On B^{*}-Quasigroups

Afzal Beg

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract

The author has discussed B^{*}-loops in [1]. In this paper we investigate B^{*}-quasigroups which is a quasigroup (G, \cdot) satisfying the identity $(x y \cdot z) y^{\alpha}=x\left(y z \cdot y^{\alpha}\right)$ for all $x, y, z \in G$ and some endomorphism α of (G, \cdot). Connection between B^{*}-quasigroups and B^{*}-loops is examined.

1. Introduction

A binary system (G, \cdot) is said to be a quasigroup if for each ordered pair $a, b \in G$, there is one and only one x in G such that $a x=b$ in G and one and only one y such that $y a=b$ in G. We recall that a loop is a quasigroup which has a two sided identity element. We shall say that a quasigroup (G, \cdot) is a B^{*}-quasigroup if and only if

$$
(x y \cdot z) y^{\alpha}=x\left(y z \cdot y^{\alpha}\right)
$$

for all x, y, z in G and some endomorphism α of ($G, \cdot)$. For any three elements a, b, c of a binary system for which the binary operation is juxtaposition $a b \cdot c$ will mean the element $(a b) c$. A B^{*}-loop is a loop which is also a B^{*}-quasigroup. B^{*}-loops have been discussed in [1]. It would seem natural to investigate B^{*}-quasigroups. It is known [2] that an isotope of a quasigroup is a quasi-group and any quasigroup is an isotope of some loop. Our main results (Theorems 3 and 4) establish connection between B^{*}-quasigroups and B^{*}-loops.

2. Preliminary Lemmas

Lemma 1. If (G, \cdot) is a B^{*}-quasigroup, then (G, \cdot) has a unique left identity element.

Proof. Let x be a fixed element in G. Since (G, \cdot) is quasigroup there exists an element $e \in G$ such that $e x=x$. Now $x^{\alpha} \in G$ and for each $a \in G$ there exist elements $y, z \in G \quad$ such that $y x^{\alpha}=a \quad$ and $\quad x z=y$. Then $e a=e\left(y x^{\alpha}\right)=e\left(x z \cdot x^{\alpha}\right)$ $=(e x \cdot z) x^{\alpha}=(x z) x^{\alpha}=y x^{\alpha}=a$. So, e is a left identity of (G, \cdot). The fact that e is unique is the consequence of (G, \cdot) being a quasigroup.

From now onward, e will denote the unique left identity for a B^{*}-quasigroup (G, \cdot) and for each x in $G x^{v}$ and x^{μ} shall designate those unique elements in G such that $x^{\nu} x=x x^{\mu}=e$. Moreover, the mapping $R(x)$ defined by $y R(x)=y x$ for every y in G, is a permutation on G if G is a quasigroup (Bruck [2], p. 54).

Lemma 2. If (G, \cdot) is a B^{*}-quasigroup, then
(i) $x^{\mu}=x^{v}$ for all $x \in G$,
(ii) ($G, \cdot)$ satisfies the right inverse property.

Proof

(i) For x in G, we have $x\left(x^{\mu} x \cdot\left(x^{\mu}\right)^{\alpha}\right)=\left(x x^{\mu} \cdot x\right)\left(x^{\mu}\right)^{\alpha}=e x \cdot\left(x^{\mu}\right)^{\alpha}=x\left(x^{\mu}\right)^{\alpha}$. This gives $x^{\mu} X_{X} \cdot\left(x^{\mu}\right)^{\alpha}=\left(x^{\mu}\right)^{\alpha}$ and we have $x^{\mu} X=e=x^{v} x$. Hence, $x^{\mu}=x^{v}$ for all x in G.
(ii) For $x, y \in G$, we have $\left(x y \cdot y^{\mu}\right) y^{\alpha}=x\left(y y^{\mu} \cdot y^{\alpha}\right)=x \cdot e y^{\alpha}=x y^{\alpha}$. This gives (xy) $y^{\mu}=x$, for all $x, y \in G$ which proves (ii).

Remarks

(i) In view of Lemma 2, let $x^{-1}=x^{\mu}=x^{v}$ for any element x of a B^{*}-quasigroup (G, \cdot).
(ii) $e \cdot e=e$ gives $e^{-1}=e$ and Lemma 2 (ii) gives $(x e) e^{-1}=x$ and hence $(x e) e=x$. Thus we have $R(e)^{2}=I_{G}$ the identity mapping on G.

3. Main Results

Theorem 3. If (G, \cdot) is a B^{*}-quasigroup with respect to an endomorphism α, then (G, \circ) is a B^{*}-loop where $x \circ y=x e \cdot y$ for all x, y in G.

Proof. As mentioned above (G, \circ) being an isotope of a quasigroup (G, \cdot) is a quasigroup. Now for every x in $G, x \circ e=(x e) e=x$ and $e \circ x=e e \cdot x=x$. Hence, (G, \circ) is a loop. For all x, y in $G(x \circ y)^{\alpha}=(x e \cdot y)^{\alpha}=(x e)^{\alpha} \cdot y^{\alpha}=x^{\alpha} e \cdot y^{\alpha}=x^{\alpha} \circ y^{\alpha}$ showing that α is an endomorphism of the loop (G, \circ). Moreover, for all x, y, z in G we have

$$
\begin{aligned}
& (x e) \circ\left((y \circ z) \circ y^{\alpha}\right)=(x e) e \cdot\left((y e \cdot z) e \cdot y^{\alpha}\right)=x\left((y e \cdot z) e^{\alpha} \cdot y^{\alpha}\right) \\
& \quad=x\left(y(e z \cdot e) \cdot y^{\alpha}\right)=((x y)(z e)) y^{\alpha},
\end{aligned}
$$

and

$$
\begin{aligned}
& (((x e) \circ y) \circ z) \circ y^{\alpha}=(((x e) e \cdot y) e \cdot z) e \cdot y^{\alpha}=\left(((x y \cdot e) z) e^{\alpha}\right) y^{\alpha} \\
& \quad=\left((x y)\left(e z \cdot e^{\alpha}\right)\right) y^{\alpha}=((x y)(z e)) y^{\alpha} .
\end{aligned}
$$

Hence, we have

$$
(((x e) \circ y) \circ z) \circ y^{\alpha}=(x e) \circ\left((y \circ z) \circ y^{\alpha}\right)
$$

Showing that (G, \circ) is a B^{*}-loop with respect to the endomorphism α of it.
Theorem 4. Suppose (G, \circ) is a B^{*}-quasigroup with respect to an endomorphism α. Suppose δ is an automorphism of (G, \circ) such that $\delta^{2}=I_{G}$ and $\alpha \delta=\delta \alpha$. If we define $x \cdot y=x \delta \circ y$ for all x, y in G then (G, \cdot) is a quasigroup such that the same map α from G to G is an endomorphism of this quasigroup (G, \cdot) also making it a B^{*}-quasigroup.

Proof. Clearly (G, \cdot) is a quasigroup. For all x, y in $G,(x \cdot y)^{\alpha}=(x \delta \circ y)^{\alpha}$ $=(x \delta)^{\alpha} \circ y^{\alpha}=x^{\alpha} \delta \circ y^{\alpha}=\left(x^{\alpha} \cdot y^{\alpha}\right)$ showing that α is an endomorphism of the quasigroup ($G, \cdot \cdot$). Moreover, for all x, y, z in G we have

$$
\begin{aligned}
(x y \cdot z) y^{\alpha} & =((x \delta \circ y) \delta \circ z) \delta \circ y^{\alpha}=\left((x \delta \circ y) \delta^{2} \circ z \delta\right) \circ y^{\alpha} \\
& =((x \delta \circ y) \circ z \delta) \circ y^{\alpha}=x \delta \circ\left((y \circ z \delta) \circ y^{\alpha}\right) \\
& =x \delta \circ\left(\left(y \delta^{2} \circ z \delta\right) \circ y^{\alpha}\right)=x \delta \circ\left((y \delta \circ z) \delta \circ y^{\alpha}\right) \\
& =x\left(y z \cdot y^{\alpha}\right)
\end{aligned}
$$

showing that (G, \cdot) is a B^{*}-quasigroup with respect to the endomorphism α of it.
In the next theorem we show that all B^{*}-quasigroups can be obtained from B^{*}-loops in the manner described in Theorem 4.

Theorem 5. If ($G, \cdot)$ is a B^{*}-quasigroup with respect to an endomorphism α, then there is a loop (G, \circ) for which α is an endomorphism making it a B^{*}-loop and an automorphism δ of (G, \circ) with property that $\delta^{2}=I_{G}, \alpha \delta=\delta \alpha$ and $x \cdot y=x \delta \circ y$ for all x, y in G.

Proof. If e is the left identity of the B^{*}-quasigroup (G, \cdot) then, from Theorem 3 and its proof, (G, \circ), where $x \circ y=x e \cdot y$ for all x, y in G, is a loop having e as two sided identity and α an endomorphism making it a B^{*}-loop. Take δ to be $R(e)$. Then by above remark (ii), $\delta^{2}=R(e)^{2}=I_{G}$. Now $R(e)$ is a permutation of G. Moreover, for all x, y in $G,(x \circ y) \delta=(x e \cdot y) e=(x e \cdot y) e^{\alpha}=x\left(e y \cdot e^{\alpha}\right)=x(y e)=(x e \cdot e)(y e)$ $=(x \delta \cdot e) y \delta=x \delta \circ y \delta$ showing that δ is an automorphism of (G, \circ) and $\delta^{2}=I_{G}$.

Also we observe that $x \delta \circ y=(x e \cdot e) y=x \cdot y$ for all x, y in G. Moreover, for every x in $G,(x \delta)^{\alpha}=(x e)^{\alpha}=x^{\alpha} \cdot e^{\alpha}=x^{\alpha} \cdot e=\left(x^{\alpha}\right) \delta$ showing that $\delta \alpha=\alpha \delta$.

References

1. A. Beg and M.R. Khan, On special class of Bol loops, Tamk. J. Math. 8 No. 1 (1977), 37-41.
2. R.H. Bruck, A survey of binary systems, Springer-Verlag, 1972.

AMS subject classification: 20N05

