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Abstract. Two dimensional polynomial interpolation on triangular region with geometric spacing is
considered. lagrange form and Neville-Aitken algorithm for interpolating polynomials on
4-triangle are obtained and the question of inter-generating between these form is studied.

1. Introduction

In [3], Schoenberg discussed various works on one dimensional polynomial interpolation
at the points of geometric progression and give a unified version of the problem. Lee and
Phillips [2] extend these results to two dimensional case, for a triangular domain where
the nodes are not uniformly spaced. Given a positive integer n, let [n] be a q-integer

defined by 1"1-ff, where q>0 and q*1. Specifically, they proved that, there

exists a unique interpolating polynomial, PnG, t) for a function / on the triangular

g e o m e t r i c  m e s h  p o i n t s  { ( [ t ] , [ " 1 ] ) : 0 S i <  j S n I  .  T h e y  a l s o  d e r i v e d  f o r w a r d

difference formula (in y and 'diagonal' directions) and Lagrange torm for Pn and,

obtained Neville-Aitken type algorithm to evaluate the polynomial efficiently.
We now cons ider  the  t r iangu lar  a r ray  o f  po in ts  S={ ( t t l , t j l ) : i ,  j>0 ,  i+  j<n I

formed by the lines x =[i] and y =[ j]. This array of nodes is bounded by the X-axis,

the l -axis and the hyperbola x+y-( l -q)ry=[n] .  We shal l  cal l  th is region a q-

triangle of order n which includes the standard triangle as a special case. In this setting, it
has been shown that there is a forward difference formula in .r and y directions for the
interpolating polynomial of degree at most n, at the nodes of S. In this paper we shall
derive a Lagrange form of an interpolating polynomial and discuss a one-parameter
family of Neville-Aitken algorithms.
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2. Forward difference and Lagrange formulas on the q-triangle

Let f (x,)) be a function defined over the q-triangle. Since the interpolation nodes S lie

on lines parallel to coordinates axes, it is appropriate to define forward difference

operators along these directions. Let denote f ([i],t.fl) by I'i,1 and define Do, f ,,i = f ,, j

and  D j r f  i , j  =  f  i , j .  For  m=1,2 ,3 , . . . ,  de f ine  recurs ive ly

Di f i,i - Df-t f i*r,j - q^-t Di-t f ,,i

and

Di f i , i  -  oi- ' f  , , i+r - Q^-t oi-t  f  i , i

It follows that for m = l, 2,3, .. . and fl = 0,l, 2, . .. the mixed q-differences satisfy

oi oi f t,1 - Df-t Di f i*t,1 - q^-t Dft Di f i, i

We need to extend q-rnteger to q-real. For any t e R the q-real r, denoted by [r],
is defined by

I  t - . ,
l r l = l *  '  q + l  a n d q > o

I  r  ,  Q = l

Also for any te R and k e Z, with 0 < k ( t, theq-binomial coefficient is defined by

[;] 
= 

#H 
rt-ut where rftl! = tkttk-ll trl

Using these notations we see that there exists a q-forward difference formula for the
interpolating polynomial of degree n on the q-triangle.

Theorem l. Let f (x, y) be defined at all points of the q-triangle of order n. For any

(x, y) in the q-triangle, let

P,(x , r )= i t  f  
o  

l t l l  , , - '  D 'y  ro ,o ( r )
r = o . s = o  L t - t l L t J

where x =lil and ) = [t] fo, some i, j e R then the polynomial PnQ, y)

interpolates f at the nodes of S.
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The proof of Theorem I is given by Yahaya and Phillips [4]. Taking Q=l as a special
case, (l) does reduces to aforward difference formulaforpolynomial interpolation on the
standard triangle.

We also recognize that the nodes in set S are formed by the systems of .r = [u ] ,
y = l u l  a n d  y ( x , y ) = [ o ]  w h e r e  y ( x , y ) = x * y - ( l - q ) x y  a n d  u = 0 , 1 , . . . , n .

So given any point (trl, t j l) on the triangle, the union of the hyperbolas

y ( x , y ) - [ n - D ]  f o r  u = 0 , 1 , . ' . , n - i - j - 1 ,  t h e  s t r a i g h t  l i n e s  x = [ o ]  f o r

o = 0 , 1 , . . . ,  i - l  a n d  ) = [ o ]  f o r  u = 0 , 1 , . . . ,  j - l  c o n t a i n  a l l  n o d e s  o n  t h e  t r i a n g l e

except the point (trl,t j l) i tself. It follows that, for i, j  > 0, i+ j 3n, the
polynomial

M  i ' i @ ' Y )  -

where

f |  (x-tv])
Y = 0a(i,  i )

j-r

II
Y = 0

n- i -  i  - l

(y -tvl) l I  (n-v)-y(x, y)) (2)
Y=0

a( i ,  i )  = [ i ] !  t i l l  tn- i  -  i l  nu+1){zn-t- i - i ) t2- i i

satisfies the conditions

Mi,ir.ht,'0,, = {i "1 ",1'll;i'[Ji'i;"]'
We note that, in the above expression (2) for M i,i G, )) , an empty product (when i = 0

o r  . / = 0  o r  i +  j - n )  i s t a k e n t o h a v e v a l u e l .

Thus we obtain a Lagrangian form of an interpolating polynomial which uses
hyperbolas and two linear systems. This polynomial can be expressed as

P(x, y) Mi, iQ, i f i , i '

In this case the degree of P(x, y) is at most 2n, since the degree of any M i1@, y) is at

most 2n-i- j and we note that the interpolating polynomial will not be unique.

However, letting q tend to l, the polynomial P(x, y) in (3) reduces to the interpolating

polynomial of degree at most n on the standard triangle.

n n- i

j=0 . l=0

(3)
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3. Neville-Aitkenalgorithm

We now construct a Neville-Aitken algorithm for an interpolating polynomial on the
q-triangle of order n. For each m=1,2,.-.,n, the algorithm generates a one parameter

fami ly of  polynomials f i i1\ , i l :  i , i>0,  i+ j  S n-m, which interpolate f  (x,y)  on

rtli : i, j ) 0, i + j 1 n-m respectively. Here we have used the notation T,^, to

m e a n t h e s e t o f  n o d e s  f , ! i  = { ( t r + s l ,  [ / + r ] ) :  s ,  r )  0 ,  s  +  /  l m l  f o r w h i c h  f J o  = S .

These are the q-triangle bounded by the lines x = [i], y = [/] and the hyperbola

y ( x , y ) - l m + i +  j l .

L e m m a 2 .  L e t  f , ? i \ , f l = f i , i , i , i > 0 ,  i + i 3 n .  F o r  m = 1 , 2 , ' . ' , n ,  w e  d e f i n e

f , j ( r , ) ) ,  0 < i  + i  1 n- m, recursivelY bY

q'*  i  l * l  f  , ! i  = { t*  *  i  + j l  -  T(x,  i l  }  f  , ! i t  (x,  y)  + (x -  t iD lq i  -  L(  -  q)  (y-  t i l )  }

f  ,T t ' iG,  v )  +  (v  - t i l )  {n '  -0-  L) ( t -  q ) (x - t i  I  >}  f  , : , ; \ ( ' ' ,  v )  (4)

where ), is an arbitrary real number. Then f ,!iG, y) interpolates f (x, y) on f tii

Proof. First we note that the coefficient of f ,!lt {r,y) in (4) may be expressed as

[ m + i +  j ] -  y ( x , y )  =  q ' * i  f u )  -  q i ( x - t i l )  -  q i  ( y - t r l )  +  ( l  - q ) ( x - t t l ) ( y - t i l ) .

Clearly the above result holds for m = 0. Suppose that (4) holds for some m - L

Therefore the polynomials f,!,^, f,itti and fi\11 interpolate f (x,y) on the sets

T,?i- t ,  T,Tt , :  and T,! i* t ,  respect ively.  Foranyintegers i ,  i  > 0,0 < i  + j  1n-m

consider the functio" f ,3 at the nodes

r, ! i  -  7,! ,- '  U r,Tr ' i  U r, ! i*t ,  = {([ i+s],[ i+r]),  s, r  )  0, 0 ( s + t < *].

We now show that polynomial f ,!1Q,y) interpolatesflx,y) on T,!t. First we see

that (see Figure l), if the node ([ft], tftl) . r,!,-t n T,ir,ti n f ,:j;\ then

f ,il [n, [ft]) = f ,itti(t/,1, tftl) = f ,!i*tr(tft1, tkl) = l h,k ,

l
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and hence

q t * i [ * ]  f : j  ( h l , [ k ] )  - {  q ' * i  l f , m l - t h - i l - I k - l l + ( 1  - q ) l h - u . k -  j l  }

+  q ' * i  W- i l t t -  h ( r -  d t k -  j l  )  +  q ' * i  l k  -  j l {  l - ( l  -  h ) ( t -  i l t h - i r  }  }  f n , * ,

which equals to q'*r [m) f n,r. If the nodes are the extreme points ([t],I j ],

( [ i+m] , [ j ] )  and ( [ t ] , [ j+m] ) ,  then we can check  tha t  f i ^ iG, t )  in te rpo la tes

f (x, y) at these points.

([r], [i+ntJ)

114, [i+nt_lJ)

tr
m
tr
NB:
for

q -Tr iangl e conta i ning r,^fl

q -Tr iangl e conta i ni ng r lllt,

q-Tr iangle containing r{1 }1

The hyperbolas 7(x, y) = [nJ are convex

q > I orrd con"ovefor 0 < q t I'

.f(x, y) = fm-l+ i+i',

y(x, y) =fm+i+1f

([d, u+1])

([4, U])
([i+n-l], !l) ([i+nJ, [])([t+U, UJ)

Figure l. Interpolationnodes T,!i' , T,itti ana T,\*t,

To complete the proof we consider the rest of the nodes, which are on the hyperbola
y(x,y)=lm*i+ j l  or  one of  the straight l ines . r=[ i ]  and y=[,r ] .  On the hyperbola

y ( x , y ) - [ m + i +  j ] ,  a t  t h e  n o d e s  ( [ h ] , [ k ] )  s u c h  t h a t  h < i + m , k <  j + m ,  w e  h a v e

f ,ft)(t/, l , tkl) - f ,!,7\(t/, l , ter) = f n,* and thus

Imt f{i(t/'r'tkr)=l;i;i 
li;,'-l':-::,-,:,irl"l, i,'l::,u;:,*-i)tk-jr}t 

f'o
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where h,  k>0, h+k = m+i+ j .  l t  fo l lows simi lar ly that  f i l7,9 interpolates

f  (x ,y )  on  the  l ine  , r  =  [ i ] ,  w i th  j<k< j+m and on  the  l ine  y  =  [ l ] ,  w i th

i < h<i+m. Thus, by induction, the formula is true for all m, 0 1 m 1 n.

We see that fis (x, y) in (a) and P(-r, y) in (3) are two interpolating polynomials on

the sarne q-triangle and their degrees are at most 2n. In fact some of the Lagrange

coefficients U i,i are of degree precisely n. However none of the Neville-Aitken

algorithms of the form (4) generate the interpolating polynomial defined in (3). This is
shown in the following counter example.

Example 1. Consider the two interpolating polynomials P(x,y) and /el.e(x,y) defined

by (3) and (4) respectively on a q-tnangle of order 1. From (3) we have

P(x,  y)  = M[,0Q, i l fo,o + Ml,Q, y) f i '  + M[,r@, Dfo, t
= { l- y(x, y)}"fo,o + x ft,o + | fol

Now let us consider the recurrence relation (4). We have

f l ,o ( * ,v )  =  {  l -y ( r ,v ) } . fo ,o  +- r { l  -L ( l - �q )  v l , f i ,o  + ) {1 - (1  -  L ) ( l -q )  x }  , fo , r

Hence

P(x,  y)-  /o1o Q, y)  = (1- q)tLf i ,o + 0- L) f  o, t l  ,y

which is identically zero only for Q =1.

2. Generalised Neville-Aitken algorithm

Having shown that none of the Neville-Aitken algorithms of the form (4) generate the
interpolating polynomial defined in (3), it is interesting to explore whether there exists
some other Neville-Aitken algorithm which generates the interpolating polynomial
defined in (3).

L e t  f , ? i Q , D - - f i , i ,  w h e r e  i , i > O  a n d  i +  j < n .  F o r  m = 1 , 2 , " ' , n ,  w e

def ine f , i iQ,y),  0 3i+ i  1 n-m, recursively by

f ,!1 G, D = c I i @, y) f ,!i-t (t, y) + d { i (x, y) f iirt, {x, t) + e I i G, y) f iii *1 (t' y)

where

c{ iG,  D +  d i i@,  y )  +  e I i ( r ,  y )  =  l .

(5)

(6)
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We shall call (5) a generalised Neville-Aitken algorithm. It includes the class of
algorithms given in (a) as a special case. We observe that the recurrence relation (5)

cannot give (3). For let P(x, y) and /sl,s (x, y) be the two interpolating polynomials on

a 4-triangle of order I defined by (3) and (5) respectively. Following the argument used

in Example l, we see that P(x, y) * f I,o(x, y) .

The following example shows that, even if we relax the condition (6) so that it holds

only for points in f,ii and not for all x and y, we still cannot find a Neville-Aitken

algorithm of the form (5) which generates P(x, y) in (3).

Example 2. Consider the polynomial in (3) which interpolate s f (x,y) on 410 ,

I
P(x, v) = 

6(21-y 
(x'  v))( l-T (x, v))"fo.o

* 1 y( [2]- y(x,y) ) ,fo,r + xJ ft,rq

+ l r (  l2 l -y(x ,y) )  , f r ,oq

.  
#xG-t) fz,o .  

#y0 
-t) fo,z.

Suppose that the polynomial can be expressed in the form of (5) such that the condition

(6) holds on ft,o. So for some coefficient functionr r&o G,y), d|,o(x,y)and

,3.0@,y) we can write

P(x,  y)  = c| ,o(x,  y)  Po'o (r ,  D+ d1,o7, y)  Pt 'o (r ,  D+ e| ,oQ, y)Po' t  ( r ,  y)

where

Po'o -  ( l -y(x ,y) ) , fo ,o + x fw *  !  fo , r ,

p t , o  - l 2 l - Y ( x , Y )  x - l
q  

3 f r ,o *  
n  

f z ,o+ l f r . t

and

pO,r = 1( el - y(x,yD,fo,r + x ftr* f (, -t) fo,z
q q

are the interpolating polynomials on fJ,o, f,lo and ?"0r,, respectively. However on

comparing the coefficients of fo.o, fz.o and f s.2, we obtain

,3,o@,r, = 
h(U-T 

(x,y)),d\,o(x, y) =h, and ,| '1,g = 
f i t
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on rolo . This implies that on To26

, f i , e , i l  +  d \ 'G ,D  +  e | ,1 ,g - [ z ]+ \ l : q )xv  # r  un ress  Q= t .
l2l

Now, given a generalised Neville-Aitken algorithm (5) which generates the

polynomial ft.o(x,.y) -FG,)) say, we can always define the corresponding Lagrange

coefficients ai,,G, i l  for F1x,y) as follows.

L e t  o f l o { " , ) )  =  l a n d  f o r  m = n - 1 ,  . . . ,  0  d e f i n "  o i , i ^ G , 9 , i ,  i > 0 ,  i  +  i  1 n - m ,

recursively by

o!, ,^*t  (x,  y)  -  , I iQ, y)  " i , ;^  (x,  y)  + dl t , i (x,  y)  " i - ( i  Q, y)

+ ei1_t (x,  ) )  " i . ; \ (x,  ) )  ( i )

w h e r e  a l 1 G , y ) = 0  i f  i ,  7 < 0  o r  i +  j > m .  T h e n w e s h a l l s e e t h a t  F Q , D  c a n b e

written in terms of both f ,!1G,y) and "i, j^ (x, y) for any n satisfying 0 I m I n.

Theorem 3. Let FU, D be the interpolating potynomial on a q-triangle of order n

generated by the generalised Neville-Aitken algorithm. Then, for m = 0, l, "' , tl ,

n _ m  n - m - l
:  '  Sr S rtrt  r  r  l l -rP(x, y)

l=0 i=0

Proof. The formula is true for m = n since o3,o(*,)) = I and ft,o\, D = P(x, )) is

the polynomial generated by (5) and interpolates f on T{.0. Suppose the formula is true

for some m > 0. We shall show that it is also true for m - l. On applying (5) to

f t! i?,y) in equation (8) we see that

(8)

n-m n-m- l

FG, D --
j=o i=o

n-m n-m- i+ l

+ t
, l=0 h=l

n -m+l  n -m-k+ l

+
k= l  i=0
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where we have written h=i+l and k = j+l in the last two double summations. Thus

n-m+l  n -m- j+ l

P(*,  y)  =
" l=o i=o

n-m+l  n -m- i+ l

+ I
j=o  h=0

n-m+l  n -m-k+ l
-L S S m / \ il-lf7 r , rlll-l
' z-r

t=0 i=0

where the added terms in each double summation are all zero. This follows, since by

d e f i n i t i o n  o i , i \ , ) ) = 0  i f  i  i < 0  o r  i +  j > r .  F i n a l l y , o n u s i n g ( 5 ) w e o b t a i n

n-m+l  n -n+ l - j
s t  S  r f l t - l t  r  n - n * l  /  \P(x, y) - L L f i.:i' Q,y) oi'. j"'-' (x, y) .
,l=0 i=0

Therefore by induction the formula is true for all m-- 0,1,..-,f l . In particular, for

m = 0, the interpolating polynomial in Theorem 3 reduces to

n  n - j

Fe, il
,t=0 i=0

andthus of , i7 ,y) ,  i ,  i>0,  i+  i  1n,  aretheLagrangecoef f ic ients for  FG, i .

References

l. S.L. lre and G.M. Phillips, Interpolation on the triangle, Comm. Appl. Numer. Methods
3  (1987 ) ,271 -276 .

2. S.L. Lee and G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a
triangle, Proc. Roy. Soc. Edinburghl0SA (1988),75-87.

3. LJ. Schoenberg, On polynomial interpolation at the points of a geometric progression,
Proc. Roy. Soc. Edinburgh Sect. A 90 (1981),195-207.

4. D. Yahaya and G.M. Phillips, On the polynomial interpolation at points of a geometric
progression. SEAMS-GMU Proc. Math. Anal. & Stats. Conference, Yogyakarta (1995),
42-51.


