/z > α , 0 ≤ α < 1, in D is obtained. Further-

more, this thesis validates the conjecture of Obradović and Ponnusamy concerning the

radius of univalence for product involving univalent functions. A good continuation

to the work done here would be to consider the class U (λ ) of all functions f ∈ A

satisfying |(z/ f (z))2 f ′(z)− 1| < λ in the unit disk, where λ > 0, and to investigate

the U (λ )-radius for various classes of normalized analytic functions.

Various interesting properties including coefficient bounds and coefficient inequal-

ities for several subclasses of analytic functions have been investigated. The tech-

nique used by Ma and Minda for the Fekete-Szego problem for subclasses of convex

and starlike functions was used by many authors to solve the same problem for other
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classes. This technique was also used to solve Hankel determinant problem for sub-

classes of analytic functions. Bounds for the second Hankel determinant H2(2) =

bk+1b3k+1 −b2
2k+1 for the kth-root transform F(z) =

(
f
(
zk
)) 1

k = z+∑∞
n=1 bkn+1zkn+1

of Ma-Minda starlike and convex functions are determined in this thesis. Similar prob-

lems are also treated for related classes defined by subordination. The results are de-

rived through several meticulous lengthy computations. Thus in several instances,

these computations were validated by use of the computer algebra system Mathemat-

ica. These bounds are expressed in terms of the coefficients of the given function φ,

and thus connect with earlier known results for particular choices of φ. Another pos-

sible area for research is to investigate the second Hankel determinant for the kth-root

transform of the class U .

This thesis also obtained sufficient conditions for the function F(z) = f (z)| f (z)|2γ

to be α−spirallike logharmonic mapping. By taking product combination of the two

mappings possessing the given property, a new logharmoinc mapping with a specified

property is constructed. In particular, if f1(z) = zh1(z)g1(z), and f2(z) = zh2(z)g2(z)

are univalent starlike logharmonic with respect to the same a ∈ B0, a new univalent

starlike logharmonic mapping F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1, with respect to the

same a is established. In addition, if f1(z) = zh1(z)g1(z) is a logharmonic with respect

to a1 ∈ B0 , and f2(z) = zh2(z)g2(z) is a logharmonic with respect to a2 ∈ B0, sufficient

conditions are obtained to ensure their product F(z) = f λ
1 (z) f 1−λ

2 (z), 0 ≤ λ ≤ 1 is a

univalent starlike logharmonic mapping with respect to µ ∈ B0. Several examples of

univalent starlike logharmonic mapping constructed from the product are provided.

151



The thesis concludes by considering the class T Lh of all normalized logharmonic

mappings f (z) = zh(z)g(z) satisfying φ(z) = zh(z)g(z) ∈ HG is typically real analytic

in the unit disk. An integral representation for such a mapping f is obtained. The

connection between this class and the class of logharmonic mapping with positive

real part is established. The radius of starlikeness for the class T Lh, as well as an

upper estimate for its arclength are determined. Moreover, sufficient and necessary

geometric conditions for φ(z) = zh(z)g(z) to be typically real are also investigated

when f (z) = zh(z)g(z) has a dilatation with real coefficients. Furthermore, an integral

representation and the radius of starlikeness for a subclass of T Lh are determined.

Notably, the study of logharmonic mappings is a rich area of research. In this

thesis, we tried to highlight and solve some of the problems related to logharmonic

mappings. However, there are always some open problems which can be considered in

further work. For example, finding the radius of starlikeness of mappings in the class

SLh and the sharp radius of starlikeness of mappings in the class T Lh.
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