BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

One-Parameter Family of Neville-Aitken Algorithm on *q*-Triangle

¹DAUD YAHAYA AND ²G.M. PHILLIPS

¹Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia ²Department of Mathematics, University of St. Andrews, Fife, KY16 9SS Scotland

Abstract. Two dimensional polynomial interpolation on triangular region with geometric spacing is considered. Lagrange form and Neville-Aitken algorithm for interpolating polynomials on q-triangle are obtained and the question of inter-generating between these form is studied.

1. Introduction

In [3], Schoenberg discussed various works on one dimensional polynomial interpolation at the points of geometric progression and give a unified version of the problem. Lee and Phillips [2] extend these results to two dimensional case, for a triangular domain where the nodes are not uniformly spaced. Given a positive integer *n*, let [*n*] be a *q*-integer defined by $[n] = \frac{1-q^n}{1-q}$, where q > 0 and $q \neq 1$. Specifically, they proved that, there exists a unique interpolating polynomial, $P_n(x, y)$ for a function *f* on the triangular geometric mesh points {([*i*], [*j*]): $0 \le i \le j \le n$ }. They also derived forward difference formula (in y and 'diagonal' directions) and Lagrange form for P_n and, obtained Neville-Aitken type algorithm to evaluate the polynomial efficiently.

We now consider the triangular array of points $S = \{([i], [j]) : i, j \ge 0, i + j \le n\}$ formed by the lines x = [i] and y = [j]. This array of nodes is bounded by the X-axis, the Y-axis and the hyperbola x+y-(1-q)xy = [n]. We shall call this region a qtriangle of order n which includes the standard triangle as a special case. In this setting, it has been shown that there is a forward difference formula in x and y directions for the interpolating polynomial of degree at most n, at the nodes of S. In this paper we shall derive a Lagrange form of an interpolating polynomial and discuss a one-parameter family of Neville-Aitken algorithms.

2. Forward difference and Lagrange formulas on the q-triangle

Let f(x, y) be a function defined over the q-triangle. Since the interpolation nodes S lie on lines parallel to coordinates axes, it is appropriate to define forward difference operators along these directions. Let denote f([i], [j]) by $f_{i,j}$ and define $D_x^0 f_{i,j} = f_{i,j}$ and $D_y^0 f_{i,j} = f_{i,j}$. For $m = 1, 2, 3, \cdots$, define recursively

$$D_x^m f_{i,j} = D_x^{m-1} f_{i+1,j} - q^{m-1} D_x^{m-1} f_{i,j}$$

and

$$D_{y}^{m} f_{i,j} = D_{y}^{m-1} f_{i,j+1} - q^{m-1} D_{y}^{m-1} f_{i,j}$$

It follows that for $m = 1, 2, 3, \cdots$ and $n = 0, 1, 2, \cdots$ the mixed q-differences satisfy

$$D_x^m D_y^n f_{i,j} = D_x^{m-1} D_y^n f_{i+1,j} - q^{m-1} D_x^{m-1} D_y^n f_{i,j}$$

We need to extend q-integer to q-real. For any $t \in \mathbf{R}$ the q-real t, denoted by [t], is defined by

$$[t] = \begin{cases} \frac{1-q^{t}}{1-q} & , \quad q \neq 1 \text{ and } q > 0\\ t & , \quad q = 1 \end{cases}$$

Also for any $t \in \mathbf{R}$ and $k \in \mathbf{Z}$, with $0 \le k \le t$, the q-binomial coefficient is defined by

$$\begin{bmatrix} t \\ k \end{bmatrix} = \frac{1}{[k]!} \prod_{\nu=0}^{k-1} [t-\nu] \text{ where } [k]! = [k][k-1] \dots [1]$$

Using these notations we see that there exists a q-forward difference formula for the interpolating polynomial of degree n on the q-triangle.

Theorem 1. Let f(x, y) be defined at all points of the q-triangle of order n. For any (x, y) in the q-triangle, let

$$P_n(x, y) = \sum_{r=0}^n \sum_{s=0}^r \begin{bmatrix} \overline{x} \\ r-s \end{bmatrix} \begin{bmatrix} \overline{y} \\ s \end{bmatrix} \quad D_x^{r-s} \quad D_y^s \quad f_{0,0}$$
(1)

where $x = [\overline{x}]$ and $y = [\overline{y}]$ for some $\overline{x}, \overline{y} \in \mathbf{R}$ then the polynomial $P_n(x, y)$ interpolates f at the nodes of S.

108

The proof of Theorem 1 is given by Yahaya and Phillips [4]. Taking q = 1 as a special case, (1) does reduces to a forward difference formula for polynomial interpolation on the standard triangle.

We also recognize that the nodes in set S are formed by the systems of x = [v], y = [v] and $\gamma(x, y) = [v]$ where $\gamma(x, y) = x + y - (1-q)xy$ and $v = 0, 1, \dots, n$. So given any point ([i], [j]) on the triangle, the union of the hyperbolas $\gamma(x, y) = [n-v]$ for $v = 0, 1, \dots, n-i-j-1$, the straight lines x = [v] for $v = 0, 1, \dots, i-1$ and y = [v] for $v = 0, 1, \dots, j-1$ contain all nodes on the triangle except the point ([i], [j]) itself. It follows that, for $i, j \ge 0, i+j \le n$, the polynomial

$$M_{i,j}^{n}(x,y) = \frac{1}{\omega(i,j)} \prod_{\nu=0}^{i-1} (x-[\nu]) \prod_{\nu=0}^{j-1} (y-[\nu]) \prod_{\nu=0}^{n-i-j-1} ([n-\nu]-\gamma(x,y))$$
(2)

where

$$\omega(i, j) = [i]! [j]! [n-i-j]! q^{(i+j)(2n-1-i-j)/2-ij}$$

satisfies the conditions

$$M_{i,j}^{n}([h], [k]) = \begin{cases} 1 & \text{if } ([h], [k]) = ([i], [j]) \\ 0 & \text{at all other nodes in } S \end{cases}$$

We note that, in the above expression (2) for $M_{i,j}^n(x, y)$, an empty product (when i = 0 or j = 0 or i + j = n) is taken to have value 1.

Thus we obtain a Lagrangian form of an interpolating polynomial which uses hyperbolas and two linear systems. This polynomial can be expressed as

$$P(x, y) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} M_{i,j}^{n}(x, y) f_{i,j}.$$
 (3)

In this case the degree of P(x, y) is at most 2n, since the degree of any $M_{i,j}^n(x, y)$ is at most 2n-i-j and we note that the interpolating polynomial will not be unique. However, letting q tend to 1, the polynomial P(x, y) in (3) reduces to the interpolating polynomial of degree at most n on the standard triangle.

3. Neville-Aitken algorithm

We now construct a Neville-Aitken algorithm for an interpolating polynomial on the *q*-triangle of order *n*. For each m = 1, 2, ..., n, the algorithm generates a one parameter family of polynomials $f_{i,j}^m(x, y)$: $i, j \ge 0$, $i + j \le n - m$, which interpolate f(x, y) on $T_{i,j}^m$: $i, j \ge 0$, $i + j \le n - m$ respectively. Here we have used the notation $T_{i,j}^m$ to mean the set of nodes $T_{i,j}^m = \{([i+s], [j+t]): s, t \ge 0, s + t \le m\}$ for which $T_{0,0}^n = S$. These are the *q*-triangle bounded by the lines x = [i], y = [j] and the hyperbola $\gamma(x, y) = [m+i+j]$.

Lemma 2. Let $f_{i,j}^0(x, y) = f_{i,j}$, $i, j \ge 0$, $i+j \le n$. For $m = 1, 2, \dots, n$, we define $f_{i,j}^m(x, y), 0 \le i+j \le n-m$, recursively by

$$q^{i+j}[m] f_{i,j}^{m} = \left\{ [m+i+j] - \gamma(x,y) \right\} f_{i,j}^{m-1}(x,y) + (x-[i]) \left\{ q^{j} - \lambda(1-q)(y-[j]) \right\}$$
$$f_{i+1,j}^{m-1}(x,y) + (y-[j]) \left\{ q^{i} - (1-\lambda)(1-q)(x-[i]) \right\} f_{i,j+1}^{m-1}(x,y)$$
(4)

where λ is an arbitrary real number. Then $f_{i,j}^m(x,y)$ interpolates f(x,y) on $T_{i,j}^m$.

Proof. First we note that the coefficient of $f_{i,j}^{m-1}(x, y)$ in (4) may be expressed as

$$[m+i+j]-\gamma(x,y) = q^{i+j}[m] - q^{j}(x-[i]) - q^{i}(y-[j]) + (1-q)(x-[i])(y-[j]).$$

Clearly the above result holds for m = 0. Suppose that (4) holds for some m - 1. Therefore the polynomials $f_{i,j}^{m-1}$, $f_{i+1,j}^{m-1}$ and $f_{i,j+1}^{m-1}$ interpolate f(x, y) on the sets $T_{i,j}^{m-1}$, $T_{i+1,j}^{m-1}$ and $T_{i,j+1}^{m-1}$ respectively. For any integers $i, j \ge 0, 0 \le i + j \le n-m$ consider the function $f_{i,j}^m$ at the nodes

$$T_{i,j}^m = T_{i,j}^{m-1} \bigcup T_{i+1,j}^{m-1} \bigcup T_{i,j+1}^{m-1} = \left\{ ([i+s], [j+t]), \ s, t \ge 0, 0 \le s + t \le m \right\}.$$

We now show that polynomial $f_{i,j}^m(x, y)$ interpolates f(x, y) on $T_{i,j}^m$. First we see that (see Figure 1), if the node $([h], [k]) \in T_{i,j}^{m-1} \cap T_{i+1,j}^{m-1} \cap T_{i,j+1}^{m-1}$ then

$$f_{i,j}^{m-1}([h],[k]) = f_{i+1,j}^{m-1}([h],[k]) = f_{i,j+1}^{m-1}([h],[k]) = f_{h,k},$$

and hence

$$q^{i+j}[m] f_{i,j}^{m} ([h],[k]) = \left\{ q^{i+j} \{ [m] - [h-i] - [k-j] + (1-q) [h-i] [k-j] \} + q^{i+j} [h-i] \{ 1 - \lambda(1-q) [k-j] \} + q^{i+j} [k-j] \{ 1 - (1-\lambda)(1-q) [h-i] \} \right\} f_{h,k} ,$$

which equals to $q^{i+j}[m] f_{h,k}$. If the nodes are the extreme points ([i], [j], ([i+m], [j])) and ([i], [j+m]), then we can check that $f_{i,j}^m(x, y)$ interpolates f(x, y) at these points.

Figure 1. Interpolation nodes $T_{i,j}^{m-1}$, $T_{i+1,j}^{m-1}$ and $T_{i,j+1}^{m-1}$

To complete the proof we consider the rest of the nodes, which are on the hyperbola $\gamma(x, y) = [m+i+j]$ or one of the straight lines x = [i] and y = [j]. On the hyperbola $\gamma(x, y) = [m+i+j]$, at the nodes ([h], [k]) such that h < i+m, k < j+m, we have $f_{i+1,j}^{m-1}([h], [k]) = f_{i,j+1}^{m-1}([h], [k]) = f_{h,k}$ and thus

$$[m] f_{i,j}^{m}([h],[k]) = \left\{ \{[h-i] - \lambda(1-q)[h-i][k-j]\} + \{[k-j] - (1-\lambda)(1-q)[h-i][k-j]\} \right\} f_{h,k}$$
$$= \left\{ [h-i] + [k-j] - (1-q)[h-i][k-j] \right\} f_{h,k} = [m] f_{h,k} ,$$

where $h, k \ge 0, h+k = m+i+j$. It follows similarly that $f_{i,j}^m(x, y)$ interpolates f(x, y) on the line x = [i], with j < k < j+m and on the line y = [j], with i < h < i+m. Thus, by induction, the formula is true for all $m, 0 \le m \le n$.

We see that $f_{0,0}^n(x, y)$ in (4) and P(x, y) in (3) are two interpolating polynomials on the same q-triangle and their degrees are at most 2n. In fact some of the Lagrange coefficients $M_{i,j}^n$ are of degree precisely n. However none of the Neville-Aitken algorithms of the form (4) generate the interpolating polynomial defined in (3). This is shown in the following counter example.

Example 1. Consider the two interpolating polynomials P(x, y) and $f_{0,0}^1(x, y)$ defined by (3) and (4) respectively on a q-triangle of order 1. From (3) we have

$$P(x, y) = M_{0,0}^{1}(x, y)f_{0,0} + M_{1,0}^{1}(x, y)f_{1,0} + M_{0,1}^{1}(x, y)f_{0,1}$$

= {1-\gamma(x, y)}f_{0,0} + x f_{1,0} + y f_{0,1}

Now let us consider the recurrence relation (4). We have

$$f_{0,0}^{1}(x, y) = \{1 - \gamma(x, y)\} f_{0,0} + x\{1 - \lambda(1 - q) y\} f_{1,0} + y\{1 - (1 - \lambda)(1 - q) x\} f_{0,1}$$

Hence

$$P(x, y) - f_{0,0}^{1}(x, y) = (1 - q) \{ \lambda f_{1,0} + (1 - \lambda) f_{0,1} \} xy$$

which is identically zero only for q = 1.

2. Generalised Neville-Aitken algorithm

Having shown that none of the Neville-Aitken algorithms of the form (4) generate the interpolating polynomial defined in (3), it is interesting to explore whether there exists some other Neville-Aitken algorithm which generates the interpolating polynomial defined in (3).

Let $f_{i,j}^0(x, y) = f_{i,j}$, where $i, j \ge 0$ and $i+j \le n$. For $m = 1, 2, \dots, n$, we define $f_{i,j}^m(x, y), 0 \le i+j \le n-m$, recursively by

$$f_{i,j}^{m}(x,y) = c_{i,j}^{m}(x,y)f_{i,j}^{m-1}(x,y) + d_{i,j}^{m}(x,y)f_{i+1,j}^{m-1}(x,y) + e_{i,j}^{m}(x,y)f_{i,j+1}^{m-1}(x,y)$$
(5)

where

$$c_{i,j}^{m}(x, y) + d_{i,j}^{m}(x, y) + e_{i,j}^{m}(x, y) = 1.$$
(6)

We shall call (5) a generalised Neville-Aitken algorithm. It includes the class of algorithms given in (4) as a special case. We observe that the recurrence relation (5) cannot give (3). For let P(x, y) and $f_{0,0}^{1}(x, y)$ be the two interpolating polynomials on a *q*-triangle of order 1 defined by (3) and (5) respectively. Following the argument used in Example 1, we see that $P(x, y) \neq f_{0,0}^{1}(x, y)$.

The following example shows that, even if we relax the condition (6) so that it holds only for points in $T_{i,j}^m$ and not for all x and y, we still cannot find a Neville-Aitken algorithm of the form (5) which generates P(x, y) in (3).

Example 2. Consider the polynomial in (3) which interpolates f(x, y) on $T_{0,0}^2$,

$$\begin{split} P(x,y) &= \frac{1}{[2]} ([2] - \gamma(x,y)) (1 - \gamma(x,y)) f_{0,0} + \frac{1}{q} x ([2] - \gamma(x,y)) f_{1,0} \\ &+ \frac{1}{q} y ([2] - \gamma(x,y)) f_{0,1} + xy f_{1,1} + \frac{1}{q[2]} x (x-1) f_{2,0} + \frac{1}{q[2]} y (y-1) f_{0,2} \,. \end{split}$$

Suppose that the polynomial can be expressed in the form of (5) such that the condition (6) holds on $T_{0,0}^2$. So for some coefficient functions $c_{0,0}^2(x, y)$, $d_{0,0}^2(x, y)$ and $e_{0,0}^2(x, y)$ we can write

$$P(x, y) = c_{0,0}^2(x, y) P^{0,0}(x, y) + d_{0,0}^2(x, y) P^{1,0}(x, y) + e_{0,0}^2(x, y) P^{0,1}(x, y)$$

where

$$P^{0,0} = (1 - \gamma(x, y)) f_{0,0} + x f_{1,0} + y f_{0,1},$$

$$P^{1,0} = \frac{[2] - \gamma(x, y)}{q} f_{1,0} + \frac{x - 1}{q} f_{2,0} + y f_{1,1}$$

and

$$P^{0,1} = \frac{1}{q} ([2] - \gamma(x, y)) f_{0,1} + x f_{1,1} + \frac{1}{q} (y-1) f_{0,2}$$

are the interpolating polynomials on $T_{0,0}^1$, $T_{1,0}^1$ and $T_{0,1}^1$ respectively. However on comparing the coefficients of $f_{0,0}, f_{2,0}$ and $f_{0,2}$, we obtain

$$c_{0,0}^{2}(x, y) = \frac{1}{[2]}([2] - \gamma(x, y)), d_{0,0}^{2}(x, y) = \frac{1}{[2]}x \text{ and } e_{0,0}^{2}(x, y) = \frac{1}{[2]}y$$

on $T_{0,0}^2$. This implies that on $T_{0,0}^2$

$$c_{0,0}^{2}(x, y) + d_{0,0}^{2}(x, y) + e_{0,0}^{2}(x, y) = \frac{[2] + (1-q)xy}{[2]} \neq 1$$
 unless $q = 1$

Now, given a generalised Neville-Aitken algorithm (5) which generates the polynomial $f_{0,0}^n(x, y) = \tilde{P}(x, y)$ say, we can always define the corresponding Lagrange coefficients $a_{i,j}^n(x, y)$ for $\tilde{P}(x, y)$ as follows.

Let $a_{0,0}^0(x, y) = 1$ and for $m = n-1, \dots, 0$ define $a_{i,j}^{n-m}(x, y), i, j \ge 0, i+j \le n-m$, recursively by

$$a_{i,j}^{n-m+1}(x, y) = c_{i,j}^{m}(x, y) a_{i,j}^{n-m}(x, y) + d_{i-1,j}^{m}(x, y) a_{i-1,j}^{n-m}(x, y) + e_{i,j-1}^{m}(x, y) a_{i,j-1}^{n-m}(x, y)$$
(7)

where $a_{i,j}^m(x, y) = 0$ if i, j < 0 or i + j > m. Then we shall see that $\tilde{P}(x, y)$ can be written in terms of both $f_{i,j}^m(x, y)$ and $a_{i,j}^{n-m}(x, y)$ for any *m* satisfying $0 \le m \le n$.

Theorem 3. Let $\tilde{P}(x, y)$ be the interpolating polynomial on a q-triangle of order n generated by the generalised Neville-Aitken algorithm. Then, for $m = 0, 1, \dots, n$,

$$\widetilde{P}(x, y) = \sum_{j=0}^{n-m} \sum_{i=0}^{n-m-j} f_{i,j}^{m}(x, y) a_{i,j}^{n-m}(x, y)$$
(8)

Proof. The formula is true for m = n since $a_{0,0}^0(x, y) = 1$ and $f_{0,0}^n(x, y) = \tilde{P}(x, y)$ is the polynomial generated by (5) and interpolates f on $T_{0,0}^n$. Suppose the formula is true for some m > 0. We shall show that it is also true for m-1. On applying (5) to $f_{i,i}^m(x, y)$ in equation (8) we see that

$$\widetilde{P}(x, y) = \sum_{j=0}^{n-m} \sum_{i=0}^{n-m-j} c_{i,j}^{m}(x, y) a_{i,j}^{n-m}(x, y) f_{i,j}^{m-1}(x, y) + \sum_{j=0}^{n-m} \sum_{h=1}^{n-m-j+1} d_{h-1,j}^{m}(x, y) a_{h-1,j}^{n-m}(x, y) f_{h,j}^{m-1}(x, y) + \sum_{k=1}^{n-m+1} \sum_{i=0}^{n-m-k+1} e_{i,k-1}^{m}(x, y) a_{i,k-1}^{n-m}(x, y) f_{i,k}^{m-1}(x, y)$$

114

where we have written h = i + 1 and k = j + 1 in the last two double summations. Thus

$$\widetilde{P}(x, y) = \sum_{j=0}^{n-m+1} \sum_{i=0}^{n-m-j+1} c_{i,j}^{m}(x, y) a_{i,j}^{n-m}(x, y) f_{i,j}^{m-1}(x, y) + \sum_{j=0}^{n-m+1} \sum_{h=0}^{n-m-j+1} d_{h-1,j}^{m}(x, y) a_{h-1,j}^{n-m}(x, y) f_{h,j}^{m-1}(x, y) + \sum_{k=0}^{n-m+1} \sum_{i=0}^{n-m-k+1} e_{i,k-1}^{m}(x, y) a_{i,k-1}^{n-m}(x, y) f_{i,k}^{m-1}(x, y)$$

where the added terms in each double summation are all zero. This follows, since by definition $a_{i,j}^r(x, y) = 0$ if i, j < 0 or i + j > r. Finally, on using (5) we obtain

$$\widetilde{P}(x, y) = \sum_{j=0}^{n-m+1} \sum_{i=0}^{n-m+1-j} f_{i,j}^{m-1}(x, y) a_{i,j}^{n-m+1}(x, y) .$$

Therefore by induction the formula is true for all $m = 0, 1, \dots, n$. In particular, for m = 0, the interpolating polynomial in Theorem 3 reduces to

$$\widetilde{P}(x, y) = \sum_{j=0}^{n} \sum_{i=0}^{n-j} f_{i,j}^{0} a_{i,j}^{n}(x, y)$$

and thus $a_{i,j}^n(x, y)$, $i, j \ge 0, i+j \le n$, are the Lagrange coefficients for $\tilde{P}(x, y)$.

References

- 1. S.L. Lee and G.M. Phillips, Interpolation on the triangle, *Comm. Appl. Numer. Methods* **3** (1987), 271-276.
- 2. S.L. Lee and G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a triangle, *Proc. Roy. Soc. Edinburgh* **108A** (1988), 75-87.
- 3. I.J. Schoenberg, On polynomial interpolation at the points of a geometric progression, *Proc. Roy. Soc. Edinburgh Sect.* A 90 (1981), 195-207.
- 4. D. Yahaya and G.M. Phillips, On the polynomial interpolation at points of a geometric progression, SEAMS-GMU Proc. Math. Anal. & Stats. Conference, Yogyakarta (1995), 42-51.