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Abstract. Hamming Code is the oldest and the most commonly used single error correcting and
double errors detecting code. For implication, it is constructed over the field GF(2). For each

r>2, thereisa [n, k,3] Hamming Code where n=2" —1 and k = 2" —r —1. A message word

of length k is encoded using a generating matrix G into a codeword of length n. This amounts to
inserting r parity check digits into the message word. The positions of the parity check digits in the
codeword are called the check positions of the code (with respect to G). A received word is then
. th
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decoded using a parity check matrix H. If the check positions of the code are in the |ll , |2t T
. Sth . th . th

coordinates of the codeword, then the |ll , |2t IO |rl rows of H are called the check rows of the

code. We proved in this paper that for any parity check matrix of a Hamming Code, there exists a
generating matrix G of the code, such that the check rows of the code are linearly independent. We
believe that this fact is contained implicitly in a paper of Hamming [7]  but we cannot find any
explicit proof in existing literature. Using the above fact, we construct a 2 EC-AUED code.

1. Introduction

More than 40 years, error control coding theory has been proved to have increased the
reliability of computer or communication systems against errors [17]. Different system
may be vulnerable to different types of errors. Error that changes digit 1 to O is called a
1-error whereas error that changes digit 0 to 1 is called a 0-error. If both 0O-errors and
1-errors occur with equal probability in each received word, the errors are classified as
symmetry type. If O-errors and 1-errors are both likely to occur but not simultaneously in
each received word of a system, the errors are classified as unidirectional type. It has
been found that the most likely errors that occurred in VLSI memories are not of
symmetric type but of unidirectional type [1, 6,12, 13, 14]. As a result, a receiver usually
gets limited number of symmetry errors while the number of unidirectional errors can be
very large. Therefore for the late 10 years, the aim of most research works in coding
theory [2, 3, 4, 5, 11, 16] is to design codes for correcting up to t symmetry errors and
detecting all occurrences of unidirectional error. These codes are called t EC-AUED
codes. In [5], Bose and Rao have shown that constant weight codes of minimal distance
2t + 2 are t EC-AUED codes. In this paper, we shall construct a 2 EC-AUED code,



which is not of constant weight type. Before this, we need to show a property regarding

the check rows of [n, k, 3] Hamming Codes. The basic theories used in this paper can be
found in [8, 9,15].

2. The check rows of Hamming Code

Let F be any finite field GF(p#). A subset V of F'is said to be a pair-wise

independent subset if and only if any two distinct elements in V are linearly independent.
V is a maximal pair-wise independent subset if and only if there does not exist any other

pair-wise independent subset in F" that contain V. Proposition below gives a property
of the maximal pair-wise independent subset.

Proposition. Let V be a pair-wise independent subset of F', r>2. V is a maximal

pair-wise independent subset of F"if and only if 'V '= |F|—_11 .

Proof. Let K be a relation define on F" —{0} such that Va,be F" —{0}, aKb if and
only if 3k € F — {0} such that b = ka, i.e., if and only if {a, b} is linearly dependent.
Clearly, K is an equivalent relation. Let ae F" —{0} and E, be the equivalent class
containing a. Thus, E, ={b e F' |aKb}={ka|k e F —{0}}. |E,|=|F|-1 and

thus K has ||"::||r_—ll distinct equivalent classes.
Let V' be a pair-wise independent subset of F". If [V | > llFFll H=, 3beF" —{0} such

|"-1
IFI -1

then 3b € F" — {0} suchthat V. n E, ={}. Choose any a; € E, then V U {a;} is

that |V n E, | > 2, contradicting the pair-wise independence of V. If |V |<

also a pair-wise independent subset of F". This shows that V is not a maximal pair-
wise independent subset of F". Thus we have proved the theorem.

In term of maximal pair-wise independent subset, the definition of Hamming Codes
over F is given as follows

Definition. A linear code over F such that the rows of its parity check matrix forms a
maximal pair-wise independent subset of F", r > 2, is called a [n, k,3] Hamming

Code where n = ||FF|| H=L and k = 'F' 11

r.

The only maximal pair-wise independent subset of GF(2)", is
V =GF(2)" {0} with |V|=2"-1. Thus over GF(2), a parity check matrix of any
[n, k,3] Hamming Code is simply a matrix whose rows are non-zero elements of



GF(2)". From now on, we assume F = GF(2). Algorithm below gives a method of
getting a generating matrix G for a [n, k, 3] Hamming Code from its parity check matrix.

Algorithm. LetH be any parity check matrix of [n, k, 3] Hamming Code.

(i) Permute the row of H to get H' of the form (IXJ Thus H'=P;H where f is

r
some elementin S,,.

(i) LetG'=(l X).

(iii) Permute the <column of G’ according to f1 to get G.
Hence, G = G'P;.

Obviously,

FG)=r(G)=k and GH =(G'P;)(P;™*H') = (I, X)(IX)=X+X=O.

r

Thus G is a generating matrix of the [n, k, 3] Hamming Code.

Example 1.  Let GF(24) be constructed using the irreducible polynomial 1 + x + x*
over F. Thus GF(24) = F[x]/ {1+ x + x*) ={0, B, B2,---, p¥® =1} and 1 + x + x*
is the minimal polynomial of 5. We write m4(x) =1+ x + x4,

Let H be a parity check matrix of [3,11,15] cyclic Hamming Code having
mg(x) =1+ x + x* as its generator polynomial. Permute the rows of H according to

f=(159 1326 10 14 3 7 11 15 4 8 12),
we get H’:(Ixj,where

4

Then we get G’ =(1;; X). Permute the column of G’ according to f -1 and thus we
get G=(X Iy1). Notethat r(G) =11 and GH = 0. Hence, G is a generating matrix



of the [3,11,15] Hamming code having H as parity check matrix. Therefore
Vm=(ag,ay, -, a,0) € F**, misencoded into

10 )
mG = [Z a; g+, m].
i=0
Now we shall prove our main theorem regarding the check rows of [n,k,3]
Hamming Code.

Theorem. Assume r > 2 and H is a parity check matrix for a [n,k,3] Hamming
Code. Let the rows of H be r,r,,---,r,. Then there is a generating matrix G for the
code such that when encode using G, if the check positions of the codeword are in the

i, i,", i, coordinates, then {r; ,r;,, .1 }={e1, e, €}

Proof. Consider a parity check matrix of [n,k,3] Hamming Code with the form

H'= (Ix) where X is a k x r matrix. Apparently G"= (I, X) is a generating matrix

of the code. When encoding using G', the check positions are in the last r coordinates
and the theorem is obviously true for this particular case.
Let H be any parity check matrix of the [n, k, 3] Hamming Code C. Then H could

be obtained from H' by permuting the rows of H' according to some permutation in
S,. Thatis H =P, H', forsome & € S, and thus G = G'P,~ is a generating matrix of

C. While encoding using G, every message word m e FX is encoded into mG. Hence,

MG = (MG') Py
= (al!aZI"'!akl ak+l!"'!an)PL9_1

= (Qp(1), Ap(2) 1"+ Bo(k)» Bk +1)+** Bo(n)) -

i, is a check position (with respect to the generating matrix G)
= ay,) Is a parity check digit
= ag) = a, forsomey, k+1<y<n
= Hig)=y forsomey, k+1<y<n

" row of H is the yt" rowof H' forsomey, k+1<y<n

(as H=P,H'= i rowof Histhe $(iy)™ rowof H')
h

-t
= I

= i," rowof H has the form of e; forsomei, 1<i<r.

Thus, we have proved the theorem.



Let H be a parity check matrix and G be a generating matrix of a [n, k,d] linear

code where n —k = r. We named the i,™,i,™,---,i,™ rows of H as the check rows if

the i,™,i,™, - i,"™ coordinates are the check positions of the code (with respect to G).

Therefore theorem above shows that given any parity check matrix H of a Hamming
Code we can find a generating matrix such that when encoding using G, the check rows
of the code are linearly independent.

3. The construction of a 2EC-AUED code

We shall now construct a code C of minimal distance 5. The message set M is a constant
weight code of length k and each message word m is encoded into a codeword of the

form (y, m, u) where yand u are elements in F' and FP respectively.

Let us start by explaining how to get u from m. Let Q = {wq, ®, -, w¢_1} bean
additive abelian group of order k with @, its identity element and N be a constant weight
code of length p. We assume |N|>k. For every m=(mg my,--,Ms)eM, we

calculate Y2 m; w; where

m [oh ifmi=1
-
P wo if m, =0.

Let
g:Q——N

be any one to one function. Then we define u= g (Xt m; @;). This method is due to
Rao and Bose [5].

Example2. Let M be a 3 out of 7 code; Q ={0,1, 2, 3,4,5, 6} be the
additive group of GF(7) and N ={ay=11000, oy =01100, «, =00110,
a3 =00011, a4 =10001, a5 =10100, ag =10010}. a subset of the 2 out of 5 code.
Define

g:Q——N

such that g(r) = a,. Then for m = 0101010 € M, we get

6 — p— p— p— p— p— — —
u:g[Zmi i_j =g(0+1+0+3+0+5+0) = g(2) = @, = 00110.
i-0



Next we describe how y is obtained from m. Let G be a generating matrix and
H be a parity check matrix of a linear code having independent check rows. For every
m = (mg, my,---,M1) € M, we then permute the coordinates of mG so that the resulting

word has the form (y, m). Thus we get y.

Example 3. Let

and H =

=T
O R B
o o o
O Rk
» O o o
o o~ o
o o o K
P P, PP, OO O
R P, O O KL Lk O
P O Rk, O Fr O K

be a generating matrix and parity check matrix of [3,4,7] Hamming Code
having independent check rows. Let M ={1100, 0110, 0011 1001}. Then
vm=(ab,c,d)eM, mG=(a+c+d, a+b+c, c, a+b+d, d, b, a). Permute the
coordinates of mG accordingto f-1 = (3 4 7 5 6) or compute (mG)Ps toget y

m mG
(a,b,c,d) - 5 (a+c+d, a+b+c,c, a+b+d, d, b, a)
(MG)Ps

(a+c+d,a+b+c,a+b+d, a b, c d)=(y,m)

Hence if m=0101e M, then (0101)G =1100110 and thus (1100110) P; =1100101
and we get y =110.

Now we choose suitable Q, N, g, M, G, H to construct our code C. We take

Q to be the additive group of GF(11), write Q={0,1, 2,3,4,5,6,7,8,9,10 };
N ={ay =110000, «a; =011000, «a, =001100, a3 =000110, a4 =000011,
a5 =101000, a5 =100100, «; =100010, ag =100001, g =101000, a5y =010010} a
subset of the 2 out of 6 code and the one to one map g is defined as follow:

g:Q——N
suchthat g:(f)=e,.



Let G and H be respectively the generating matrix and the parity check
matrix of the [3,11,15] cyclic Hamming Code, C’' given in Example 1. Let

M’ be the 5 out of 11 code. m e M' is then encoded into a codeword ¢ = (y, m, u) as
explained before. For our chosen generating matrix G = (X 141), we get y = mX as
mG =(y,m). Hence Vc=(y,m,u)eC, (y, m)eC’. Itis clear from the choice of
Qthat Vm = (mg, my, -, myp) e M’, if 3 m;i=7, then u = g(1) = a,.

Unfortunately the code C encoded from M’ has minimal distance less than 5. To
increase its distance we choose the set of message words to be M, a subset of M’ that
satisfies a further condition, namely if a,a’e M, a # a', which are encoded into

(y,a,u) and (y’,a’,u’) respectively, then u=u" and y =y implies d(a,a’)>6.
There exist many such subsets M, we exhibit one in appendix. Now let C be the code
encoded from M instead of from M’ and we shall proved(C) =5.

Let c=(y,a,u), c'=(y,a,u)eC, c=c andthus a = a'.

Casel. y=y and u=u: u=zu' implies d(u,u)=>2. As (y,a), (y,a)eC’

d((y, a), (v, a"))>3. Thus, d(c,c')23+2=5.

Case2. y=y" and u=u':Similarto Case 1, d(u,u’) >2 and d((y, a), (y', a"))>3.

Thus d(c,c')>3+2=5.

Case3. y=Yy and u=u': Weclaimthat d(a,a") >4. Let a=(aq, a;, -*-, a39) and

a=(ap, aj, --+, ajp). Assume that d(a,a")=2 when u=u'. Then we have
2@ i=Xi%ali, where at position j and k, j=#k, we have a;=1, a}=0 and

a, =0, ap=1. This results in j=k for j=k, which is impossible. Hence if

u=u' then d(a,a') > 4. Therefore d(c,c')>4+1=5asd(y,y')=>1.

Cased4. y=y' and u=u’": Apparently d(c,c') > 5 by the further condition satisfied

by M.

Exhausting all possible cases, we see that C is of minimal distance five and thus is a
2 EC code.

Let w=(y', a, u’) be any received word. As N and M are constant weight codes,
the occurrences of unidirectional errors in a and u’ are always detected by C. On the
other hand, if unidirectional errors occur only in y" which is also the check positions of
C', then the errors can be detected by computing (y’, a)H, since the check rows of C'

are linearly independent. Therefore C is a 2 EC-AUED code. Below is the decoding
algorithm of C.



Decoding algorithm.  Assume w=(y’, a, U’) is received, where a=(ag, a, -, asg)-

Let w(x) be the check polynomial of (y’, a) and u"=g(X!% a;i).

Step 1.
0)
(i)

Step 2.

(i)
(i)

(iii)

(iv)

wt(u") = 2.

wt(a) =5: ais the transmitted message word.

wt(@)#5: If w(B)=p', 4<i<14 then a+ei_; is the decoded
message word. Else we detect an uncorrectable error pattern in w.

wt(u") = 2.

wt(a) =5 and u'=u": ais the transmitted message word.
wt(a)=5and u'#u":

(@ w(B)=0: ais the transmitted message word,

(b) w(B)=0: Find

10
g[Zmi i_]=u’ and mX =y’}.

i=0

Q:{m = (Mg, My, ==+, Mp) e M

If 3meQ such that d(m,a) =2, then m is the decoded message word.
Else we detect an uncorrectable error pattern in w.
wt(a)=5+1 and g-1(u’) #{}: Compute

s=i{[gai i'] —g‘l(u')]

If s=i-1, then a+e; is the decoded message word. Else an uncorrectable

error pattern detected in w.
wt(a)=5+2: Find

10
g[Zmi i_J=u' and mX=y’}.
i=0

Q :{m =(m01 My, - mlO)e M

If 3m e Q such that d(m,a) =2, then m is the decoded message word. Else we
detect an uncorrectable error pattern in w.



Step 3. Other conditions besides Steps 1 and 2, we detect uncorrectable error pattern
inw.

The decoding algorithm given above is capable of correcting t errors if t < 2.
Suppose no error occurred in w. Then wt(a) = 5, wt(u’) =2 and u’ = u”. Hence Step

1 of the decoding algorithm fails and we go on to Step 2. We get a as the decoded
message word according to Step 2 (i).
Assume that an error has occurred in w. If the error is in y’, then wt(a) =5,

wt(u)=2 and u’ = u". Again Step 1 fail and we get a as the decoded message word

according to Step 2(i). However if the error is in the k" position of a, then
wt(a) =5+1 with wt(u") = 2. Obviously

s:i[[gai i_] —g‘l(u’)} = k-1.

Thus, according to Step 2(iii), a+ey, is the decoded message word. If the error
happened to be in u’, we get wt(u)=2+1 with wt(a) =5. Then Step 1(i) in the

decoding algorithm propose a to be the decoded message word.
Assume that double errors have occurred in w during the transmission. If the errors
occurred in

(i) y' and the jth position of a, then wt(u)=2 and wt(a) =5+ 1. Apparently
s:i[(zilgoai i_)—g‘l(u’)]=j_—l and thus a+e; is the decoded message
word according to Step 2(iii).

(i) y" and u', then wt(u’) =2=+1 together with wt(a) =5. According to Step 1(i),
a is the decoded message word.

(i) u’and the j™ position of a (which is the (j+4)t position of (y', a) € C"),
then wt(u’)=2+1, wt(@)=5+1 and w(g)=pU*1 Let pgi =plia-1,
Apparently 4<i<14. Thus a+e; is the decoded message word according to
Step 1(ii).

For cases where double errors have occurred simultaneously in y’, a or u’, the

errors involved might be of unidirectional or symmetry types. Assume that two errors
have occurred in y'. Whether the errors are of unidirectional or symmetry type, we get

wt(a) =5, wt(u)=2 and u’ = u”. Hence for both cases, we take a as the decoded

message word as proposed in Step 1(i).
If the errors are in u’, then wt(u’) =2+ 2 if the errors are of unidirectional type or

wt(u) =2 if the errors are of symmetry type with wt(a) =5. In the first case, a will be
taken as decoded message word as given in Step 1(i). For the later case, the two



symmetry errors in u’ will cause u’=u” with w(8)=0. Hence by Step 2(ii)(a) in the

decoding algorithm a is the decoded message word.
Suppose both errors are in a, then wt(a) =5+2 if the errors are unidirectional

errors or wt(a)=5 if the errors are symmetry errors with wt(u’)=2. The two
symmetry errors in a will cause u’ = u” with w(p) # 0. Thus the errors can be corrected

by Step 2(ii)(b) in the decoding algorithm. For the remaining case, we will use Step
2(iv) which is similar to Step 2(ii)(b) to correct the errors.
Refer to Steps 2(ii)(b) and 2(iv), we now describe how to construct the

set
0
g(Zmi iJ:u’ and mX =y’ ;.

Q:{m:(mo,ml,"', Mp)eM rd

We partition M into a number of equivalent classes, each denoted by Vi for
i=0,1,2,---,15 and j=0,1,2,---,10 using two equivalent relations, S and Z as given
below

VabeM, aSb ifandonlyif aX = bX.

Obviously S is an equivalent relation and thus M is partitioned into 16 equivalent classes,
denoted by Vg, V4, -+, Vi5, Where

Vi={aeM | aX isthe binary representation of integeri}.

Let Z be an equivalent relation defined on V, such that

I
va:(aov ay, - alO)’ b:(bO’ bll ] blO)GVil
0 10 _
azb ifandonlyif > ack=>bk.
k=0 k=0

Apparently Z is an equivalent relation on V; Vi. Thus, each V; can be
further  partitioned into 11  equivalent classes, denoted by Vi,

j=0,1,2,---,10 where V; = {(ao, 0, ) €V | Tl ack =] } Therefore

10 15 15 10

vi=Jv; and M=Jvi=UJ UV.

par i=0 i=0 j=0



Thus for a received word w = (y’, a, u’), if y’ is the binary form of integer i and
g7 (u")=j, then Q=V;. The list of all elements in each Vij, i=0,1,2,---,15 and
j=0,1,2,---,10 is given in appendix.

Assume  that  there exist m;, mg €V;, m, # mq such  that
d(m,,a)=d(mg,a)=2. Then d(m,,mg) < d(mg,a) + d(m,,a)=4, which is a
contradiction as each Vij, is chosen to be a distance 6 constant weight code. Hence if
two errors have occurred in a, there is an unique m e V;; such that d(a, m) = 2.

Example 4. Assume that w =0000 01100111000 011000 is received. Let y’= 0000,
a=01100111000 and u’=011000. Note that wt(a)=5, wt(u)=2 and u'=u" as

u"=ayq (2%20 2i=0+1+2+0+0+5+6+7+0+0+0=10 ) and u'=a;. Since

wW(B)= %+ %+ g%+ 0+ g1
= 0110+ 0011+ 0101+1110+0111
= 1001 = 0,

a is compared to each message word in Vo4, by Step 2(ii)(b) (as y' is the binary
representation of integer 0 and g-(u)=1). From appendix, we get
d (01001111000,a) =2 and thus 01001111000 is the decoded message word according
to Step 2(ii)(b).

Assume that w=0000 01011111000 011000 is received. Let y’=0000, then
a=01011111000 and u’'=011000. Note that wt(a)=6 and wt(u’)=2.
By Step 2(iii), compute s=+ [(Z}ani i)-g7tu) ] As  glu)=1
and Y% ai=0+1+0+3+4+5+6+7+0+0+0=4, s=4-1=3. Thus
a+e, =01001111000 is the decoded message word according to Step 2(iii).

Assume that w=0000 01001111010 010000 is received. Let y’=0000, then
a=01001111010 and u' = 010000. Note that wt(a) =6 and wt(u’) =1. Obviously
two errors have occurred separately ina and u’. As

W(B) =S5+ S8 + B9 + L0 4+ Bl 4 p13
=0110+1010+0101+1110+0111+1011 =1011
=1011= g%,

Then a+e;; =01001111000 is the decoded message word according to Step 1(ii).



4. Conclusion

We make a few remarks to conclude this paper.

(M)

The information rate of the code we constructed is 0.4048, which is good compare
to most commonly used codes.

(if) The main theorem we proved is also true over any arbitrary finite field.
(iii) The check rows of Golay code, C,3, are also independent. Using our method, a
4 EC-AUED code could be constructed.
(iv) We do not have an efficient algorithm to compute V. This may be a future
research problem.
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Appendix
15 10 10
M=UJ UV, i=01-+15 and j=0,1--10. V;=JV;, =01 15
i=0 j=0 j=0
j Vo 4 10010011001 10 ;
0| 00010011110 | 5 01010010110
1] 01001111000 | 6 01000111010 ] Vi
00011011100 0 11000101010
2 13228838312 10001100011 10011001100
01101100001
s | 10001011100 | 7 11100001100
10010100110 10000110101 1| 00001110011
01101001010
4| 01010101001 | 8 01110011000
00111000110 00101010101 2 10101000101
10000011110 11110001000
5| 00001001111 10010110001
17100011000 | @ 10011100100
01101100010 3 10010011010
6 | oo100111100 |10 00111010001
10010001101 00110101100
7 | 01100001011 | Ve 4| 00011110100
10011110000 | o 38822381322 5 11100100100
8| 01000101110 10101010001 10100010011
01001010011 01011000011
9 | ooo11100011 | 1! ggéégiiéggg 6 10000110110
11010010001 01110110000
10| 01110001100 | 2 11001000011 7 10111000010
00010110101 | 3 01010101010 01000111001
10101010010 22283}88%33 8 | 10001001011
10110010100
] Vij 4 | 10010100101 '+ 4 | 4145100111000
0| 11010000101 | 5 01100100011 01011101000
01100110100 28%13882123 10| 11010000110
1] 11000101001
10010110010 | ¢ 00101101001 j v
4]
LOLOLO0OLIO 2 ) 10100000111 0| 01110001010
2| 01101001001
00111010010 | 8 01110100100 00101000111
00110010011 00010110011
3| 01001101100 11001000110
00001011011 | 9 01000101101
00010110110 1 10110000101
10011011000 01011010010
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10

10100101001

01100100110
11101001000
10001110001

00101101100
10001011010

00110010110
01100001101

00100111010
10010001011
01001010101

00011100101

10101010100
00011001110

01110100001
10000100111

V5j

10010110100

00111010100
01000010111
01100110010

00101111000
10011001001
00010100111

01011000110
10100010110

01001101010
01100011001

10001100101
01000111100
00110101001

10001001110
01111001000
00011110001

00011011010
11100100001

10000110011
11100001010

00101010011
01101100100

00001110110
10110010001

Ve
10110000110

01110001001
11001000101
10100101010

00010011011
01010101100
10001110010

01100100101
11000010011
10111010000

10001011001
00000110111
01100001110

00111000011
01001010110

00110010101
00011100110

00100111001

01010000111
01101011000

01000101011
00111101000

V7

00001110101
01010111000
01101001100

10011001010
00001011110

10010011100
01100110001

10101000011
01100011010

10001100110
10100010101
01011000101
00110101010

00011110010
01001101001

10111000100
11000000111

10001001101
01010010011
10101101000

00011011001

10110010010
11100001001

10000011011
11000101100

Vg j
11000110001

01100101100
00100011011
11000011010

00000111110
11011100000

00111001010

00110011100
10100100011

01010100101
11101000010

01010001110
00101100110
11100010100

10110100100
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10

10000101101
01100000111

11001001100
00010111001

01011011000

Vg
00010101101
10101001010

10100011100
01011001100

11000100101

01101000101
11000001110
01010110001

01010011010
00101110010
10011000011

10010010101

10000111001
01100010011

00101011001
01000110110
00110100011

00001111100
01111000010

01001001011
01110010100

01100111000
11010001001
10101100001

Vioj

10001111000
01101010010

00011000111
11110010000

10

00110110100
00001101011
11000011001

01110000011
00000111101

00111001001
01010100110
01001011100

00011101100
10100001011

01110101000
00101100101
10000101110
10001010011

01011110000
00101001110

10110001100

10011010100
00100110011

Vi j
11100000011

10101001001
11000100110

10001101100
01010110010
01101000110

11110000100
00011111000

10010010110
11100101000

10000111010
01010011001
00101110001

00101011010

10110011000
01001100011

10

11010100001

10001000111
01000011110
00110001011

10100110100
00010101110
00011010011

Vi

00001101110
10110001001
11000011100

01110000110
10010101100
10011010001

01100101010
00111001100

01001110010
10100100101

10100001110
00110110001

00110011010
10001010110

01010100011
01001011001

11100010010
00011101001

00100110110
10010000111
10101011000

10000101011
00101001011

Vi

00111011000
01000011011

01011100001
10100110001
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10

01011001010
11101010000
10100011010

00101110100
10011000101
11000100011
01010011100

10001101001
01101000011

01001100110
11110000001

11010100100
10010010011

01111000100

01101101000
00011010110

00001111010
11100000110

10101001100
01110010010
10010111000

10

Vigj

01000100111
11001001001
00111100100
10011010010

00001101101

01110000101
10100100110

00010010111
01100101001

01001110001

10100001101
01001011010

00110011001
10001010101
00011101010

00010111100

01010001011
00101100011
11100010001

10110100001
11000110100

00100011110
11111000000

10

Vis |

01110010001
01011100010
10100110010

01010110100
10011000110

01011001001
10100011001
10001101010

01100010110
10000111100

11000001011
10111001000
00110100110

01001100101
01001001110

11010001100
10101100100

01000110011
00111110000

11100000101
00001111001




