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Abstract.  This paper  proposes a derivation of  an improved error signal for hidden layer in the 
backpropagation model, and its experimentation evaluation of  utilizing various moments order as 
pattern features in recognition of  printed mathematical symbols in the classification phase.            
The moments that have been used are geometric moment invariants in which they have been used as 
feature extraction for images with various orientations and scaling.  In this study, we find that the 
recognition and the convergence rates are better using an improved backpropagation compared to 
standard backpropagation. In addition, we cluster these invariants on a visual map using                
Self-Organizing Map (SOM) whereby mathematical symbols with similar shape belong to the same 
cluster. 

 
 
1. Introduction 
 
Moment invariants have been proposed as pattern sensitive features in classification and 
recognition applications.  Hu  was the first to introduce the geometric moment invariants 
which are invariant under change of size, translation, and orientation [1].  Printed and 
handwritten images have been tested with different orientations using Hu’s moments in 
many literatures [2,3,4,5].  Moments and functions of moments can provide 
characteristics of an object that uniquely represent its shape and have extensively 
employed as the invariant global features of an image in pattern recognition and image 
classification since 1960s.  
 This paper discusses a formulation of an improved backpropagation model in the 
classification phase of printed mathematical symbols and the clustering approach on 
these symbols using SOM.  These symbols are extracted using geometric moment 
invariants.  The rest of the paper is organized as follows. Section 2 gives review on 
feature extraction, pixel features, and geometric moments.  A summary on 
backpropagation model and a formulation of an improved backpropagation is  given in 
section 3.  Section 4 gives an overview of self-organizing map.  Section 5 explains the 
experimental results and section 6 is the conclusion. 
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2. Feature extraction 
 
Feature extraction is the process to represent the image by a suitable set of features.          
In this paper, a type of feature which is presented in the following subsections is 
extracted to feed the backpropagation model.  The image of input symbols is captured 
using a scanner with 300DPI resolution.  
 
2.1.   Pixel features 
 
The collected mathematical symbols are converted into binary image using a thresholding 
technique.  Black pixel (1) represents the foreground and white (0)  pixel represents the 
background. 
 
2.2.   Geometric moment features 
 
The Geometric moments [1] of order p+q of a digital image are defined as: 
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The translation invariant central moments are obtained by placing origin at the centroid 
of the image, 
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Then the  scale invariant central moments are defined as: 
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Finally, the scale invariant Radial-Geometric moments are defined as [6]: 
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3. Backpropagation model 
 
The backpropagation model is introduced by Rumelhart et. al [7]. This network has 
served as a useful methodology to train multilayered neural networks for a wide variety 
of  applications.  The backpropagation model is a supervised learning algorithm using 
feedforward networks which make use of target values. Backpropagation model is 
basically a gradient descent method and its objective is to minimize the mean squared 
error between the target values and the network outputs.  Thus the mean square error 
function (MSE) is defined as (Figure 1): 
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  kjt  is the target output from node k to node j, 

  kjo  is the network output from node k to node j. 
 
 The output-layer errors are successively propagated backwards through the network.  
The weights are adjusted during training using the following formula : 
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where 
   )1( +twkj  is the updating weight from node k to node j at time t, 

   )(twkj        is the weight from node k to node j at time t, 
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   )()net( kkkk otf −′=δ  is the error signal for the output node, 
   kjkjkk wfo δ∑′= )net(   is the output for the output layer, 

   ,)1()()( −−=Δ twtwtw kjkjkj  change of weights at time t, 

   β    is the momentum factor, 
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 Since the usual training techniques for neural networks work by finding a set of 
weights which makes all the derivatives of the usual error zero, any set of weights which 
makes all output activations  ±1 (using hiperbolic tangent as an activation function) will 
make all the derivatives zero.  If not all the errors are zero then the minimization method 
finds a local extremum or a saddle points[8].  The operations of mean square error 
function are limited by the failure of training to converge.  Occasionally, such failure can 
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be attributed to a poor starting point and the solution is merely to restart the training. 
More often, training finds a comfortable local minimum and refuses to move beyond it, 
and can cause instability of the internal structure of the network.  Furthermore, if we look 
at the output unit of, 

)()net( kkkk otf −′=δ  
 

can be zero not only when ,0 kot =  but also when .0)net( =′ kf   This leads to 0=kδ  
for internal units as well.  Therefore, all the derivatives are zero, and the network loses its 
learning ability. 
 

 
Figure 1.  Mean square error of standard backpropagation 

 
 
3.1.  An improved backpropagation model 
 
In this study, we consider a sigmoid function of xe β−+1

1  as an activation function in the 

derivation of the proposed method for the backpropagation model, where β is a constant 
parameter.  Therefore the modified error  for  standard backpropagation (mm)  would be: 
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and 
 kE  error at output unit k, 
 kt   target value of output unit k, 
 ka  an activation of unit k. 
  
By taking partial derivatives for the updating weight using chain rule, we generate an 
error signal for an improved backpropagation  of the output layer as,  
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and an error signal for an improved backpropagation of  the hidden layer is the same as 
standard backpropagation , 
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where 
 kw   weight on  connection between unit, 
 )( jaf  a sigmoid function. 
 
 This expression can be illustrated geometrically as, 
 
 

 
Figure 2.  An improved error of backpropagation 
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4. Self Organizing Map (SOM) 
 
The Kohonen self organizing map was invented by Professor Teuvo Kohonen, and is 
closely modeled on the way that certain parts of the brain are known to work [9].  SOM is 
an unsupervised artificial neural network consisting of one input layer and an output 
layer.  Neurons of the output layer become specifically tuned to various multi 
dimensional input observations through a competitive learning process creating a two 
dimensional map consisting of regions belonging to distinct classes of input patterns. 
 The Kohonen algorithm is presented as follows: 
 
Step 1. Each processing node computes an input intensity value which is a similarity 

measure between its weight vector and the input pattern vector. 
Step 2. Select the winning node as the one with the highest intensity value i.e., its 

weight vector is the closest to the input pattern. 
Step 3.   Set the winner  node’s output to 1; all other units have their output set to zero. 
Step 4. Modify the winner nodes’s weight according to the following rule: 
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 In this study, SOM algorithm is implemented by using SOM_PAK [10] to perform 
the mathematic symbols clustering.  The geometric invariants are placed into a 9-
dimensional vectors.  The steps used for using the SOM_PAK for clustering are 
illustrated below [11]: 
 
i. Initialize map using mathematical symbols data with 2030 ×  dimension (map size) 

with hexagonal type for the lattice, and bubble step function. 
 

ii. The map is trained in 2 phases.  The first phase is the reference vectors of the map 
units are ordered.  The neighborhood radius is taken almost equal to the diameter of 
the map and decreases to 1.0 during training.  The learning rate, α, decreases to 0.03 
during the training phase.  In the second phase, the values of the reference vectors 
are fine-tuned. 

 

iii. Evaluate the resulting quantization error over all the samples in the data file. 
 

iv. Calibrate the map units using known input data samples. 
 

v. Generate a list of coordinates corresponding to the best-matching unit in the map for 
each data sample in the data file.  The best-matching units are then labeled. 

 

vi. Generate a Sammon mapping from 9-dimensional input vectors to 2-dimensional 
points on a plane producing an encapsulate postcript file. 

 

vii. Finally generate an encapsulated postcript code from one selected component plane 
of the map imaging the values of the components using gray levels. 
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5. Experimental results 
 
We test 40 samples of printed mathematical symbols (Figure 3)  with various orientations 
and different fonts.  The moments are calculated up to the 4th order for all samples. 
Feature moments from order 2 to 4 were used as feature patterns in our experiments.  The 
learning rate and momentum parameter were set to 0.9 and 0.2 for the standard 
backpropagation and 0.2 and 0.7 for the an improved backpropagation model with 
sigmoid as an activation function. 
 We used moments of order 2, 3 and 4 for classifications using an improved 
backpropagation and  standard backpropagation model.  Table 1 shows the invariants 
features of some mathematical symbols.  Figure 4 shows that the convergence rates of an 
improved backpropagation is better compared to a standard backpropagation for printed 
mathematical symbols.  The recognition rates  are 100%  recognized by  an improved 
backpropagation and 95% by a standard backpropagation model.  Table 2 shows the 
recognition rates, processing time and iterations for geometric invariants of printed 
mathematical symbols using an improved  backpropagation and standard 
backpropagation. 
 
 

 

 

 
 

Figure 3.  Samples of  printed mathematical symbols 
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Figure 4.  Convergence  rates of  printed mathematical symbols 

 
 
 

Table 1.  Invariants features of Mathematical symbols 
 

Symbol η02 η03 η11 η12 η13 η21 η22 η30 η31 

χ 0.86711 0.18849 0.08184 0.16839 0.12728 0.01923 0.24873 0.12638 0.04125 

 0.54536 0.02198 0.02583 0.0241 0.01231 0.01844 0.1193 0.00087 0.00535 

δ 0.58806 0.05518 0.08122 0.00895 0.07504 0.01626 0.18318 0.03664 0.05776 

 0.61814 0.00880 0.05408 0.01927 0.05894 0.00178 0.07934 0.01363 0.02165 

ε 0.88477 0.14812 0.01660 0.13137 0.06236 0.02861 0.21195 0.04551 0.00528 

 0.80491 0.05006 0.03593 0.01596 0.04019 0.00195 0.12116 0.01324 0.01841 

α 0.73293 0.05052 0.16291 0.05135 0.11263 0.02107 0.1385 0.00799 0.07375 

 0.66253 0.08034 0.03918 0.01415 0.10883 0.01978 0.11662 0.0049 0.01161 

β 0.91948 0.02059 0.01081 0.06653 0.00924 0.01543 0.15602 0.00388 0.00697 

 0.82281 0.06182 0.02135 0.03221 0.03237 0.01006 0.12365 0.00398 0.00606 

μ 2.213 0.71402 0.059 0.22918 0.00903 0.01181 0.63556 0.05279 0.08960 

 2.15402 0.18761 0.08548 0.33771 0.81689 0.11741 0.70659 0.03468 0.13071 

π 0.15565 0.00002 0.00662 0.00547 0.00182 0.00775 0.03896 0.02263 0.00017 

 0.16081 0.01299 0.01091 0.00812 0.00205 0.01267 0.04902 0.04908 0.01069 

 

0

0.2

0.4

0.6

0.8

1

1.2

Iteration

Er
ro

r Standard BP
An improved BP



Classification and Clustering of Printed Mathematical Symbols 

 

165

 
Table 2.   Recognition rates and processing time for printed mathematical symbols 

  

Handprinted digits Standard backpropagation An improved backpropagation 

Geometric moments Time = 1540 seconds Time = 506 seconds 

Iterations 17320 5700 

Recognition rates 95% 100% 
 
 
 Figure 5 shows  that  the mathematical  symbols of various scaling, translating and 
rotating are clustered together to the same class.  SOM uses Euclidean distance as a 
criterion to cluster the approriate input patterns.  From 40 image samples, there are 10 
distinct clusters (Table 3).  A light shade on the map indicates the average distance of 
neighboring codebook vectors is small, indicating there is a small variation in the shape 
of the symbol.  The dark shades indicate the distance of codebook vectors from the 
reference vectors is large.  Thus it indicates a drastic variation in the shape of the 
associated symbols. 

 
 

Table 3.  Clusters and their symbols 
 

Cluster Symbols 

1 χ 

2 δ 

3 ε 

4 α 

5 η 

6 β 

7 κ 

8 λ 

9 μ 

10 π 
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Figure 5.   Clustering of mathematical symbols 

 
 
6. Conclusion 
 
In this paper, we derive a formulation for an improved backpropagation and cluster   
mathematical symbols using SOM for classification purposes.  Geometric moments are 
used as a feature extraction for printed mathematical symbols with different orientations 
and fonts.  These moments are calculated up to the 4th order.  The experiments have 
shown that the classification rates for printed mathematical symbols are better for 
moments of higher order, and the results are promising.  The convergence and recognition 
rates are better using an improved backpropagation compared to a standard 
backpropagation.  In addition, these invariants are clustered using self-organizing map for 
better visualization since it is a useful algorithm for clustering input pattern based on their 
unique features. 
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