On Sums of *k-EP* Matrices

A.R. MEENAKSHI AND S. KRISHNAMOORTHY

Department of Mathematics, Annamalai University, 26, North Second Cross, Mariyappa Nagar, Annamalai Nagar - 608 002, Tamil Nadu, South India

Abstract. Necessary and Sufficient conditions for the sums of k-EP matrices to be k-EP are discussed. As an application it is shown that sum and parallel sum of parallel summable k-EP matrices are k-EP.

1. Introduction

Throughout we shall deal with $C_{n \times n}$, the space of $n \times n$ complex matrices. Let C_n be the space of complex *n*-tuples. For $A \in C_{n \times n}$, let A^T , A^* denote the transpose, conjugate transpose of A, let A^- be a generalized inverse $(AA^-A = A)$ and A be the Moore-Penrose inverse of A[5]. A matrix A is called EP_r if $\rho(A) = r$ and $N(A) = N(A^*)$ or $R(A) = R(A^*)$ where $\rho(A)$ denotes the rank of A; N(A) and R(A) denote the null space and range space of A respectively. Throughout let 'k' be a fixed product of disjoint transpositions in $S_n = \{1, 2, \dots, n\}$ and K be the associated permutation matrix. A matrix $A = (a_{ij}) \in C_{n \times n}$ is k-hermitian if $a_{ij} = \overline{a}_{k(j),k(i)}$ for $i, j = 1, \dots, n$. A theory for k-hermitian matrices is developed in [1]. For $x = (x_1, x_2, \dots, x_n)^T \in C_n$, let us define the function $\mathbf{k}(x) = (x_{k(1)}, x_{k(2)}, \dots, x_{k(n)})^T \in C_n$. A matrix $A \in C_{n \times n}$, is said to be k-EP if it satisfies the condition $Ax = 0 \Leftrightarrow A^* \mathbf{k}(x) = 0$ or equivalently $N(A) = N(A^*K)$. In addition to that, A is k-EP $\Leftrightarrow KA$ is EP or AK is EP and A is k-EP $\Leftrightarrow A^*$ is k-EP. Moreover, A is said to be k-EP and of rank r. For further properties of k-EP matrix to be k-EP. As an application it is shown that sum and parallel summable k-EP matrices are k-EP.

2. Sums of *k*-EP matrices

Lemma 2.1. Let $A_1, A_2, \dots, A_m \in \mathbf{C}_{n \times n}$ and let $A = \sum_{i=1}^m A_i$. Consider the following conditions:

(a)
$$N(A) \subseteq N(A_i)$$
 for $i = 1, \dots, m$;
(b) $N(A) = \bigcap_{i=1}^m N(A_i)$;
(c) $\rho(A) = \rho \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$;
(d) $\sum_{i=1}^m \sum_{j=1}^m A_i^* A_j = 0$;
(e) $\rho(A) = \sum_{i=1}^m \rho(A_i)$.

Then the following statements hold:

- (i) Conditions (a), (b) and (c) are equivalent.
- Condition (d) implies (a), but condition (a) does not implies (d). (ii)
- (iii) Condition (e) implies (a), but condition (a) does not implies (e).

Proof.

(i) (a)
$$\Leftrightarrow$$
 (b) \Leftrightarrow (c): $N(A) \subseteq N(A_i)$ for each $i \Rightarrow N(A) \subseteq \cap N(A_i)$.

Since $N(A) = N(\sum A_i) \supseteq N(A_1) \cap N(A_2) \cdots \cap N(A_m)$, it follows that $N(A) \supseteq \cap N(A_I).$

Always $\bigcap_{i=1}^{m} N(A_i) \subseteq N(A)$. Hence $N(A) = \bigcap_{i=1}^{m} N(A_i)$. Thus (b) holds. Now,

$$N(A) = \bigcap_{i=1}^{m} N(A_i) = N \left(\begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix} \right)$$

Therefore,

$$\rho(A) = \rho\left(\begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}\right)$$
 and (c) holds.

118

Conversely, Since
$$\rho\left(\begin{bmatrix} A_1\\ \vdots\\ A_m \end{bmatrix}\right) = \rho(A)$$
 and
 $N\left(\begin{bmatrix} A_1\\ \vdots\\ A_m \end{bmatrix}\right) = \bigcap_{i=1}^m N(A_i) \subseteq N(A) \Rightarrow N(A) = \bigcap_{i=1}^m N(A_i)$

and (b) holds.

Hence, $N(A) \subseteq N(A_i)$ for each *i* and (a) holds.

(ii)
$$(d) \Rightarrow (a)$$
:

Since
$$\sum_{i \neq j} A_i^* A_j = 0,$$
$$A^* A = (\sum A_i)^* (\sum A_i)$$
$$= (\sum A_i^*) (\sum A_i)$$
$$= \sum A_i^* A_i$$
$$N(A) = N(A^* A) = N(\sum A_i^* A_i)$$
$$= N\left(\begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}^* \begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}\right)$$
$$= N\left(\begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix}\right)$$
$$= N(A_1) \cap N(A_2) \cdots \cap N(A_m)$$
$$= \bigcap_{i=1}^m N(A_i).$$

Hence $N(A) \subseteq N(A_i)$ for each *i* and (a) holds.

 $(a) \Rightarrow (d)$: Let us consider the following example.

Let
$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

and $A_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$. $A_1 + A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Clearly, $N(A_1 + A_2) \subseteq N(A_1)$. Also $N(A_1 + A_2) \subseteq N(A_2)$. But $A_1^*A_2 + A_2^*A_1 \neq 0$.

(iii) $(e) \Rightarrow (a)$:

If rank is additive, that is $\rho(A) = \sum \rho(A_i)$, then by [3], $R(A_i) \cap R(A_j) = \{0\}, i \neq j \Rightarrow N(A) \subseteq N(A_i)$ for each *i* and (a) holds.

 $(a) \Rightarrow (e)$: Consider the example,

Let
$$A_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}$
 $A_1 + A_2 = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$.

Here, $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$. But $\rho(A_1 + A_2) \neq \rho(A_1) + \rho(A_2)$.

Theorem 2.2. Let $A_1, A_2, \dots, A_m \varepsilon C_{n \times n}$ be k-EP matrices. If any one of the conditions (a) to (e) of Lemma 2.1 holds, then

$$A = \sum_{i=1}^{m} A_i \quad \text{is } k\text{-}EP$$

Proof. Since each A_i is *k*-*EP*, $N(A_i) = N(A_i^*K)$ for each *i*.

Now, $N(A) \subseteq N(A_i)$ for each i

$$\Rightarrow N(A) \subseteq \bigcap_{i=1}^{m} N(A_i) = \bigcap_{i=1}^{m} N(A_i^*K)$$
$$\subseteq N(A^*K)$$

and $\rho(A) = \rho(A^*K)$. Hence $N(A) = N(A^*K)$. Thus A is k-EP. Hence the Theorem.

Remark 2.3. In particular, if A is non-singular the conditions automatically hold and A is *k*-EP. Theorem 2.2 fails if we relax the conditions on the A_i 's.

Example 2.4. Consider $A_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Let k = (1, 2), then the associated permutation matrix

$$K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad KA_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is } EP.$$

Therefore, A_1 is *k*-*EP*.

$$KA_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \text{ is not } EP. \text{ Therefore } A_2 \text{ is not } k\text{-}EP$$
$$A_1 + A_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \text{ and } K(A_1 + A_2) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

which is not *EP*. Therefore $(A_1 + A_2)$ is not *k*-*EP*. However,

$$N(A_1 + A_2) \subseteq N(A_1^*K) \subseteq N(A_1)$$
 and $N(A_1 + A_2) \subseteq N(A_2^*K) \subseteq N(A_2)$.

Moreover, $\rho\left(\begin{bmatrix}A_1\\A_2\end{bmatrix}\right) = \rho(A_1 + A_2).$

Remark 2.5. Theorem 2.2 fails if we relax the condition that A_i 's are *k*-*EP*. For, let

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

and let the associated permutation matrix be $K = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

A.R. Meenakshi and S. Krishnamoorthy

$$KA_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ is not } EP.$$

Therefore A_1 is not *k*-*EP*.

$$KA_2 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ is not } EP$$

Therefore A_2 is not *k*-*EP*.

$$A_1 + A_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & -1 & 0 \end{bmatrix}, \quad K(A_1 + A_2) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

is not *EP*. Therefore, $(A_1 + A_2)$ is not *k*-*EP*. But $A_1^*A_2 + A_2^*A_1 = 0$.

Remark 2.6. The conditions given in Theorem 2.2 are only sufficient for the sum of *k*-*EP* matrices to be *k*-*EP*, but not necessary is illustrated in the following example.

Example 2.7. Let $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$. For $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, A_1 and A_2 are $k - EP_2$. The conditions in Theorem 2.2 does not hold. However $(A_1 + A_2)$ is *k*-*EP*.

Remark 2.8. If A_1 and A_2 are *k*-*EP* matrices, then by Theorem 2.4(p.221,[4]), $A_1^* = H_1 K A_1 K$ and $A_2^* = H_2 K A_2 K$ where H_1 and H_2 are non-singular $n \times n$ matrices.

If $H_1 = H_2$, then $A_1^* + A_2^* = H_1 K (A_1 + A_2) K$ $\Rightarrow (A_1 + A_2)^* = H_1 K (A_1 + A_2) K \Rightarrow (A_1 + A_2)$ is k-EP.

If $(H_1 - H_2)$ is non-singular, then the above conditions are also necessary for the sum of *k*-*EP* matrices to be *k*-*EP* is given in the following Theorem.

Theorem 2.9. Let K be the permutation matrix associated with the fixed transposition 'k'. Let $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$ such that $(H_1 - H_2)$ is non-singular. Then $(A_1 + A_2)$ is k-EP if and only if $N(A_1 + A_2) \subseteq N(A_i)$ for some (and hence both) is $\{1, 2\}$.

Proof. Since $A_1^* = H_1KA_1K$ and $A_2^* = H_2KA_2K$, by Remark 2.8, A_1 and A_2 are *k*-*EP* matrices. Since, $N(A_1 + A_2) \subseteq N(A_2)$ by Theorem 2.2, $(A_1 + A_2)$ is *k*-*EP*. Conversely, let us assume that $(A_1 + A_2)$ is *k*-*EP*. By Remark 2.8, there exists a non-singular matrix *G* such that

$$\begin{array}{rcl} \left(A_1+A_2\right)^* &=& GK(A_1+A_2)K\\ \Rightarrow && A_1^*+A_2^* &=& GK(A_1+A_2)K\\ \Rightarrow && H_1KA_1K+H_2KA_2K &=& GK(A_1+A_2)K\\ \Rightarrow && (H_1KA_1+H_2KA_2)K &=& GK(A_1+A_2)K\\ \Rightarrow && H_1KA_1+H_2KA_2 &=& GKA_1+GKA_2\\ \Rightarrow && (H_1K-GK)A_1 &=& (GK-H_2K)A_2\\ \Rightarrow && (H_1-G)KA_1 &=& (G-H_2)KA_2\\ \Rightarrow && LKA_1 &=& MKA_2 \text{ where}\\ L &=& H_1-G \text{ and}\\ M &=& G-H_2\\ Now && (L+M)(KA_1) &=& LKA_1+MKA_1\\ &=& MK(A_2+MKA_1)\\ &=& MK(A_1+A_2)\\ and && (L+M)(KA_2) &=& LK(A_1+A_2) \end{array}$$

By hypothesis, $L + M = H_1 - G + G - H_2 = H_1 - H_2$ is non-singular. Therefore,

$$\begin{split} N(A_1 + A_2) &\subseteq N(MK(A_1 + A_2)) \\ &= N\big((L + M)KA_1\big) \\ &= N(KA_1) \\ &= N(A_1). \end{split}$$

Therefore, $N(A_1 + A_2) \subseteq N(A_1)$. Similarly $N(A_1 + A_2) \subseteq N(A_2)$. Hence the Theorem.

Remark 2.10. The condition $(H_1 - H_2)$ to be non-singular is essential in Theorem 2.9 is illustrated in the following example.

Example 2.11. Let $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ are both *k-EP* matrices for $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Further $A_1^* = A_1 = KA_1K$ and $A_2^* = A_2 = KA_2K \Rightarrow H_1 = H_2 = I$.

 $(A_1 + A_2) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ is also *k-EP*. But $N(A_1 + A_2) \not\subseteq N(A_1)$ (or) $N(A_1 + A_2) \not\subseteq N(A_2)$. Thus Theorem 2.9 fails.

3. Parallel summable *k-EP* matrices

In this section we shall show that sum and parallel sum of parallel summable k-EP matrices are k-EP. First we shall give the definition and some properties of parallel summable matrices as in (p.188, [5]).

Definition 3.1. A_1 and A_2 are said to be parallel summable (p.s.) if $N(A_1 + A_2) \subseteq N(A_2)$ and $N(A_1 + A_2)^* \subseteq N(A_2^*)$ (or) equivalently $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2)^* \subseteq N(A_1^*)$.

Definition 3.2. If A_1 and A_2 are parallel summable then parallel sum of A_1 and A_2 denoted by $A_1 \pm A_2$ is defined as $A_1 \pm A_2 = A_1(A_1 + A_2)^- A_2$. The product $A_1(A_1 + A_2)^- A_2$ is invariant for all choices of generalized inverse $(A_1 + A_2)^-$ of $(A_1 + A_2)$ under the conditions that A_1 and A_2 are parallel summable (p.188, [5]).

Properties 3.3. Let A_1 and A_2 be a pair of parallel summable (p.s.) matrices. Then the following hold:

- $P.1 \quad A_1 \ \pm \ A_2 = A_2 \ \pm \ A_1$
- *P.2* A_1^* and A_2^* are p.s. and $(A_1 \pm A_2)^* = A_1^* \pm A_2^*$
- *P.3* If U is non-singular then UA_1 and UA_2 are p.s. and $(UA_1 \pm UA_2) = U(A_1 \pm A_2)$
- P.4 $R(A_1 \pm A_2) = R(A_1) \cap R(A_2)$ $N(A_1 \pm A_2) = N(A_1) + N(A_2)$
- *P.5* $(A_1 \pm A_2) \pm A_3 = A_1 \pm (A_2 \pm A_3)$ *if all the parallel sum operations involved are defined.*

Lemma 3.4. Let A_1 and A_2 be k-EP matrices. Then A_1 and A_2 are p.s if and only if $N(A_1 + A_2) \subseteq N(A_i)$ for some (and hence both) i $\varepsilon \{1, 2\}$.

Proof. A_1 and A_2 are p.s. $\Rightarrow N(A_1 + A_2) \subseteq N(A_1)$ follows from the Definition 3.1. Conversely, if $N(A_1 + A_2) \subseteq N(A_1)$, then $N(KA_1 + KA_2) \subseteq N(KA_1)$. Also $N(KA_1 + KA_2) \subseteq N(A_2)$. Since A_1 and A_2 are *k*-*EP* matrices, KA_1 and KA_2 are *EP* matrices. $N(KA_1 + KA_2) \subseteq N(KA_1)$ and $N(KA_1 + KA_2) \subseteq N(KA_2)$, therefore $(KA_1 + KA_2)$ is *EP*.

Hence

 $N(KA_{1}+KA_{2})^{*} = N(KA_{1}+KA_{2}) = N(KA_{1}) \cap N(KA_{2}) = N(KA_{1})^{*} \cap N(KA_{2})^{*}.$ Therefore, $N(KA_{1}+KA_{2})^{*} \subseteq N(KA_{1})^{*}, N(KA_{1}+KA_{2})^{*} \subseteq N(KA_{2})^{*}.$

Also, $N(KA_1 + KA_2) \subseteq N(KA)$ by hypothesis. Hence, by Definition 3.1, KA_1 and KA_2 are p.s. $N(KA_1 + KA_2) \subseteq N(KA_1) \Rightarrow N(K(A_1 + A_2))$ $\subseteq N(KA_1) \Rightarrow N(A_1 + A_2) \subseteq N(A_1)$. Similarly, $N(A_1 + A_2)^* \subseteq N(A_1^*)$. Therefore, A_1 and A_2 are p.s. Hence the Theorem.

Remark 3.5. Lemma 3.4 fails if we relax the condition that A_1 and A_2 are *k*-*EP*.

Let
$$A_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Let the associated permutation matrix be

$$K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

 A_1 is k-EP. A_2 is not k-EP. $N(A_1 + A_2) \subseteq N(A_1)$ and $N(A_1 + A_2) \subseteq N(A_2)$, but $N(A_1 + A_2)^* \not\subseteq N(A_1^*)$; $N(A_1 + A_2)^* \not\subseteq N(A_2^*)$. Hence A_1 and A_2 are not parallel summable.

Theorem 3.6. Let A_1 and A_2 be p.s. k-EP matrices. Then $(A_1 \pm A_2)$ and $(A_1 + A_2)$ are k-EP.

Proof. Since A_1 and A_2 are p.s. *k-EP* matrices, by Lemma 3.4,

$$\begin{split} N(A_1 + A_2) &\subseteq N(A_1) & \text{and} & N(A_1 + A_2) \subseteq N(A_2). \\ N(K(A_1 + A_2)) &\subseteq N(KA_1) & \text{and} & N(K(A_1 + A_2)) \subseteq N(KA_2). \\ N(KA_1 + KA_2) &\subseteq N(KA_1) & \text{and} & N(KA_1 + KA_2) \subseteq N(KA_2). \end{split}$$

Therefore, $KA_1 + KA_2 = K(A_1 + A_2)$ is *EP*. Then $(A_1 + A_2)$ is *k*-*EP*. Since A_1 and A_2 are p.s. *k*-*EP* matrices, KA_1 and KA_2 are p.s. *EP* matrices. Therefore,

A.R. Meenakshi and S. Krishnamoorthy

$$R(KA_1)^* = R(KA_1) \text{ and } R(KA_2)^* = R(KA_2)$$

$$R(KA_1 \pm KA_2)^* = R((KA_1)^* \pm (KA_2)^*) \quad [By P.2]$$

$$= R((KA_1)^*) \cap R((KA_2)^*) \quad [By P.4]$$

$$= R(KA_1) \cap R(KA_2) \quad [Since KA_1 \text{ and } KA_2 \text{ are } EP]$$

$$= R(KA_1 \pm KA_2).$$

Thus, $KA_1 \pm KA_2$ is $EP \Rightarrow K(A_1 \pm A_2)$ is $EP \Rightarrow (A_1 \pm A_2)$ is k-EP. Thus $(A_1 \pm A_2)$ is k-EP whenever A_1 and A_2 are k-EP. Hence the Theorem.

Corollary 3.7. Let A_1 and A_2 be k-EP matrices such that $N(A_1 + A_2) \subseteq N(A_2)$. If A_3 is k-EP commuting with both A_1 and A_2 , then $A_3(A_1 + A_2)$ and $A_3(A_1 \pm A_2) = (A_3A_1 \pm A_3A_2)$ are k-EP.

Proof. A_1 and A_2 are k-EP with $N(A_1 + A_2) \subseteq N(A_2)$. By Theorem 2.2, $(A_1 + A_2)$ is k-EP. Now KA_1 , KA_2 and $K(A_1 + A_2)$ are EP. Since A_3 commutes with A_1 , A_2 and $(A_1 + A_2)$, KA_3 commutes with KA_1 , KA_2 and $K(A_1 + A_2)$ and by Theorem (1.3) of [2], $K(A_3A_1)$, $K(A_3A_2)$ and $K(A_3(A_1 + A_2))$ are EP. Therefore, $(A_3A_1, A_3A_2, A_3(A_1 + A_2))$ are k-EP. Now by Theorem 3.6 $(A_3A_1 \pm A_3A_2)$ is k-EP. By P.3 (Properties 3.3),

$$K(A_3(A_1 \pm A_2) = K(A_3A_1 \pm A_3A_2).$$

Since $A_3A_1 \stackrel{\pm}{\pm} A_3A_2$ is *k*-*EP*, $K(A_3A_1 \stackrel{\pm}{\pm} A_3A_2)$ is $EP \Rightarrow K(A_3(A_1 \stackrel{\pm}{\pm} A_2))$ is $EP \Rightarrow A_3(A_1 \stackrel{\pm}{\pm} A_2)$ is *k*-*EP*. Hence the corollary.

References

- 1. R.D. Hill and S.R. Waters, On k-Real and k-Hermitian matrices, *Linear Alg. Appl.* 169 (1992), 17-29.
- 2. I.J. Katz and M.H. Pearl, On *EP_r* and normal *EP_r* matrices, *J. Res. Nat. Bur. Stds.* **70B** (1966), 47-77.
- G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, *Linear Multilinear Alg.* 2 (1974), 269-292.
- 4. A.R. Meenakshi and S. Krishnamoorthy, On *k-EP* matrices, *Linear Alg. Appl.* **269** (1998), 219-232.
- 5. C.R. Rao and S.K. Mitra, *Generalized Inverse of Matrices and its Applications*, Wiley and Sons, New York, 1971.