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Abstract. Solution pairs (X,Y) to the matrix equations AXA*=B and AX=BAY are

considered, when X is restricted to be Hermitian and Y is restricted to be Hermitian, Hermitian
nonnegative definite and Hermitian positive definite, respectively.

1. Introduction

Let C,,,, denote the set of complex m x n matrices, and let C denote the set of
complex Hermitian m x m matrices. Moreover let C, denote the subset of
C ! consisting of nonnegative definite matrices, and let C;, denote the subset of C_.
consisting of positive definite matrices. The symbols 4*, R (A), N (A4) and rk(A)
will stand for the conjugate transpose, the range (column space), the null space and the
rank, respectively, of 4€C,,,,,.

The symbol A~ stands for an arbitrary generalized inverse (inner inverse) of
AeC,,,, ie., A is any matrix satisfying 44-4 = A.

In this note we consider the general Hermitian solution to the equation

AXA* = B (1.1)

for given matrices A€C,,,, and BeC/k . The usefulness of this equation has recently
been emphasised by Dai and Lancaster [2], who consider solution pairs (X,Y) to the

equations (1.1) and

AX = BAY, (1.2)

where all combinations of restrictions XeC/, XeCz?, XeC; and YeCFH,

YeCz,YeC; are imposed on X and Y. Their approach is within the setting of real

matrices, and it is based on the singular value decomposition (SVD) of the matrix A.
However, from Dai and Lancaster [2] it does not become evident that equation (1.2)
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admits a solution ¥ € C, where C canbe C}/’, C> or C,, only for a certain subset of

all possible Hermitian solutions to (1.1), viz. Hermitian solutions to (1.1) satisfying
rk(AX) = rk(B). This fact might be of interest for instance in a situation where a

Hermitian solution to (1.1) is already known, and it is desired to use this solution to (1.1)
to obtain a solution to (1.2).

The following results offer the possibility for obtaining all combinations of solution
pairs (X,Y) by using generalized inverses of matrices instead of using SVD of 4.

2. Preliminary results
In the following we make repeated use of Corollary 6.2 in [4], which states that

1k(AB) = rk(B) — dim[N (4) N R (B)]

for arbitrary matrices 4€C,,, and BeC,,,. In this section we consider

representations of general solutions to
AY =C 2.1
where 4, C €C,,,, are given. Obviously (2.1) is more general than (1.2).

Lemma 1. [3, Theorem 2.1] Let A, C<C,,,,. Then (2.1) has a Hermitian solution if
and only if

CA* e CH R(C) c R(A),
in which case a representation of the general Hermitian solution is
Y=A4C+C(a4) -aac (a4} + (1, -4 4)U(1, - 4-4),
where A~ is an arbitrary generalized inverse of A and U is an arbitrary matrix in CH .

Lemma 2. [3, Theorem 2.2] Let A, C<C,,,,. Then (2.1) has a Hermitian nonnegative
definite solution if and only if

CA* € C; , rk(CA*) = rk(C), (2.2)
in which case a representation of the general Hermitian nonnegative definite solution is

Y = C*(CA*) " C + (I, - A~ AU, — A~ A", (2.3)
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where (CA*)~ and A~ are arbitrary generalized inverses of CA* and A respectively

and U is an arbitrary matrix in C;.

Corollary. Let A, CeC,,,, such that (2.2) is satisfied. Then for any matrix Y from
(2.3), rk(Y) = rk(C) + rk[(I,, — A~ A)U].

Proof. Suppose that (2.2) is satisfied. Then C*(CA*)~C is invariant with respect to
the choice of generalized inverse (CA*)~ and Hermitian nonnegative definite with
rk[C*(CA*)~C] = rk(C), cf. [3, p. 580].

Let now y = C*(CA*)"Ca = (I,, — A~ A)Ub for some n x 1 vectors a,b. Then
Ay = AC*(CA*)~Ca = Ca = 0, implying that y = 0. Hence

R[c*ca*)-c]n R [(I,, ~A-A)U(I, —A*A)*] =1{o},
which implies rk(¥Y) = rk[C*(CA*)~C] + rk(I,, — A~ A)U], cf. [4, Theorem 11].

Lemma3. Let A4,CeC,, ,. Then (2.1) has a Hermitian positive definite solution if
and only if

CA* €CZ , rk(CA*) = rk(C), rk(C) = rk(A), 2.4)

in which case a representation of the general Hermitian positive definite solution is given
by (2.3), where U € C;; satisfies N (U) "N [(A-A)*] = {0}.

Proof. When Y is a Hermitian positive definite solution to (2.1), obviously
rk(A) = rk(C) and (2.4) follows from Lemma 2. On the other hand, when (2.4) is

satisfied, every matrix ¥ from (2.3) is a Hermitian nonnegative definite solution to (2.1).
When rk(C) = rk(A) and U is chosen to be in C;;, then from the Corollary Y has full

rank, i.e., ¥ is a Hermitian positive definite solution to (2.1).
When (2.4) is satisfied, Lemma 2 and the Corollary show that Y is a
Hermitian positive definite solution to (2.1) if and only if ¥ is of the form

(23) with rk(C)+rk(l, — A-A)U] =n, the latter being equivalent to
rk(I, — A~ A)U] = n —rk(A) = rk(I, — A~ A). Applying Corollary 6.2 in [4] and
observing R [(I,, — A=A)*]=N [(A~A)*] completes the proof.
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3. Solutions to special matrix equations

In this section we give all solutions X €C/ to (1.1) which guarantee existence of
solutions ¥ € C to (1.2), where Cis C/,C> or C;. Moreover, we demonstrate that
the results of the previous section can be used to obtain all solutions ¥ € C to (1.2) for
each solution X eC} to (1.1) which guarantees existence of solutions to (1.2) in C.

We start with the following proposition, which can be seen as a complement to
Corollary 1 in [5, p. 25].

Proposition 1. Let A<C,,,, and BeCll. Then (1.1) has a Hermitian solution if and
only if R(B) < R (A), in which case a representation of the general Hermitian solution
is

X=ABA)'+Z-A4A"AZ(A A", 3.1
where A" is an arbitrary generalized inverse of A, and Z is an arbitrary matrix in ClT.

Proof. When (1.1) has a solution, then R (B) = R(AXA*) < R(A). On the other
hand, when R (B) c R(A), then there exists a matrix G such that
B =AG = G*A*. This gives AG = AG(A")*A* and G*A* = AA-G*A*.
Hence B = %(AG(A*)*A* + AA-G*A*) = A%(G(A*)* +A-G*)A*, showing that
+(G(A7)* + A~G*) is a Hermitian solution to (1.1).

When R (B) < R(A), i.e., AA-B = B = B(AA™)*, itis easily seen that (3.1) is a
Hermitian solution to (1.1). To observe that (3.1) is the general solution, note that any
Hermitian solution to (1.1) may be written as (3.1) with Z=X - A" B(A~)*.

When we assume that X is a Hermitian solution to (1.1), it is not difficult to derive
Hermitian, Hermitian nonnegative definite and Hermitian positive definite solutions to
(1.2) from the results in the previous section. Clearly, from Proposition 1, a necessary
and sufficient condition for existence of a Hermitian solution to (1.1) with A€C,,,,, and

BeCl is R(B) < R(A).

Proposition 2. Let AeC,,, and BeCH such that R (B) < R (A), and let X be a
Hermitian solution to (1.1). Then (1.2) has a solution in C, where C is CH, C>, or C;,
if and only if rk(AX) = rk(B). Representations of the general solutions inis CH, C7,

and C;, are obtainable from Lemmas 1, 2 and 3, respectively.
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Proof.  From Lemma 1, (1.2) has a Hermitian solution if and only if B? €C}/, which
is obviously satisfied, and R (AX) < R (BA). The latter is easily seen to be equivalent
to rk(AX) = rk(B).

From Lemma 2, (1.2) has a Hermitian nonnegative definite solution if and only if
B? € C2, which is obviously satisfied, and rk(B2) = rk(AX). The latter is clearly
equivalent to rk(AX) = rk(B).

From Lemma 3, (1.2) has a Hermitian positive definite solution if and only if
B? € C;, rk(B?) = rk(AX) and rk(AX) = rk(BA). When rk(B?) = rk(AX), i.e.,
rk(B) = rk(AX), the condition rk(AX) = rk(BA) is equivalent to rk(B) = rk(BA).
But this is equivalent to N (4*) N R (B) = {0} from Corollary 6.2 in [4]. In view of
R (B) < R (A), the latter is clearly satisfied.

The above result focuses our interest on Hermitian solutions to
AXA* =B, rk(AX)=rk(B). (3.2)

Clearly, for each solution X € CH to (3.2), all solutions in C, CZ or C; to (1.2) are
obtainable from Proposition 2.

Proposition 3. Let A<C,,,, and B < Cl. Then (3.2) has a Hermitian solution if
and only if R(B) c R (A), in which case a representation of the general Hermitian

solution is (3.1), where Z €C} is an arbitrary Hermitian solution to
G'GZ H'H =0 3.3)

with G = (I, — BB )A for an arbitrary generalized inverse B~ of B, and

H=(,—-AA) for A= from (3.1). The general Hermitian solution to (3.3) is
obtainable from Theorem 2.4 in [3].

Proof.  Necessity of R(B) < R(A) for (3.2) to have a solution is clear. When
R(B)c R(A), then X = A"B(A~)* is a Hermitian solution to (1.1) with
rk(AX) = rk[ B(A~)*] = rk(A=B) = rk(B) — dim[N (A=) N R (B)], see Corollary 6.2
in [4] for the last equality. Clearly N (4-) n R (B) = {0} when R (B) < R (A).
When R (B) c R(A), any matrix (3.1) satisfies rk(4X) = rk(B) if and only if
R (AX) c R(B), since R(B) = R(AXA*) c R(AX) is always satisfied. It is
clear that for any matrix (3.1) we have R(AX)c R(B) if and only if
R[AZ — AZ(A-4A)*] < R (B). This is equivalent to BB AZ(I, — A~ A)*
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= AZ(I, — A~ A)* for an arbitrary generalized inverse B~ of B. The latter is easily
seen to be equivalent to (3.3).

It is easy to see that when X is a Hermitian nonnegative definite solution to (1.1), the
condition 7k(AX) = rk(B) is met. Hence (1.2) admits solutions in C, CZ or C; for

all Hermitian nonnegative definite solutions to (1.1), provided Hermitian nonnegative
definite solutions to (1.1) exist.

Representations of the general Hermitian nonnegative definite and Hermitian
positive definite solutions to (1.1) are given in Baksalary [1]. Hence by applying
Baksalary [1] and Proposition 3, all combinations of solution pairs (X,Y)

with XeCl, XeC;, XeC; and YeCl, YeCZ, YeC; are obtainable from

n o n o

Proposition 2.
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