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Abstract.  We use the Adomian decomposition method to study a nonlinear wave equation.  The 
decomposition method plays an important role in a wide class of differential and integral equations, 
stochastic and deterministic problems (linear or nonlinear) in Mathematics and Physics.  The method 
provides solution without linearization, perturbation, or unjustified assumptions.  An analytic 
solution of a nonlinear wave equation in the form of a series with easily computable components 
using the decomposition method will be determined.  The nonhomogeneous equation is effectively 
solved by employing the phenomena of the self-canceling  “noise” terms.  The phenomena is useful 
in demonstrating a fast convergence of the exact solution.   

  
 
1. Introduction 
 
In this article we will concentrate on the goal of obtaining an analytic solution of a 
nonlinear wave equation in the form of a series by utilizing the Adomian decomposition 
method [1-4].  The method is a series solution technique that tackles any mathematical 
and physical problems directly and is relatively easy to obtain an accurate and rapidly 
convergent series solution.  It is based on the Taylor Series, except that Adomian 
decomposition method expands the solution about a function, instead of a point.  The 
decomposition method provides a reliable technique that requires less work if compared 
with the traditional techniques and does not require unjustified assumptions, 
linearization, or perturbation. 

 The paper is organized as follows.  In the remainder of this Section we briefly 
discuss the  nonlinear wave equation (1.1).  In Section 2 we give outline of the proposed 
method.  In the final Section 3 we utilize two homogeneous and one nonhomogeneous 
nonlinear examples to illustrate the characteristic properties of  the decomposition 
method.    

We consider the nonlinear wave equation of the form  
 

     ),(),,,,( 2 txuuuuutxF xttx φ=+= ,                    (1.1) 
 

with the initial condition 
 

).()0,( xfxu =  
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The equation (1.1) is of the general form ,uuucu xxt 0),( =+  of which two special cases 
constantc =  and uc =  were considered in [6-9,11].  The nonlinearity of the  x-

derivative term in (1.1) implies, as we demonstrate, that the solution ),( txuu =  is not 
constant along the characteristic curves.  However, the velocity of specific points x on 
the wave is related to the nature of the wave form at those points as was the case for the 
quasilinear equation which is considered in [7,9]. 
 
 
2. Outline of the method 
 
To apply the decomposition method, we write equation (1.1) in an operator form 
 

         NutxtxuLt −= ),()),(( φ     (2.1) 
 

 with  2)( xuNu =  and where the differential operator  tL  is given by 
 

.
t

Lt ∂
∂=  

 It is clear that tL  is invertible and 1−
tL  is the one-fold integration defined by  

 

.)()(
0

1 ∫ ⋅=⋅− t
t dtL  

 
Applying the inverse operator 1−

tL  to both sides of (2.1) yields  
 

)()),((),( 111 NuLtxLtxuLL tttt
−−− −= φ  

 
from which it follows that 
 

)()),(()(),( 11 NuLtxLxftxu tt
−− −+= φ .                             (2.2) 

 
 The decomposition method [4] consists of decomposing the unknown function 

),( txu  into a sum of components defined by the decomposition series 
 

∑
∞

=
=++++=

0
10 ),(),(),(),(),(

n
nn txutxutxutxutxu LL ,           (2.3) 

 
and the nonlinear term  2)( xuNu  be expressed in the nA  Adomian’s polynomials; thus 

nn ANu ∞
=∑= 0  where the nA  polynomials are formally generated by specific formulas 
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[1-3].  In the following, we outline the framework to generate these polynomials, where 
it was defined that  
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It is important to note that 0A  depends only on   10 , Au  depends only on  0u  and ,1u 2A  
depends only on  10 , uu  and 2u  etc. 

To solve (2.2), we substitute (2.3) and (2.4) into (2.2) to obtain 
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The components ,,,, 210 Luuu  of ),( txu  in (2.3) are defined in a recurrence 
relationship  
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The scheme (2.6) is obviously equivalent to  
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                  (2.7) 

 
As a result of (2.7), the terms of  ,,,, 210 Luuu  are easily calculated.  With these 
components evaluated, the solution ),( txu  of (2.1) follows immediately in a 
decomposition series form upon using (2.3).  However, as mentioned in an earlier 
section, the series form obtained for ),( txu  mostly yields the exact solution in a closed 
form as will be seen in later section.  It is formally justified by [1-3] that few components 
of the series usually evaluate the higher accuracy level of approximation.  

Adomian and Rach [5] and Wazwaz [10] have investigated the phenomena of the 
self-canceling “noise” terms whose sum vanishes in the limit.  An important observation  
was made that “noise” terms  appear for nonhomogenous cases only.  Further, it was 
formally justified that if terms in 0u  are canceled by terms in  ,1u  even though 1u  
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includes further terms, then the remaining non canceled terms in 0u  may constitute the 
exact solution of the equation. 
 In the next section, we describe some examples that illustrate the above outlined 
framework of the decomposition method and the noise terms phenomenon. 
 
 
3.  Examples 
 
Example 1.  We consider the nonlinear differential equation discussed in [11].  The 
problem is given by  

 
  02 =+ xt uu ,    .)0,( 2xxu −=                                     (3.1) 

 
Following the scheme (2.7) gives 
 
                                                                ,2

0 xu −=    (3.2) 
 
and 
 
 [ ] ,4)()( 22

0
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0
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1 txuLALu
xtt −=−=−= −−              (3.3) 
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xxtt −=−=−= −−                   (3.4) 

 
[ ] ,642)()( 32
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3 txuuuLALu
xxxtt −=+−=−= −−        (3.5) 

 
and so on for other components.  

Substituting (3.2)-(3.5) into (2.5), the solution ),( txu of (3.1) in a series form 
 
                       L−−−−−= 322222 64164),( txtxtxxtxu                 (3.6) 

 
follows immediately.  After some tedious algebra factoring, (3.6) can be rewritten as 
 

  [ ] .)4()4(41),( 322 L−−−−−= tttxtxu                           (3.7) 
 
It can be easily observed that (3.7) is equivalent to the exact solution 
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−
=

t
xtxu . 

 
This can be verified through substitution.  
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Example 2.  Next we will solve the equation of the form  
 

02 =+ xt uu ,     axxu =)0,(  
 

Using (2.6) to determine the individual terms of the decomposition, we find 
 

,0 axu =  
and 

 
                            [ ] .)()( 22
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1 tauLALu
xtt −=−=−= −−                         (3.8) 

 
As a result of (3.8),  ,0=ku  for  .2≥k    However, the exact solution 

 
taaxtxu 2),( −= , 

 
is obtained by adding  0u  and  .1u   This result can be verified through substitution.  
 
Example 3. Finally to illustrate the technique discussed above for the nonhomogenous 
equation, we consider an equation of the form  

 
             ,cosh1 22 xuu xt +=+      xxu sinh)0,( =                           (3.9) 

 
Using (2.6) to determine the individual terms of the decomposition, we find 

 
      xttxu 2

0 coshsinh ++= ,                               (3.10) 
and  
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             (3.11) 

 
and so on for other components.  By canceling the noise terms xt 2cosh  and xt 2cosh−   
in (3.10) and (3.11), the remaining non canceled terms in 0u  provides the exact solution 
of (3.9) that will provide the exact solution given by  
 

xshttxu +=),( . 
 

In closing, the Adomian decomposition methodology is very powerful and efficient 
in finding exact solutions for wide classes of problems.  The convergence can be made 
faster if the noise terms appear for the nonhomogeneous case as discussed in [5,10].  The 
method avoids the difficulties and massive computational work.  These schemes showed 
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superiority over existing techniques, particularly by determining the analytic solution and 
by minimizing the size of computations and work. 
 
Acknowledgement. I wish to thank the anonymous referee for the helpful criticisms. 
 
 
References 
 
1. G. Adomian, Solving Frontier Problems of  Physics: The Decomposition Method, Kluwer, 

Boston, 1994. 
2. G. Adomian, A new approach to nonlinear partial differential equations, J. Math. Anal. Appl. 

102 (1984), 420-434. 
3. G. Adomian, A review of the decomposition  method in applied mathematics, J. Math. Anal. 

Appl. 135 (1988), 501-544. 
4. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, San Diego,  1986. 
5. G. Adomian and R. Rach, Noise terms in decomposition solution series, Comp. Math. Appl. 

24 (1992), 61-64. 
6. C.V.D. Forrington, A Fourier series method for the numerical solution of a class of parabolic 

partial differential equations, C.A.C.M. 7 (1964), 179-181. 
7. D. Kaya, On a solution of the unidirectional nonlinear wave equation by the  decomposition  

method, to appear.  
8. B.B. Sanugi and D.J. Evans, A Fourier series method for the numerical solution of the 

nonlinear advection problem, Appl. Math. Let. 1 (1988), 385-389. 
9. A.M. Wazwaz, A new approach to the nonlinear advection problem: an application of  the 

decomposition  method, Appl. Math. Comp. 72 (1995), 175-181. 
10. A.M. Wazwaz, Necessary conditions for the appearance of noise terms in decomposition 

solution series, J. Math. Anal. Appl. 5 (1997), 265-274. 
11. E. Zauderer, Partial Differential Equations of Applied Mathematics, J. Wiley, New York, 

1989. 
 
 
Keywords:  the decomposition method, a nonlinear wave equation, the quasilinear equation, the 
self-canceling  “noise” terms. 
 
C.R. Category:  G.1.8   
 


