On *B***^{*}-Quasigroups**

AFZAL BEG

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract. The author has discussed B^* -loops in [1]. In this paper we investigate B^* -quasigroups which is a quasigroup (G, \cdot) satisfying the identity $(xy \cdot z)y^{\alpha} = x(yz \cdot y^{\alpha})$ for all $x, y, z \in G$ and some endomorphism α of (G, \cdot) . Connection between B^* -quasigroups and B^* -loops is examined.

1. Introduction

A binary system (G, \cdot) is said to be a quasigroup if for each ordered pair $a, b \in G$, there is one and only one x in G such that ax = b in G and one and only one y such that ya = b in G. We recall that a loop is a quasigroup which has a two sided identity element. We shall say that a quasigroup (G, \cdot) is a B^* -quasigroup if and only if

$$(xy \cdot z)y^{\alpha} = x(yz \cdot y^{\alpha})$$

for all x, y, z in G and some endomorphism α of (G, \cdot) . For any three elements a, b, c of a binary system for which the binary operation is juxtaposition $ab \cdot c$ will mean the element (ab)c. A B^* -loop is a loop which is also a B^* -quasigroup. B^* -loops have been discussed in [1]. It would seem natural to investigate B^* -quasigroups. It is known [2] that an isotope of a quasigroup is a quasi-group and any quasigroup is an isotope of some loop. Our main results (Theorems 3 and 4) establish connection between B^* -quasigroups and B^* -loops.

2. Preliminary Lemmas

Lemma 1. If (G, \cdot) is a B^* -quasigroup, then (G, \cdot) has a unique left identity element.

Proof. Let x be a fixed element in G. Since (G, \cdot) is quasigroup there exists an element $e \in G$ such that ex = x. Now $x^{\alpha} \in G$ and for each $a \in G$ there exist elements $y, z \in G$ such that $yx^{\alpha} = a$ and xz = y. Then $ea = e(yx^{\alpha}) = e(xz \cdot x^{\alpha}) = (ex \cdot z)x^{\alpha} = (xz)x^{\alpha} = yx^{\alpha} = a$. So, e is a left identity of (G, \cdot) . The fact that e is unique is the consequence of (G, \cdot) being a quasigroup.

A. Beg

From now onward, *e* will denote the unique left identity for a B^* -quasigroup (G, \cdot) and for each *x* in Gx^{ν} and x^{μ} shall designate those unique elements in *G* such that $x^{\nu}x = xx^{\mu} = e$. Moreover, the mapping R(x) defined by yR(x) = yx for every *y* in *G*, is a permutation on *G* if *G* is a quasigroup (Bruck [2], p. 54).

Lemma 2. If (G, \cdot) is a B^* -quasigroup, then

(i) $x^{\mu} = x^{\nu}$ for all $x \in G$,

(ii) (G, \cdot) satisfies the right inverse property.

Proof

- (i) For x in G, we have $x(x^{\mu}x \cdot (x^{\mu})^{\alpha}) = (xx^{\mu} \cdot x)(x^{\mu})^{\alpha} = ex \cdot (x^{\mu})^{\alpha} = x(x^{\mu})^{\alpha}$. This gives $x^{\mu}x \cdot (x^{\mu})^{\alpha} = (x^{\mu})^{\alpha}$ and we have $x^{\mu}x = e = x^{\nu}x$. Hence, $x^{\mu} = x^{\nu}$ for all x in G.
- (ii) For x, y ∈ G, we have (xy ⋅ y^μ)y^α = x(yy^μ ⋅ y^α) = x ⋅ ey^α = xy^α. This gives (xy)y^μ = x, for all x, y ∈ G which proves (ii).

Remarks

(i) In view of Lemma 2, let $x^{-1} = x^{\mu} = x^{\nu}$ for any element x of a B^* -quasigroup (G, \cdot) .

(ii) $e \cdot e = e$ gives $e^{-1} = e$ and Lemma 2 (ii) gives $(xe)e^{-1} = x$ and hence (xe)e = x. Thus we have $R(e)^2 = I_G$ the identity mapping on G.

3. Main Results

Theorem 3. If (G, \cdot) is a B^* -quasigroup with respect to an endomorphism α , then (G, \circ) is a B^* -loop where $x \circ y = xe \cdot y$ for all x, y in G.

Proof. As mentioned above (G, \circ) being an isotope of a quasigroup (G, \cdot) is a quasigroup. Now for every x in G, $x \circ e = (xe)e = x$ and $e \circ x = ee \cdot x = x$. Hence, (G, \circ) is a loop. For all x, y in G $(x \circ y)^{\alpha} = (xe \cdot y)^{\alpha} = (xe)^{\alpha} \cdot y^{\alpha} = x^{\alpha}e \cdot y^{\alpha} = x^{\alpha} \circ y^{\alpha}$ showing that α is an endomorphism of the loop (G, \circ) . Moreover, for all x, y, z in G we have

we have

$$(xe) \circ ((y \circ z) \circ y^{\alpha}) = (xe)e \cdot ((ye \cdot z)e \cdot y^{\alpha}) = x((ye \cdot z)e^{\alpha} \cdot y^{\alpha})$$
$$= x(y(ez \cdot e) \cdot y^{\alpha}) = ((xy)(ze))y^{\alpha},$$

and

$$\left(\left((xe) \circ y \right) \circ z \right) \circ y^{\alpha} = \left(\left((xe)e \cdot y \right)e \cdot z \right)e \cdot y^{\alpha} = \left(\left((xy \cdot e)z \right)e^{\alpha} \right)y^{\alpha} \\ = \left((xy)(ez \cdot e^{\alpha}) \right)y^{\alpha} = \left((xy)(ze) \right)y^{\alpha}.$$

Hence, we have

$$\left(\left((xe)\circ y\right)\circ z\right)\circ y^{\alpha}=(xe)\circ\left((y\circ z)\circ y^{\alpha}\right).$$

Showing that (G, \circ) is a B^* -loop with respect to the endomorphism α of it.

Theorem 4. Suppose (G, \circ) is a B^* -quasigroup with respect to an endomorphism α . Suppose δ is an automorphism of (G, \circ) such that $\delta^2 = I_G$ and $\alpha \delta = \delta \alpha$. If we define $x \cdot y = x\delta \circ y$ for all x, y in G then (G, \cdot) is a quasigroup such that the same map α from G to G is an endomorphism of this quasigroup (G, \cdot) also making it a B^* -quasigroup.

Proof. Clearly (G, \cdot) is a quasigroup. For all x, y in G, $(x \cdot y)^{\alpha} = (x\delta \circ y)^{\alpha} = (x\delta)^{\alpha} \circ y^{\alpha} = x^{\alpha}\delta \circ y^{\alpha} = (x^{\alpha} \cdot y^{\alpha})$ showing that α is an endomorphism of the quasigroup (G, \cdot) . Moreover, for all x, y, z in G we have

$$(xy \cdot z)y^{\alpha} = ((x\delta \circ y)\delta \circ z)\delta \circ y^{\alpha} = ((x\delta \circ y)\delta^{2} \circ z\delta) \circ y^{\alpha}$$
$$= ((x\delta \circ y) \circ z\delta) \circ y^{\alpha} = x\delta \circ ((y \circ z\delta) \circ y^{\alpha})$$
$$= x\delta \circ ((y\delta^{2} \circ z\delta) \circ y^{\alpha}) = x\delta \circ ((y\delta \circ z) \delta \circ y^{\alpha})$$
$$= x(yz \cdot y^{\alpha})$$

showing that (G, \cdot) is a B^* -quasigroup with respect to the endomorphism α of it.

In the next theorem we show that all B^* -quasigroups can be obtained from B^* -loops in the manner described in Theorem 4.

Theorem 5. If (G, \cdot) is a B^* -quasigroup with respect to an endomorphism α , then there is a loop (G, \circ) for which α is an endomorphism making it a B^* -loop and an automorphism δ of (G, \circ) with property that $\delta^2 = I_G$, $\alpha\delta = \delta\alpha$ and $x \cdot y = x\delta \circ y$ for all x, y in G.

Proof. If *e* is the left identity of the B^* -quasigroup (G, \cdot) then, from Theorem 3 and its proof, (G, \circ) , where $x \circ y = xe \cdot y$ for all *x*, *y* in *G*, is a loop having *e* as two sided identity and α an endomorphism making it a B^* -loop. Take δ to be R(e). Then by above remark (ii), $\delta^2 = R(e)^2 = I_G$. Now R(e) is a permutation of *G*. Moreover, for all *x*, *y* in *G*, $(x \circ y)\delta = (xe \cdot y)e = (xe \cdot y)e^{\alpha} = x(ey \cdot e^{\alpha}) = x(ye) = (xe \cdot e)(ye) = (x\delta \cdot e)y\delta = x\delta \circ y\delta$ showing that δ is an automorphism of (G, \circ) and $\delta^2 = I_G$.

A. Beg

Also we observe that $x\delta \circ y = (xe \cdot e)y = x \cdot y$ for all x, y in G. Moreover, for every x in G, $(x\delta)^{\alpha} = (xe)^{\alpha} = x^{\alpha} \cdot e^{\alpha} = x^{\alpha} \cdot e = (x^{\alpha})\delta$ showing that $\delta \alpha = \alpha \delta$.

References

- 1. A. Beg and M.R. Khan, On special class of Bol loops, Tamk. J. Math. 8 No. 1 (1977), 37-41.
- 2. R.H. Bruck, A survey of binary systems, Springer-Verlag, 1972.

AMS subject classification: 20N05