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Abstract.  Necessary and Sufficient conditions for the sums of k-EP  matrices to be k-EP are 
discussed.  As an application it is shown that sum and parallel sum of parallel summable k-EP 
matrices are k-EP. 

 
 
1.  Introduction 
 
Throughout we shall deal with ,nn×C  the space of nn ×  complex matrices.  Let nC  be  the 

space of complex n-tuples.  For  εA ,nn×C  let ,TA  ∗A  denote the transpose, conjugate 

transpose of A, let −A  be a generalized inverse ( )AAAA =−  and  A  be the Moore-Penrose 

inverse of A[5].  A matrix A is called rEP  if rA =)(ρ  and )()( *ANAN =  or 

)()( *ARAR =   where  )(Aρ  denotes the rank of A; )(AN  and )(AR  denote the null  space 
and range space  of A respectively.   Throughout let ‘k’  be a fixed product of disjoint  
transpositions in },,2,1{ nSn L=  and K  be the associated permutation matrix.   A matrix 

nnijaA ×= Cε)(  is k-hermitian if )(),( ikjkij aa =  for  .,,1, nji L=   A theory for                      

k-hermitian matrices is developed in [1].  For ,),,,( 21 n
T

nxxxx CεL=  let us define the 

function .),,,()( )()2()1( n
T

nkkk xxxx CεL=k   A matrix εA ,nn×C  is said to be k-EP if it 

satisfies the condition 0)(0 * =⇔= xAAx k  or equivalently .)()( *KANAN =   In addition 

to that, A  is  KAEPk ⇔- is EP or AK  is EP and A is *- AEPk ⇔  is k-EP.   Moreover,               

A is said to be rEPk-  if A  is  k-EP and of rank r.   For further properties of k-EP  matrix one may 
refer [4].   In this paper we give necessary and sufficient conditions for sums of k-EP matrix to be 
k-EP.  As an application it is shown that sum  and parallel summable k-EP matrices are k-EP. 
 
 
2. Sums of k-EP matrices 
 

Lemma 2.1. Let nnmAAA ×Cε,,, 21 L  and let ∑
=

=
m

i
iAA

1
.  Consider the following 

conditions: 
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 (a) )()( iANAN ⊆  for  ;,,1 mi L=  

 (b) I
m

i
iANAN

1
;)()(

=
=  

 (c) ;)(
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

mA

A
A Mρρ  

 (d) ∑ ∑
= =

=
m

i

m

j
ji AA

1 1

* ;0  

 (e) ∑
=

=
m

i
iAA

1
)()( ρρ . 

 
Then the following statements hold: 
 
 (i) Conditions (a), (b) and (c) are equivalent. 
 (ii)  Condition (d) implies (a), but condition (a) does not implies (d). 
 (iii) Condition (e) implies (a), but condition (a) does not implies (e). 
 
Proof. 
 
(i) (a) ⇔ (b) ⇔ (c): )()( iANAN ⊆  for each  ).()( iANANi ∩⊆⇒   
 
 Since ),()()()()( 21 mi ANANANANAN ∩∩⊇∑= L  it follows that  

).()( IANAN ∩⊇  
 

 Always I
m

i
i ANAN

1
).()(

=
⊆   Hence  I

m

i
iANAN

1
).()(

=
=   Thus (b) holds. 

 Now, 
 

I M
m

i
m

i

A

A
NANAN

1

1

)()(
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==  

 
 Therefore, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mA

A

A M

1

)( ρρ and  (c)  holds. 
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 Conversely,   Since  )(
1

A
A

A

m

ρρ =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
M   and    

 

         I IM
m

i

m

i
ii

m

ANANANAN
A

A
N

1 1

1

)()()()(
= =

=⇒⊆=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 

 and  (b) holds. 
 
 Hence,   )()( iANAN ⊆  for each  i and (a) holds. 
 
(ii) (d) ⇒ (a): 
 
 Since ,0=∑

≠

∗
j

ji
i AA  

 
 )()( ii AAAA ∑∑= ∗∗  

  )()( ii AA ∑∑= ∗  

          ii AA ∗∑=  

 )()()( ii AANAANAN ∗∗ ∑==  

   
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∗

mm A

A

A

A
N MM
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mA

A
N M

1

 

 
   )()()( 21 mANANAN ∩∩= L     

   I
m

i
iAN

1
.)(

=
=  

 
 Hence )()( iANAN ⊆  for each i and (a) holds. 
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 :)()( da ⇒/    Let us consider the following example. 
 

 Let ⎥
⎦

⎤
⎢
⎣

⎡
=

11
11

1A          

 and ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0   1
10   

2A .  ⎥
⎦

⎤
⎢
⎣

⎡
=+

10
01

21 AA . 

 
 Clearly,  ).()( 121 ANAAN ⊆+     Also  ).()( 221 ANAAN ⊆+   But  

.01221 ≠+ ∗∗ AAAA   
 
(iii)  (e) ⇒ (a) : 
 
 If rank is additive,  that  is ),()( iAA ρρ ∑=  then by [3],  

},0{)()( =∩ ji ARAR  )()( iANANji ⊆⇒≠     for each i and (a) holds.  
 
 :)()( ea ⇒/  Consider the example, 
 

 Let ⎥
⎦

⎤
⎢
⎣

⎡
=

01
00

1A   and  ⎥
⎦

⎤
⎢
⎣

⎡
=

02
00

2A  

 

  ⎥
⎦

⎤
⎢
⎣

⎡
=+

03
00

21 AA .   

 
 Here, )()( 121 ANAAN ⊆+ and  ).()( 221 ANAAN ⊆+   
 But   ).()()( 2121 AAAA ρρρ +≠+  
 
Theorem 2.2.  Let  nnmεA,,A,A ×CL21  be k-EP matrices.  If any one of the conditions 
(a) to (e) of Lemma 2.1 holds, then 
 

∑
=

=
m

i
iAA

1
  is k-EP. 

 

Proof.  Since each iA  is k-EP,  )()( KANAN ii
∗=  for each i.   

 
Now , )()( iANAN ⊆  for each  i 

 I I
m

i

m

i
ii KANANAN

1 1
)()()(

= =

∗=⊆⇒  

     )( KAN ∗⊆  
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and  ).()( KAA ∗= ρρ    Hence  ).()( KANAN ∗=   Thus A is k-EP.  Hence the Theorem. 
 
Remark 2.3.  In particular, if A is non-singular the conditions automatically hold and A 
is k-EP.  Theorem 2.2 fails if we relax the conditions on the  s'iA . 
 

Example 2.4.  Consider  ⎥
⎦

⎤
⎢
⎣

⎡
=

01
00

1A   and  .
00
01

2 ⎥
⎦

⎤
⎢
⎣

⎡
=A   Let  ),2,1(=k  then the 

associated permutation matrix 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

K .  ⎥
⎦

⎤
⎢
⎣

⎡
=

00
01

1KA  is EP. 

 
Therefore,  1A  is k-EP. 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

01
00

2KA  is not EP.  Therefore 2A  is not k-EP. 

 

  ⎥
⎦

⎤
⎢
⎣

⎡
=+

01
01

21 AA   and ⎥
⎦

⎤
⎢
⎣

⎡
=+

01
01

)( 21 AAK  

 
which is not EP.  Therefore  )( 21 AA + is not k-EP.  However, 
 

)()()( 1121 ANKANAAN ⊆⊆+ ∗   and  ( ).)()( 2221 ANKANAAN ⊆⊆+ ∗  
 

Moreover,      .)( 21
2

1 AA
A
A

+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
ρρ        

        
Remark 2.5.   Theorem 2.2 fails if we relax the condition that s'iA  are k-EP.  For, let 
 

,
010
00  0
00  1

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=A  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

00  1
010
01   0

2A  

 

and let the associated permutation matrix be   .
001
100
010

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=K   
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

001
010
000

1KA   is not EP. 

 
Therefore  1A  is not k-EP. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

010
001
010

2KA   is not EP. 

Therefore 2A   is not  k-EP.  
 

.
011
010
011

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=+ AA  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=+
011
011
010

)( 21 AAK  

 
is not EP.   Therefore,  )( 21 AA +  is not k-EP.  But  01221 =+ ∗∗ AAAA . 
 
Remark 2.6.  The conditions given in Theorem 2.2 are only sufficient for the sum of            
k-EP matrices to be k-EP, but not necessary is illustrated in the following example. 
 

Example 2.7.   Let  ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

1A   and  .
01
10

2 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=A   For  ,

01
10
⎥
⎦

⎤
⎢
⎣

⎡
=K  1A  and 2A   

are .- 2EPk   The  conditions  in  Theorem  2.2  does not  hold.  However )( 21 AA +  is                 
k-EP. 
 
Remark 2.8.   If 1A  and 2A  are k-EP matrices, then by Theorem 2.4(p.221,[4]), 

KKAHA 111 =∗  and  KKAHA 222 =∗  where 1H  and 2H  are non-singular nn×  
matrices. 
 

If ,21 HH =  then  KAAKHAA )( 21121 +=+ ∗∗   

)()()( 2121121 AAKAAKHAA +⇒+=+⇒ ∗  is k-EP. 
 
 If  )( 21 HH − is non-singular, then the above conditions  are  also necessary for the 
sum of  k-EP matrices to be k-EP is given in the following Theorem. 
 
Theorem 2.9.  Let K be the permutation matrix associated with the fixed transposition 
‘k’.   Let KKAHA 111 =∗  and KKAHA 222 =∗  such  that )( 21 HH −  is  non-singular.  
Then )( 21 AA +  is k-EP  if  and  only  if  )()( 21 iANAAN ⊆+  for some (and hence 
both) { }.2,1εi  
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Proof.  Since  KKAHA 111 =∗ and ,222 KKAHA =∗  by Remark 2.8, 1A  and 2A  are            
k-EP matrices.  Since, )()( 221 ANAAN ⊆+  by Theorem 2.2, )( 21 AA +  is k-EP.  
Conversely, let us assume that )( 21 AA +  is k-EP.   By Remark 2.8, there exists a non-
singular matrix G such that 
 
                 KAAGKAA )()( 2121 +=+ ∗   

 ⇒                   KAAGKAA )( 2121 +=+ ∗∗  
 ⇒         KAAGKKKAHKKAH )( 212211 +=+  
 ⇒         KAAGKKKAHKAH )()( 212211 +=+  
 ⇒  212211 GKAGKAKAHKAH +=+  
 ⇒  2211 )( )( AKHGKAGKKH −=−  
 ⇒                2211 )()( KAHGKAGH −=−  
 ⇒                           21 MKALKA =   where 

                                 GHL −= 1   and  
                                2HGM −=  
  Now    111 )()( MKALKAKAML +=+  
                                        12 MKAMKA +=  
                                        )( 21 AAMK +=  
  and      )())(( 212 AALKKAML +=+  
 
By hypothesis,  2121 HHHGGHML −=−+−=+  is non-singular.  Therefore, 
 
     ))(()( 2121 AAMKNAAN +⊆+   
        ( )1)( KAMLN +=  
        )( 1KAN=  
        ).( 1AN=  
 
Therefore, ).()( 121 ANAAN ⊆+   Similarly ).()( 221 ANAAN ⊆+   Hence the Theorem. 
 
Remark 2.10.  The condition )( 21 HH − to be non-singular is essential in Theorem 2.9 
is illustrated in the following example. 
 

Example 2.11.    Let ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

1A   and ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0  1
10  

2A  are both k-EP matrices for 

.
01
10
⎥
⎦

⎤
⎢
⎣

⎡
=K   Further  KKAAA 111 ==∗  and  1222 HKKAAA ⇒==∗  .2 IH ==  
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
=+

1   1
11   

)( 21 AA  is also k-EP.  But )()( 121 ANAAN ⊆/+  (or) 

).()( 221 ANAAN ⊆/+   Thus Theorem 2.9 fails. 
 
 
3.  Parallel summable k-EP matrices 
 
In this section we shall show that sum and parallel sum of parallel summable k-EP 
matrices are k-EP. First we shall give the definition and some properties of parallel 
summable matrices as in (p.188, [5]). 
 
Definition 3.1. 1A  and 2A  are said to be parallel summable (p.s.) if 

)()( 221 ANAAN ⊆+  and )()( 221
∗∗ ⊆+ ANAAN  (or) equivalently  

)()( 121 ANAAN ⊆+  and  ).()( 121
∗∗ ⊆+ ANAAN  

  
Definition 3.2.  If 1A  and 2A  are parallel summable then parallel sum of 1A  and 2A  

denoted by 21 AA ±  is defined as .)( 221121 AAAAAA −+=±   The product 

2211 )( AAAA −+  is invariant for all choices of generalized inverse −+ )( 21 AA  of  
)( 21 AA +  under the conditions that 1A  and 2A  are parallel summable (p.188, [5]). 

 
Properties 3.3.  Let 1A  and 2A  be a pair of parallel summable (p.s.) matrices.  Then the 
following hold: 
 
P.1 1221 AAAA ±=±   

P.2 ∗
1A  and  ∗

2A  are p.s. and ∗∗∗ ±=± 2121 )( AAAA  
P.3 If U is non-singular then 1UA  and 2UA  are p.s. and )()( 2121 AAUUAUA ±=±  
P.4 )()()( 2121 ARARAAR ∩=±  
 )()()( 2121 ANANAAN +=±  
P.5 )()( 321321 AAAAAA ±±=±±  
 if all the parallel sum operations involved are defined. 
 
Lemma 3.4.  Let  1A   and  2A   be  k-EP  matrices.  Then  1A   and 2A    are  p.s  if  and  
only if  )()( 21 iANAAN ⊆+  for some (and hence both) }.2,1{εi  
 
Proof. 1A  and 2A  are p.s. )()( 121 ANAAN ⊆+⇒ follows from the Definition 3.1.  
Conversely,  if  ),()( 121 ANAAN ⊆+  then  ).()( 121 KANKAKAN ⊆+   Also  

).()( 221 ANKAKAN ⊆+   Since 1A  and  2A  are  k-EP  matrices,  1KA   and 2KA  are 



On Sums of k-EP Matrices 

  
125 

EP  matrices. )()( 121 KANKAKAN ⊆+  and ),()( 221 KANKAKAN ⊆+  therefore 
)( 21 KAKA +  is EP.   

 Hence 
.)()()()()()( 21212121

∗∗∗ ∩=∩=+=+ KANKANKANKANKAKANKAKAN  

Therefore,  .)()(,)()( 221121
∗∗∗∗ ⊆+⊆+ KANKAKANKANKAKAN  

 Also, )()( 21 KANKAKAN ⊆+  by  hypothesis.  Hence,  by  Definition                  
3.1, 1KA  and  2KA  are  p.s. )()( 121 KANKAKAN ⊆+ ))(( 21 AAKN +⇒   

).()()( 1211 ANAANKAN ⊆+⇒⊆   Similarly, ).()( 121
∗∗ ⊆+ ANAAN  Therefore,  

1A  and 2A  are p.s.  Hence the Theorem. 
 
Remark 3.5. Lemma 3.4 fails if we relax the condition that 1A  and 2A  are k-EP. 

Let ⎥
⎦

⎤
⎢
⎣

⎡
=

01
00

1A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

00
01

2A . 

 
Let the associated permutation matrix be 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

K . 

 
1A  is  k-EP.  2A   is  not  k-EP.   )()( 121 ANAAN ⊆+  and ,)()( 221 ANAAN ⊆+  

but  ).()();()( 221121
∗∗∗∗ ⊆/+⊆/+ ANAANANAAN  Hence 1A  and 2A  are not 

parallel summable.  
 
Theorem 3.6.  Let 1A  and 2A  be p.s. k-EP matrices.  Then )( 21 AA ±  and )( 21 AA +   
are k-EP. 
 
Proof.  Since 1A  and 2A  are p.s.  k-EP matrices, by Lemma 3.4, 
 

)()( 121 ANAAN ⊆+  and   ).()( 221 ANAAN ⊆+  

)())(( 121 KANAAKN ⊆+  and   ).())(( 221 KANAAKN ⊆+  

)()( 121 KANKAKAN ⊆+   and  ).()( 221 KANKAKAN ⊆+  
 
Therefore,  )( 2121 AAKKAKA +=+ is EP.  Then  )( 21 AA +  is k-EP.  Since 1A  and 2A  
are p.s. k-EP matrices,  1KA  and  2KA  are p.s. EP matrices. 
Therefore, 
 
 



A.R. Meenakshi and S. Krishnamoorthy 126 

                        )()( 11 KARKAR =∗   and  )()( 22 KARKAR =∗  

( )∗∗∗ ±=± )()()( 2121 KAKARKAKAR                                      [By P.2] 

               ( ) ( )∗∗ ∩= )()( 21 KARKAR                              [By P.4] 
)()( 21 KARKAR ∩=            [Since 1KA  and 2KA  are EP] 

 ).( 21 KAKAR ±=  
 
Thus,  21 KAKA ±  is  )( 21 AAKEP ±⇒  is EP )( 21 AA ±⇒  is k-EP.  Thus  )( 21 AA ±   
is  k-EP  whenever  1A  and 2A  are k-EP.  Hence the Theorem. 
 
Corollary 3.7.  Let 1A  and 2A  be k-EP matrices such that ).()( 221 ANAAN ⊆+              
If 3A  is k-EP commuting with both 1A  and 2A , then )( 213 AAA +  and 

)()( 2313213 AAAAAAA ±=±  are k-EP. 
 
Proof.   1A  and 2A  are k-EP with  ).()( 221 ANAAN ⊆+   By Theorem 2.2, )( 21 AA +  
is k-EP.  Now  21 , KAKA  and  )( 21 AAK +  are EP.   Since 3A  commutes with 21 , AA  
and  ,)( 21 AA + 3KA  commutes with  21 , KAKA  and  )( 21 AAK + and by Theorem (1.3) 
of [2], ),( 13 AAK  )( 23 AAK  and ))(( 213 AAAK + are EP. Therefore, 

)(,,( 2132313 AAAAAAA +  are k-EP.  Now by Theorem 3.6 )( 2313 AAAA ±  is k-EP.             
By P.3 (Properties 3.3),  
 

).()(( 2313213 AAAAKAAAK ±=±  
 
Since 2313 AAAA ±  is k-EP,  )( 2313 AAAAK ±  is EP )(( 213 AAAK ±⇒  is EP 

)( 213 AAA ±  is k-EP.  Hence the corollary. 
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