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Abstract. We use the Adomian decomposition method to study a nonlinear wave equation. The
decomposition method plays an important role in a wide class of differential and integral equations,
stochastic and deterministic problems (linear or nonlinear) in Mathematics and Physics. The method
provides solution without linearization, perturbation, or unjustified assumptions. An analytic
solution of a nonlinear wave equation in the form of a series with easily computable components
using the decomposition method will be determined. The nonhomogeneous equation is effectively
solved by employing the phenomena of the self-canceling “noise” terms. The phenomena is useful
in demonstrating a fast convergence of the exact solution.

1. Introduction

In this article we will concentrate on the goal of obtaining an analytic solution of a
nonlinear wave equation in the form of a series by utilizing the Adomian decomposition
method [1-4]. The method is a series solution technique that tackles any mathematical
and physical problems directly and is relatively easy to obtain an accurate and rapidly
convergent series solution. It is based on the Taylor Series, except that Adomian
decomposition method expands the solution about a function, instead of a point. The
decomposition method provides a reliable technique that requires less work if compared
with the traditional techniques and does not require unjustified assumptions,
linearization, or perturbation.

The paper is organized as follows. In the remainder of this Section we briefly
discuss the nonlinear wave equation (1.1). In Section 2 we give outline of the proposed
method. In the final Section 3 we utilize two homogeneous and one nonhomogeneous
nonlinear examples to illustrate the characteristic properties of the decomposition
method.

We consider the nonlinear wave equation of the form

F(x, t, U, Uy, U;) = Uy + U2 = g(x, t), (1.1
with the initial condition

u(x, 0) = f(x).
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The equation (1.1) is of the general form u; + c(u, u,)u, = 0, of which two special cases
¢ = constant and c=u were considered in [6-9,11]. The nonlinearity of the x-
derivative term in (1.1) implies, as we demonstrate, that the solution u = u(x,t) is not

constant along the characteristic curves. However, the velocity of specific points x on
the wave is related to the nature of the wave form at those points as was the case for the
quasilinear equation which is considered in [7,9].

2. Outline of the method
To apply the decomposition method, we write equation (1.1) in an operator form

L (u(x,t)) = ¢(x,t) — Nu (2.1)

with Nu = (uy)? and where the differential operator L, is given by

Lt :O’t_

Itis clear that L, is invertible and L;? is the one-fold integration defined by
FRORNOL
Applying the inverse operator L;? to both sides of (2.1) yields
Le'Leu(x, 1) = L' ((x, 1)) — Le*(Nu)
from which it follows that
u(x,t) = f(x) + LIt (g(x, 1)) — Li*(Nu) . (2.2)
The decomposition method [4] consists of decomposing the unknown function
u(x,t) into a sum of components defined by the decomposition series

u(x,t) = ug(x,t) + ug(x,t) + -« + up(x,t) + -+ = iun(x,t), (2.3)
n=0

and the nonlinear term  Nu(u, )2 be expressed in the A, Adomian’s polynomials; thus

Nu = >, A, where the A, polynomials are formally generated by specific formulas
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[1-3]. In the following, we outline the framework to generate these polynomials, where
it was defined that

Ay = (on)2
A = 2up Uy
AZ = U]i + 2U0XU2X (24)

A; = 2Ug Uy + 2Up Us,

It is important to note that A, depends only on ug, A depends only on uy and uj, A,
depends only on ug, u; and u, etc.
To solve (2.2), we substitute (2.3) and (2.4) into (2.2) to obtain

Dup(xt) = F() + LH(g(x. 1) — L{l(ZAn(x,t)J. (2.5)
n=0 n=0
The components ug, Ug, Uy, ---, 0f u(x,t) in (2.3) are defined in a recurrence

relationship
Uo(x,t) = F(x) + L' (4(x,1)),

(2.6)
Un+1(X,t) = _Lt_l(An(th))v n=0.

The scheme (2.6) is obviously equivalent to

uo(x,t) = f(x) + L' (4(x, 1)),
Ul(X,t) = _Lt_l(AO(th))! (27)
Uz(X,t) = _Lt_l(Al(X!t))x

As a result of (2.7), the terms of ug, ug, Uy, ---, are easily calculated. With these
components evaluated, the solution u(x,t) of (2.1) follows immediately in a

decomposition series form upon using (2.3). However, as mentioned in an earlier
section, the series form obtained for u(x,t) mostly yields the exact solution in a closed

form as will be seen in later section. It is formally justified by [1-3] that few components
of the series usually evaluate the higher accuracy level of approximation.

Adomian and Rach [5] and Wazwaz [10] have investigated the phenomena of the
self-canceling “noise” terms whose sum vanishes in the limit. An important observation
was made that “noise” terms appear for nonhomogenous cases only. Further, it was
formally justified that if terms in u, are canceled by terms in u;, even though u;
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includes further terms, then the remaining non canceled terms in u, may constitute the
exact solution of the equation.

In the next section, we describe some examples that illustrate the above outlined
framework of the decomposition method and the noise terms phenomenon.

3. Examples

Example 1. We consider the nonlinear differential equation discussed in [11]. The
problem is given by

U +uZ =0, u(x 0)=-x2 (3.1)

Following the scheme (2.7) gives

Up = —x2, 3.2)
and
U = -Li(Ag) = —L*[(up, )2 ] = -ax2t, (33)
up = —Lit(A) = —Lit2up Uy | = —16%2t2, (3.4)
Uz = —Lit(Ag) = —Li[(ug,)? + 2u Uy, | = —64x213, (3.5)

and so on for other components.
Substituting (3.2)-(3.5) into (2.5), the solution u(x,t) of (3.1) in a series form

u(x,t) = — x2 — 4x2t — 16x2t2 — 64x2t3 — ... (3.6)
follows immediately. After some tedious algebra factoring, (3.6) can be rewritten as
u(x,t) = x2[-1- 4t — (4t)2 — (4t)3 — -] (3.7)
It can be easily observed that (3.7) is equivalent to the exact solution

XZ

u(x,t) = o1

This can be verified through substitution.
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Example 2. Next we will solve the equation of the form
up +u =0, u(x, 0) = ax
Using (2.6) to determine the individual terms of the decomposition, we find

Ug = ax,
and

U = —Li'(Ao) = -Li*[(up,)?] = —a’t. (38)
As aresult of (3.8), u, =0, for k > 2. However, the exact solution
u(x,t) = ax —a?t,
is obtained by adding up and u;. This result can be verified through substitution.

Example 3. Finally to illustrate the technique discussed above for the nonhomogenous
equation, we consider an equation of the form

Uy +u2 =1+cosh2x, u(x, 0) =sinhx (3.9)
Using (2.6) to determine the individual terms of the decomposition, we find

Ug = sinhx +t + tcosh?2x, (3.10)
and

b = -Li(Ay) = ~Li*(uo,)?]
. 4 . (3.11)
= —t cosh? x — 2t2 cosh? x sinhx — §t3 cosh? x sinh?x,
and so on for other components. By canceling the noise terms t cosh?x and — t cosh2x

in (3.10) and (3.11), the remaining non canceled terms in U, provides the exact solution
of (3.9) that will provide the exact solution given by

u(x,t) =t + shx.

In closing, the Adomian decomposition methodology is very powerful and efficient
in finding exact solutions for wide classes of problems. The convergence can be made
faster if the noise terms appear for the nonhomogeneous case as discussed in [5,10]. The
method avoids the difficulties and massive computational work. These schemes showed
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superiority over existing techniques, particularly by determining the analytic solution and
by minimizing the size of computations and work.
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