One-Parameter Family of Neville-Aitken Algorithm on \boldsymbol{q}-Triangle

${ }^{1}$ Daud Yahaya and ${ }^{2}$ G.M. Phillips
'Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
${ }^{2}$ Department of Mathematics, University of St. Andrews, Fife, KY16 9SS Scotland

Abstract

Two dimensional polynomial interpolation on triangular region with geometric spacing is considered. Lagrange form and Neville-Aitken algorithm for interpolating polynomials on q-triangle are obtained and the question of inter-generating between these form is studied.

1. Introduction

In [3], Schoenberg discussed various works on one dimensional polynomial interpolation at the points of geometric progression and give a unified version of the problem. Lee and Phillips [2] extend these results to two dimensional case, for a triangular domain where the nodes are not uniformly spaced. Given a positive integer n, let [n] be a q-integer defined by $[n]=\frac{1-q^{n}}{1-q}$, where $q>0$ and $q \neq 1$. Specifically, they proved that, there exists a unique interpolating polynomial, $P_{n}(x, y)$ for a function f on the triangular geometric mesh points $\{([i],[j]): 0 \leq i \leq j \leq n\}$. They also derived forward difference formula (in y and 'diagonal' directions) and Lagrange form for P_{n} and, obtained Neville-Aitken type algorithm to evaluate the polynomial efficiently.

We now consider the triangular array of points $S=\{([i],[j]): i, j \geq 0, i+j \leq n\}$ formed by the lines $x=[i]$ and $y=[j]$. This array of nodes is bounded by the X-axis, the Y-axis and the hyperbola $x+y-(1-q) x y=[n]$. We shall call this region a q triangle of order n which includes the standard triangle as a special case. In this setting, it has been shown that there is a forward difference formula in x and y directions for the interpolating polynomial of degree at most n, at the nodes of S. In this paper we shall derive a Lagrange form of an interpolating polynomial and discuss a one-parameter family of Neville-Aitken algorithms.

2. Forward difference and Lagrange formulas on the \boldsymbol{q}-triangle

Let $f(x, y)$ be a function defined over the q-triangle. Since the interpolation nodes S lie on lines parallel to coordinates axes, it is appropriate to define forward difference operators along these directions. Let denote $f([i],[j])$ by $f_{i, j}$ and define $D_{x}^{0} f_{i, j}=f_{i, j}$ and $D_{y}^{0} f_{i, j}=f_{i, j}$. For $m=1,2,3, \cdots$, define recursively

$$
D_{x}^{m} f_{i, j}=D_{x}^{m-1} f_{i+1, j}-q^{m-1} D_{x}^{m-1} f_{i, j}
$$

and

$$
D_{y}^{m} f_{i, j}=D_{y}^{m-1} f_{i, j+1}-q^{m-1} D_{y}^{m-1} f_{i, j}
$$

It follows that for $m=1,2,3, \cdots$ and $n=0,1,2, \cdots$ the mixed q-differences satisfy

$$
D_{x}^{m} D_{y}^{n} f_{i, j}=D_{x}^{m-1} D_{y}^{n} f_{i+1, j}-q^{m-1} D_{x}^{m-1} D_{y}^{n} f_{i, j}
$$

We need to extend q-integer to q-real. For any $t \in \boldsymbol{R}$ the q-real t, denoted by $[t]$, is defined by

$$
[t]=\left\{\begin{array}{cl}
\frac{1-q^{t}}{1-q} & , \quad q \neq 1 \text { and } q>0 \\
t & , q=1
\end{array}\right.
$$

Also for any $t \in \boldsymbol{R}$ and $k \in \boldsymbol{Z}$, with $0 \leq k \leq t$, the q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
t \\
k
\end{array}\right]=\frac{1}{[k]!} \prod_{v=0}^{k-1}[t-v] \quad \text { where }[k]!=[k][k-1] \ldots[1]
$$

Using these notations we see that there exists a q-forward difference formula for the interpolating polynomial of degree n on the q-triangle.

Theorem 1. Let $f(x, y)$ be defined at all points of the q-triangle of order n. For any (x, y) in the q-triangle, let

$$
P_{n}(x, y)=\sum_{r=0}^{n} \sum_{s=0}^{r}\left[\begin{array}{c}
\bar{x} \tag{1}\\
r-s
\end{array}\right]\left[\begin{array}{l}
\bar{y} \\
s
\end{array}\right] \quad D_{x}^{r-s} \quad D_{y}^{s} \quad f_{0,0}
$$

where $x=[\bar{x}]$ and $y=[\bar{y}]$ for some $\bar{x}, \bar{y} \in \boldsymbol{R}$ then the polynomial $P_{n}(x, y)$ interpolates f at the nodes of S.

The proof of Theorem 1 is given by Yahaya and Phillips [4]. Taking $q=1$ as a special case, (1) does reduces to a forward difference formula for polynomial interpolation on the standard triangle.

We also recognize that the nodes in set S are formed by the systems of $x=[v]$, $y=[v]$ and $\gamma(x, y)=[v]$ where $\gamma(x, y)=x+y-(1-q) x y$ and $v=0,1, \cdots, n$. So given any point $([i],[j])$ on the triangle, the union of the hyperbolas $\gamma(x, y)=[n-v]$ for $v=0,1, \cdots, n-i-j-1$, the straight lines $x=[v]$ for $v=0,1, \cdots, i-1$ and $y=[v]$ for $v=0,1, \cdots, j-1$ contain all nodes on the triangle except the point $([i],[j])$ itself. It follows that, for $i, j \geq 0, i+j \leq n$, the polynomial

$$
\begin{equation*}
M_{i, j}^{n}(x, y)=\frac{1}{\omega(i, j)} \prod_{v=0}^{i-1}(x-[v]) \prod_{v=0}^{j-1}(y-[v]) \prod_{v=0}^{n-i-j-1}([n-v]-\gamma(x, y)) \tag{2}
\end{equation*}
$$

where

$$
\omega(i, j)=[i]![j]![n-i-j]!q^{(i+j)(2 n-1-i-j) / 2-i j}
$$

satisfies the conditions

$$
M_{i, j}^{n}([h],[k])= \begin{cases}1 & \text { if }([h],[k])=([i],[j]) \\ 0 & \text { at all other nodes in } S\end{cases}
$$

We note that, in the above expression (2) for $M_{i, j}^{n}(x, y)$, an empty product (when $i=0$ or $j=0$ or $i+j=n$) is taken to have value 1 .

Thus we obtain a Lagrangian form of an interpolating polynomial which uses hyperbolas and two linear systems. This polynomial can be expressed as

$$
\begin{equation*}
P(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} M_{i, j}^{n}(x, y) f_{i, j} \tag{3}
\end{equation*}
$$

In this case the degree of $P(x, y)$ is at most $2 n$, since the degree of any $M_{i, j}^{n}(x, y)$ is at most $2 n-i-j$ and we note that the interpolating polynomial will not be unique. However, letting q tend to 1 , the polynomial $P(x, y)$ in (3) reduces to the interpolating polynomial of degree at most n on the standard triangle.

3. Neville-Aitken algorithm

We now construct a Neville-Aitken algorithm for an interpolating polynomial on the q-triangle of order n. For each $m=1,2, \cdots, n$, the algorithm generates a one parameter family of polynomials $f_{i, j}^{m}(x, y): i, j \geq 0, i+j \leq n-m$, which interpolate $f(x, y)$ on $T_{i, j}^{m}: i, j \geq 0, i+j \leq n-m$ respectively. Here we have used the notation $T_{i, j}^{m}$ to mean the set of nodes $T_{i, j}^{m}=\{([i+s],[j+t]): s, t \geq 0, s+t \leq m\}$ for which $T_{0,0}^{n}=S$. These are the q-triangle bounded by the lines $x=[i], y=[j]$ and the hyperbola $\gamma(x, y)=[m+i+j]$.

Lemma 2. Let $f_{i, j}^{0}(x, y)=f_{i, j}, i, j \geq 0, i+j \leq n$. For $m=1,2, \cdots, n$, we define $f_{i, j}^{m}(x, y), 0 \leq i+j \leq n-m$, recursively by

$$
\begin{align*}
q^{i+j}[m] f_{i, j}^{m}= & \{[m+i+j]-\gamma(x, y)\} f_{i, j}^{m-1}(x, y)+(x-[i])\left\{q^{j}-\lambda(1-q)(y-[j])\right\} \\
& f_{i+1, j}^{m-1}(x, y)+(y-[j])\left\{q^{i}-(1-\lambda)(1-q)(x-[i])\right\} f_{i, j+1}^{m-1}(x, y) \tag{4}
\end{align*}
$$

where λ is an arbitrary real number. Then $f_{i, j}^{m}(x, y)$ interpolates $f(x, y)$ on $T_{i, j}^{m}$.
Proof. First we note that the coefficient of $f_{i, j}^{m-1}(x, y)$ in (4) may be expressed as

$$
[m+i+j]-\gamma(x, y)=q^{i+j}[m]-q^{j}(x-[i])-q^{i}(y-[j])+(1-q)(x-[i])(y-[j])
$$

Clearly the above result holds for $m=0$. Suppose that (4) holds for some $m-1$. Therefore the polynomials $f_{i, j}^{m-1}, f_{i+1, j}^{m-1}$ and $f_{i, j+1}^{m-1}$ interpolate $f(x, y)$ on the sets $T_{i, j}^{m-1}, T_{i+1, j}^{m-1}$ and $T_{i, j+1}^{m-1}$ respectively. For any integers $i, j \geq 0,0 \leq i+j \leq n-m$ consider the function $f_{i, j}^{m}$ at the nodes

$$
T_{i, j}^{m}=T_{i, j}^{m-1} \bigcup T_{i+1, j}^{m-1} \bigcup T_{i, j+1}^{m-1}=\{([i+s],[j+t]), s, t \geq 0,0 \leq s+t \leq m\}
$$

We now show that polynomial $f_{i, j}^{m}(x, y)$ interpolates $f(x, y)$ on $T_{i, j}^{m}$. First we see that (see Figure 1), if the node $([h],[k]) \in T_{i, j}^{m-1} \bigcap T_{i+1, j}^{m-1} \bigcap T_{i, j+1}^{m-1}$ then

$$
f_{i, j}^{m-1}([h],[k])=f_{i+1, j}^{m-1}([h],[k])=f_{i, j+1}^{m-1}([h],[k])=f_{h, k},
$$

and hence

$$
\begin{aligned}
& q^{i+j}[m] f_{i, j}^{m}([h],[k])=\left\{q^{i+j}\{[m]-[h-i]-[k-j]+(1-q)[h-i][k-j]\}\right. \\
& \left.\quad+q^{i+j}[h-i]\{1-\lambda(1-q)[k-j]\}+q^{i+j}[k-j]\{1-(1-\lambda)(1-q)[h-i]\}\right\} f_{h, k}
\end{aligned}
$$

which equals to $q^{i+j}[m] f_{h, k}$. If the nodes are the extreme points ($[i],[j]$, $([i+m],[j])$ and $([i],[j+m])$, then we can check that $f_{i, j}^{m}(x, y)$ interpolates $f(x, y)$ at these points.

Figure 1. Interpolation nodes $T_{i, j}^{m-1}, T_{i+1, j}^{m-1}$ and $T_{i, j+1}^{m-1}$

To complete the proof we consider the rest of the nodes, which are on the hyperbola $\gamma(x, y)=[m+i+j]$ or one of the straight lines $x=[i]$ and $y=[j]$. On the hyperbola $\gamma(x, y)=[m+i+j]$, at the nodes $([h],[k])$ such that $h<i+m, k<j+m$, we have $f_{i+1, j}^{m-1}([h],[k])=f_{i, j+1}^{m-1}([h],[k])=f_{h, k}$ and thus

$$
\begin{aligned}
{[m] f_{i, j}^{m}([h],[k]) } & =\{\{[h-i]-\lambda(1-q)[h-i][k-j]\}+\{[k-j]-(1-\lambda)(1-q)[h-i][k-j]\}\} f_{h, k} \\
& =\{[h-i]+[k-j]-(1-q)[h-i][k-j]\} f_{h, k}=[m] f_{h, k},
\end{aligned}
$$

where $h, k \geq 0, h+k=m+i+j$. It follows similarly that $f_{i, j}^{m}(x, y)$ interpolates $f(x, y)$ on the line $x=[i]$, with $j<k<j+m$ and on the line $y=[j]$, with $i<h<i+m$. Thus, by induction, the formula is true for all $m, 0 \leq m \leq n$.

We see that $f_{0,0}^{n}(x, y)$ in (4) and $P(x, y)$ in (3) are two interpolating polynomials on the same q-triangle and their degrees are at most $2 n$. In fact some of the Lagrange coefficients $M_{i, j}^{n}$ are of degree precisely n. However none of the Neville-Aitken algorithms of the form (4) generate the interpolating polynomial defined in (3). This is shown in the following counter example.

Example 1. Consider the two interpolating polynomials $P(x, y)$ and $f_{0,0}^{1}(x, y)$ defined by (3) and (4) respectively on a q-triangle of order 1 . From (3) we have

$$
\begin{aligned}
P(x, y) & =M_{0,0}^{1}(x, y) f_{0,0}+M_{1,0}^{1}(x, y) f_{1,0}+M_{0,1}^{1}(x, y) f_{0,1} \\
& =\{1-\gamma(x, y)\} f_{0,0}+x f_{1,0}+y f_{0,1}
\end{aligned}
$$

Now let us consider the recurrence relation (4). We have

$$
f_{0,0}^{1}(x, y)=\{1-\gamma(x, y)\} f_{0,0}+x\{1-\lambda(1-q) y\} f_{1,0}+y\{1-(1-\lambda)(1-q) x\} f_{0,1}
$$

Hence

$$
P(x, y)-f_{0,0}^{1}(x, y)=(1-q)\left\{\lambda f_{1,0}+(1-\lambda) f_{0,1}\right\} x y
$$

which is identically zero only for $q=1$.

2. Generalised Neville-Aitken algorithm

Having shown that none of the Neville-Aitken algorithms of the form (4) generate the interpolating polynomial defined in (3), it is interesting to explore whether there exists some other Neville-Aitken algorithm which generates the interpolating polynomial defined in (3).

Let $f_{i, j}^{0}(x, y)=f_{i, j}$, where $i, j \geq 0$ and $i+j \leq n$. For $m=1,2, \cdots, n$, we define $f_{i, j}^{m}(x, y), 0 \leq i+j \leq n-m$, recursively by

$$
\begin{equation*}
f_{i, j}^{m}(x, y)=c_{i, j}^{m}(x, y) f_{i, j}^{m-1}(x, y)+d_{i, j}^{m}(x, y) f_{i+1, j}^{m-1}(x, y)+e_{i, j}^{m}(x, y) f_{i, j+1}^{m-1}(x, y) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i, j}^{m}(x, y)+d_{i, j}^{m}(x, y)+e_{i, j}^{m}(x, y)=1 \tag{6}
\end{equation*}
$$

We shall call (5) a generalised Neville-Aitken algorithm. It includes the class of algorithms given in (4) as a special case. We observe that the recurrence relation (5) cannot give (3). For let $P(x, y)$ and $f_{0,0}^{1}(x, y)$ be the two interpolating polynomials on a q-triangle of order 1 defined by (3) and (5) respectively. Following the argument used in Example 1, we see that $P(x, y) \neq f_{0,0}^{1}(x, y)$.

The following example shows that, even if we relax the condition (6) so that it holds only for points in $T_{i, j}^{m}$ and not for all x and y, we still cannot find a Neville-Aitken algorithm of the form (5) which generates $P(x, y)$ in (3).

Example 2. Consider the polynomial in (3) which interpolates $f(x, y)$ on $T_{0,0}^{2}$,

$$
\begin{aligned}
P(x, y) & =\frac{1}{[2]}([2]-\gamma(x, y))(1-\gamma(x, y)) f_{0,0}+\frac{1}{q} x([2]-\gamma(x, y)) f_{1,0} \\
& +\frac{1}{q} y([2]-\gamma(x, y)) f_{0,1}+x y f_{1,1}+\frac{1}{q[2]} x(x-1) f_{2,0}+\frac{1}{q[2]} y(y-1) f_{0,2} .
\end{aligned}
$$

Suppose that the polynomial can be expressed in the form of (5) such that the condition (6) holds on $T_{0,0}^{2}$. So for some coefficient functions $c_{0,0}^{2}(x, y), d_{0,0}^{2}(x, y)$ and $e_{0,0}^{2}(x, y)$ we can write

$$
P(x, y)=c_{0,0}^{2}(x, y) P^{0,0}(x, y)+d_{0,0}^{2}(x, y) P^{1,0}(x, y)+e_{0,0}^{2}(x, y) P^{0,1}(x, y)
$$

where

$$
\begin{aligned}
& P^{0,0}=(1-\gamma(x, y)) f_{0,0}+x f_{1,0}+y f_{0,1}, \\
& P^{1,0}=\frac{[2]-\gamma(x, y)}{q} f_{1,0}+\frac{x-1}{q} f_{2,0}+y f_{1,1}
\end{aligned}
$$

and

$$
P^{0,1}=\frac{1}{q}([2]-\gamma(x, y)) f_{0,1}+x f_{1,1}+\frac{1}{q}(y-1) f_{0,2}
$$

are the interpolating polynomials on $T_{0,0}^{1}, T_{1,0}^{1}$ and $T_{0,1}^{1}$ respectively. However on comparing the coefficients of $f_{0,0}, f_{2,0}$ and $f_{0,2}$, we obtain

$$
c_{0,0}^{2}(x, y)=\frac{1}{[2]}([2]-\gamma(x, y)), d_{0,0}^{2}(x, y)=\frac{1}{[2]} x \text { and } e_{0,0}^{2}(x, y)=\frac{1}{[2]} y
$$

on $T_{0,0}^{2}$. This implies that on $T_{0,0}^{2}$

$$
c_{0,0}^{2}(x, y)+d_{0,0}^{2}(x, y)+e_{0,0}^{2}(x, y)=\frac{[2]+(1-q) x y}{[2]} \neq 1 \text { unless } q=1
$$

Now, given a generalised Neville-Aitken algorithm (5) which generates the polynomial $f_{0,0}^{n}(x, y)=\tilde{P}(x, y)$ say, we can always define the corresponding Lagrange coefficients $a_{i, j}^{n}(x, y)$ for $\tilde{P}(x, y)$ as follows.

Let $\quad a_{0,0}^{0}(x, y)=1$ and for $m=n-1, \cdots, 0$ define $a_{i, j}^{n-m}(x, y), i, j \geq 0, i+j \leq n-m$, recursively by

$$
\begin{align*}
a_{i, j}^{n-m+1}(x, y)= & c_{i, j}^{m}(x, y) a_{i, j}^{n-m}(x, y)+d_{i-1, j}^{m}(x, y) a_{i-1, j}^{n-m}(x, y) \\
& +e_{i, j-1}^{m}(x, y) a_{i, j-1}^{n-m}(x, y) \tag{7}
\end{align*}
$$

where $a_{i, j}^{m}(x, y)=0$ if $i, j<0$ or $i+j>m$. Then we shall see that $\tilde{P}(x, y)$ can be written in terms of both $f_{i, j}^{m}(x, y)$ and $a_{i, j}^{n-m}(x, y)$ for any m satisfying $0 \leq m \leq n$.

Theorem 3. Let $\tilde{P}(x, y)$ be the interpolating polynomial on a q-triangle of order n generated by the generalised Neville-Aitken algorithm. Then, for $m=0,1, \cdots, n$,

$$
\begin{equation*}
\tilde{P}(x, y)=\sum_{j=0}^{n-m} \sum_{i=0}^{n-m-j} f_{i, j}^{m}(x, y) a_{i, j}^{n-m}(x, y) \tag{8}
\end{equation*}
$$

Proof. The formula is true for $m=n$ since $a_{0,0}^{0}(x, y)=1$ and $f_{0,0}^{n}(x, y)=\tilde{P}(x, y)$ is the polynomial generated by (5) and interpolates f on $T_{0,0}^{n}$. Suppose the formula is true for some $m>0$. We shall show that it is also true for $m-1$. On applying (5) to $f_{i, j}^{m}(x, y)$ in equation (8) we see that

$$
\begin{aligned}
\tilde{P}(x, y) & =\sum_{j=0}^{n-m} \sum_{i=0}^{n-m-j} c_{i, j}^{m}(x, y) a_{i, j}^{n-m}(x, y) f_{i, j}^{m-1}(x, y) \\
& +\sum_{j=0}^{n-m} \sum_{h=1}^{n-m-j+1} d_{h-1, j}^{m}(x, y) a_{h-1, j}^{n-m}(x, y) f_{h, j}^{m-1}(x, y) \\
& +\sum_{k=1}^{n-m+1} \sum_{i=0}^{n-m-k+1} e_{i, k-1}^{m}(x, y) a_{i, k-1}^{n-m}(x, y) f_{i, k}^{m-1}(x, y)
\end{aligned}
$$

where we have written $h=i+1$ and $k=j+1$ in the last two double summations. Thus

$$
\begin{aligned}
\tilde{P}(x, y) & =\sum_{j=0}^{n-m+1} \sum_{i=0}^{n-m-j+1} c_{i, j}^{m}(x, y) a_{i, j}^{n-m}(x, y) f_{i, j}^{m-1}(x, y) \\
& +\sum_{j=0}^{n-m+1} \sum_{h=0}^{n-m-j+1} d_{h-1, j}^{m}(x, y) a_{h-1, j}^{n-m}(x, y) f_{h, j}^{m-1}(x, y) \\
& +\sum_{k=0}^{n-m+1} \sum_{i=0}^{n-m-k+1} e_{i, k-1}^{m}(x, y) a_{i, k-1}^{n-m}(x, y) f_{i, k}^{m-1}(x, y)
\end{aligned}
$$

where the added terms in each double summation are all zero. This follows, since by definition $a_{i, j}^{r}(x, y)=0$ if $i, j<0$ or $i+j>r$. Finally, on using (5) we obtain

$$
\tilde{P}(x, y)=\sum_{j=0}^{n-m+1} \sum_{i=0}^{n-m+1-j} f_{i, j}^{m-1}(x, y) a_{i, j}^{n-m+1}(x, y)
$$

Therefore by induction the formula is true for all $m=0,1, \cdots, n$. In particular, for $m=0$, the interpolating polynomial in Theorem 3 reduces to

$$
\tilde{P}(x, y)=\sum_{j=0}^{n} \sum_{i=0}^{n-j} f_{i, j}^{0} a_{i, j}^{n}(x, y)
$$

and thus $a_{i, j}^{n}(x, y), i, j \geq 0, i+j \leq n$, are the Lagrange coefficients for $\tilde{P}(x, y)$.

References

1. S.L. Lee and G.M. Phillips, Interpolation on the triangle, Comm. Appl. Numer. Methods 3 (1987), 271-276.
2. S.L. Lee and G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a triangle, Proc. Roy. Soc. Edinburgh 108A (1988), 75-87.
3. I.J. Schoenberg, On polynomial interpolation at the points of a geometric progression, Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 195-207.
4. D. Yahaya and G.M. Phillips, On the polynomial interpolation at points of a geometric progression, SEAMS-GMU Proc. Math. Anal. \& Stats. Conference, Yogyakarta (1995), 42-51.
