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Abstract.  This paper shows that the arithmetic mean-geometric mean inequality is a direct 
consequence of a rearrangement inequality of Hardy et al. 

 
 
1. Introduction 
 
In this paper, it is shown that the classical arithmetic mean-geometric mean inequality 
can be obtained as a corollary to a seemingly unrelated rearrangement inequality of 
Hardy et al. [1, Theorem 368, p. 261]. 
 
 
2. Preliminaries 
 
If   ( ) n

nxxx Rx ∈= ,,, 21 L   is   any   n-tuple   of   real   numbers,   we   denote  by   
),,,(* **

2
*
1 nxxx L=x  (respectively ),,,(' ''

2
'
1 nxxx L=x )    the   n-tuple   in  nR  whose 

components are those of  x  arranged in nonincreasing (respectively nondecreasing)  
order of magnitude, i.e., **
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1 nxxx ≥≥≥ L  (respectively ''
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1 nxxx ≤≤≤ L ) and  
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ii xx ρ= ), ,1 ni ≤≤ for some permutation π (respectively  
ρ) of the integers  .,,2,1 nL  
      If  n

naaa Ra ∈= ),,,( 21 L  and  ,),,,( 21
n

nbbb Rb ∈= L  then the following 
rearrangement inequalities of Hardy et al. [1, Theorem 368, p. 261] hold: 
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where equality on the right (respectively left) holds if and only if  a  and  b  are similarly 
(respectively oppositely) ordered, i.e., if and only if 0))(( ≥−− jiji bbaa    
(respectively  0))(( ≤−− jiji bbaa )  for all integers  i and  j such that  ni ≤≤1  and  

.1 nj ≤≤  
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3. The arithmetic mean-geometric mean inequality 
 
We shall now show that the following arithmetic mean-geometric mean inequality can  
be obtained as a rearrangement inequality by demonstrating that it is a direct consequence 
of the rearrangement inequality of Hardy et al. given in (1). 
 
Theorem.  For any integer   ,1≥n  let   nxxx ,,, 21 L  be  n  nonnegative numbers. Then 
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where equality holds if and only if    .21 nxxx === L  
  
Proof.  Clearly the theorem is equivalent to entailing that 
 

nxxx n ≥+++ L21                                                 (2) 
 

whenever 121 =nxxx L  where  nixi ,,2,1,0 L=>  and equality holds in (2) if and 
only if .,,2,1,1 nixi L==   
     Assume that 121 =nxxx L  where .,,2,1,0 nixi L=>   Let 0y  be any given 
positive number.  Define 
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Then it is easy to see that  0yyn =  and , ,  ,2 ,1,1 nkx
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 Let ),,,( 21 naaa L=a  and ),,,( 21 nbbb L=b  where ,  , 1

1 iyiii bya == −  

.1 ni ≤≤   Then it is obvious that 
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Thus, from (1), we have 
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whence (2) follows in view of (3). 
 To establish the condition for equality, we first note that there is no loss in generality 
in assuming that 
 

.21 nxxx ≥≥≥ L                                                     (5) 
 

 If   ),1(21 ==== nxxx L  then obviously equality holds in (2).  On the other 
hand, if not all of  nxxx ,,, 21 L  are equal, then there is at least one strict inequality in 
(5), say 1+> kk xx  for some k,  .11 −<≤ nk  
 There is no loss in generality in assuming that ,,,2,1,1 nixi L=≠   since any ix  
with value 1 can just be deleted from the left of the inequality (2) which can then be 
adjusted accordingly with  1−n  replacing  n on the right.  Moreover, we can also choose 
k in such a way that  .1 1+>> kk xx   Thus 
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in view of  (6)  so that  a  and  b  cannot be oppositely ordered and so the inequality on 
the left of  (1)  is strict. 
 It follows that the inequality in  (4)  and consequently the inequality in  (2)  are strict. 
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