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Abstract. Two dimensional polynomial interpolation on triangular region with geometric spacing is
considered. Lagrange form and Neville-Aitken algorithm for interpolating polynomials on
g-triangle are obtained and the question of inter-generating between these form is studied.

1. Introduction

In [3], Schoenberg discussed various works on one dimensional polynomial interpolation
at the points of geometric progression and give a unified version of the problem. Lee and
Phillips [2] extend these results to two dimensional case, for a triangular domain where
the nodes are not uniformly spaced. Given a positive integer n, let [n]be a g-integer
defined by [n]=%, where ¢g>0 and g #1. Specifically, they proved that, there
exists a unique interpolating polynomial, P,(x,y) for a function f on the triangular
geometric mesh points {([i],[j]):0<i < j<n}. They also derived forward
difference formula (in y and 'diagonal' directions) and Lagrange form for P, and,
obtained Neville-Aitken type algorithm to evaluate the polynomial efficiently.

We now consider the triangular array of points S ={([i],[j]):{,j20,i+j<n}
formed by the lines x =[] and y=[j]. This array of nodes is bounded by the X-axis,
the Y-axis and the hyperbola x+y—-(1-¢g)xy=[n]. We shall call this region a g-
triangle of order n which includes the standard triangle as a special case. In this setting, it
has been shown that there is a forward difference formula in x and y directions for the
interpolating polynomial of degree at most n, at the nodes of S. In this paper we shall

derive a Lagrange form of an interpolating polynomial and discuss a one-parameter
family of Neville-Aitken algorithms.
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2. Forward difference and Lagrange formulas on the g-triangle

Let f(x,y) be a function defined over the g-triangle. Since the interpolation nodes S lie
on lines parallel to coordinates axes, it is appropriate to define forward difference
operators along these directions. Let denote f([:],[/j]) by f;; and define D? fij=

and va)fi_j =

i

;j- For m=1,2,3,---, define recursively

-1 m— m-
D;nfi,j =D;n fi+l,j -9 le lfi,j
and
Dy fij =Dy fiju—a"" Dy £
It follows that for m=1,2,3,--- and n=0,1,2,--- the mixed g-differences satisfy
n m-1 ~n -1 -1
D;nDyfi,j =Dx Dny-l,j _qm D;n D;fi,j

We need to extend g-integer to g-real. For any ¢t € R the g-real ¢, denoted by [¢],
is defined by

1__ t
[t]_ 1 9 ’ q#landq>0
- —-q
t , g=1

Also forany re R and k € Z,with 0 < k < ¢, the g-binomial coefficient is defined by

t 1
= — - h k' = [k][k=1]...[1
[J i LA [t-v] where [k]!= [k][k-1]...[1]

Using these notations we see that there exists a g-forward difference formula for the
interpolating polynomial of degree n on the g-triangle.

Theorem 1. Let f(x,y) be defined at all points of the g-triangle of order n. For any
(x,y) in the g-triangle, let

P(x,y) = Y 2 { * }[y] D™ D foo ¢))
r=0 s=0 r=s s

where x=[x] and y=[y] for some Xx, ye R then the polynomial P,(x,y)
interpolates f at the nodes of S.
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The proof of Theorem 1 is given by Yahaya and Phillips [4]. Taking g =1 as a special

case, (1) does reduces to a forward difference formula for polynomial interpolation on the
standard triangle.
We also recognize that the nodes in set S are formed by the systems of x=[v],

y=[] and y(x,y)=[v] where vy(x,y)=x+y-(l-qg)xy and v=0,1,---, n.
So given any point (], [j]) on the triangle, the union of the hyperbolas
y(x,y)=[n-v] for v =01, n—-i—j—1, the straight lines x=[v] for
v=0,1--,i-1 and y=[v] for v=0,1, -+, j—1 contain all nodes on the triangle
except the point ([i],[j]) itself. It follows that, for i, j 20, i+ j<n, the
polynomial

1 i-1 Jj-1 n—i—j-1
M) = ——[] ¢-v) [T 0-vd [ tn-vi-yxy» )
(i, ) <o v=0 v=0
where

oG, j) = [ [n—i— )t g+ PCm1==12m0

satisfies the conditions

1af (R [kD) = (GLLD
M ([h], kD) = 4
0 at all other nodes in S
We note that, in the above expression (2) for M}’ j{x,y), an empty product (when i=0

or j=0 or i+ j=n) istaken to have value 1.

Thus we obtain a Lagrangian form of an interpolating polynomial which uses
hyperbolas and two linear systems. This polynomial can be expressed as

n

Py =Y S mMrns,. 3)

=0 j=0

In this case the degree of P(x,y) is at most 2n, since the degree of any M j(x,y) is at
most 2n—i—j and we note that the interpolating polynomial will not be unique.

However, letting g tend to 1, the polynomial P(x,y) in (3) reduces to the interpolating
polynomial of degree at most n on the standard triangle.
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3. Neville-Aitken algorithm

We now construct a Neville-Aitken algorithm for an interpolating polynomial on the
g-triangle of order n. For each m=1,2,---,n, the algorithm generates a one parameter

family of polynomials f,-,"} (x,¥): i,j20, i+ j £ n—m, which interpolate f(x,y) on

T,"; :6,j 20, i+ j< n—m respectively. Here we have used the notation 7;"; i

mean the set of nodes T,j ={([i+s], [j+¢]): s, t20, s + t<m} for which TO"O =S.
These are the g-triangle bounded by the lines x=[i], y=[j] and the hyperbola

Y(x y)=[m+i+j].

Lemma 2. Letf (e y)=fi;, ,j20, i+j<n. For m =12,---,n, we define

f,-,";- (x,5),0<i+ j<n-m, recursively by

g™ im) £ ={lm+i+ jl-y )} )+ (=1 {g” —A0-@) (y =D}
Fl Gy + (y- e —a-na-p -} 174w @)

where A is an arbitrary real number. Then f‘{'; (x,y) interpolates f(x,y) on T,"j’

Proof. First we note that the coefficient of fif'j'-_l (x, y) in (4) may be expressed as

Im+i+jl-y(x,y) = ¢ [m)] — ¢/ (x=1i1) - ¢'(y-[jD) + A=) x=[D) (y-1j]).

Clearly the above result holds for m = 0. Suppose that (4) holds for some m — 1.
Therefore the polynomials f™™ fin i and f,.f';:ll interpolate f(x,y) on the sets

g
T~m_ T

,+1] and Ti"j'.:‘l respectively. Foranyintegersi, j 20, 0<i+ j<n-m

consider the function f, G at the nodes

=17 J Ty U Tha = {liesh i), 5,0 20,0 < s + 1 < m}.

m
' Jr

that (see Figure 1), if the node  ([h], kD) e T%"' () T () T/ then

bJ

We now show that polynomial f; ](x y) interpolates flx,y) on First we see

SN ARLIKD = AR TED = £ ARLIKD = fhs
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and hence

g™ [m) £ ([h],[k])={ g {Iml=lh—il~[k= ]+ -q) [h=illk - j])

+q"“‘[h—i]{l—x(l—q)[k—j]}+q"”’[k-j]{1—<1—A)<1—q>[h—i]}}f,.,k ,

which equals to ¢'*/[m] Sfuix- If the nodes are the extreme points ([¢],[/],

(i+m] ,[j]) and ([i],[j+m]), then we can check that fif;(x,y) interpolates
f(x,y) atthese points. A

.. -1
. U+m)) B q-Triangle containing T,;
- [ q-Triangle containing T/} ;

- m-]
E q-Triangle containing T; ;|

({3, G+m-1]) | \
- NB: The hyperbolas yx, y) = [n] are convex
.-\ A for g > I and concave for 0<g<l
TN
R
A ADNERN
T \\ ;
RO T EOADNEEN ¥(x, y) = [m+i4)]
.~T.‘- ‘.. .'. :.‘:‘,. N / N
@, U+ 1) R e R v(x, y) = [m-1+i+]]
P S HEREEREAANN
([i]r[/]) W R W N "L.o T )
@+1,UD ([i+m-1}, U] ({i+m], U
Figure 1. Interpolation nodes T,-,";_l , T,T]_l and Tlmj;l]

To complete the proof we consider the rest of the nodes, which are on the hyperbola
y(x,y)=[m+i+ j] or one of the straight lines x=[i] and y=[j]. On the hyperbola

Y(x,y)=[m+i+ j], at the nodes ([h],[k]) such that h<i+m,k < j+m, we have
FAARLIKD = £ RLIKD) = fr, and thus

[m] £ (AL kD = { ([h=i1- A0 = @)[h =ik — 1} +{[k - j1- (A=A A= @)lh—illk - j1} } Fur
={(h-il+ k- j1-(A-lh=illk= 1} frp = [m] Fux»
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where h, k20, h+k = m+i+j. It follows similarly that f,{'} (x,y) interpolates
f(x,y)on the line x =[i], with j<k<j+m and on the line y = [j], with
i<h<i+m. Thus, by induction, the formula is true forall m, 0 < m < n.

We see that fo'fo(x, y) in(4)and P(x,y) in (3) are two interpolating polynomials on
the same g-triangle and their degrees are at most 2n. In fact some of the Lagrange
coefficients M i'fj are of degree precisely n. However none of the Neville-Aitken

algorithms of the form (4) generate the interpolating polynomial defined in (3). This is
shown in the following counter example.

Example 1. Consider the two interpolating polynomials P(x, y) and fol'o (x, y) defined
by (3) and (4) respectively on a g-triangle of order 1. From (3) we have

P(x,y)= M(l),o(x» Yoo+ MII,O (x,¥)fio+ M(I),l (x, ¥) fou
= {1=y(x, M} foo +x fio+ Y foi

Now let us consider the recurrence relation (4). We have

Fao(x ) ={1=¥(x, )} foo +x{1=A1=q) y) fio +y{1-(1=D)A=q)x} fo, -

Hence
P(x, y)= foo(x, )= (=) {A fio +(1=A) fo,} xy

which is identically zero only for g =1.

2. Generalised Neville-Aitken algorithm

Having shown that none of the Neville-Aitken algorithms of the form (4) generate the
interpolating polynomial defined in (3), it is interesting to explore whether there exists
some other Neville-Aitken algorithm which generates the interpolating polynomial
defined in (3).

Let ﬁ?j(x,y)=f,»yj, where i,j20 and i+j<n. For m =12, ---, n, we

define f;”;(x,y), 0<i+ j<n-m, recursively by

Fr =l N o )+ e N ) el (D fT 6y ()

where
i, y) +d(xy) + e (x,y)=1. (6)
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We shall call (5) a generalised Neville-Aitken algorithm. It includes the class of
algorithms given in (4) as a special case. We observe that the recurrence relation (5)

cannot give (3). For let P(x, y) and fol'o(x, y) be the two interpolating polynomials on
a g-triangle of order 1 defined by (3) and (5) respectively. Following the argument used
in Example 1, we see that P(x, y) # f()"o (x,y).

The following example shows that, even if we relax the condition (6) so that it holds

only for points in T,"; and not for all x and y, we still cannot find a Neville-Aitken

algorithm of the form (5) which generates P(x, y) in (3).
Example 2. Consider the polynomial in (3) which interpolates f(x, y) on Toz‘o,

1

P(x,y) = 2]

@20-7 (6 A=Y (5 ) foo + éx([2]—7(x, ) fio
1
+ L2703 for v 0y fir + ——x(x=1) frp + —— y(y=1) fos.
q q(2] q(2]

Suppose that the polynomial can be expressed in the form of (5) such that the condition
(6) holds on Toz‘o . So for some coefficient functions c&o (x,y), d& o(x,y)and

eéo (x,y) we can write

P(x,y)=cgo(x,y) PP (x, ) +d3o (x, ) PO (x, y) +€d o (x, y) P*' (x, )
where

PO = (1=y(x, ) foo +Xfi0+ ¥ for,

plo _[2-rGxy L x
q

-1
fiot p foo+y fia

and

pol = é([z] - Y(x5,¥) for+ x fig+ %(y—l) foz

are the interpolating polynomials on To‘,o: Tlfo and T&, respectively. However on

comparing the coefficients of f; 4, f59 and fg,, we obtain

2 =1 - 2 . 2 =L
coo(x,y) = [2]([2] Y (x,¥),dgo(x,y) [2]x and egq(x,y) [2])’
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on TOZ_O. This implies that on T02,0

[21+(1-q)xy
(2]

c&o(x, y) + d(f_o(x, y) + eéo (x,y) = # 1 unless g=1.

Now, given a generalised Neville-Aitken algorithm (5) which generates the

polynomial fg'o(x, y)= 1;(x, y) say, we can always define the corresponding Lagrange

coefficients a;' j(x, y) for Is(x, y) as follows.

Let ago(x,y) = land for m=n-1, ---, 0 define a;;" (x,y),i,j20,i+j < n-m,
recursively by
n—m+l m

ai,j (.X, )’) = C:,nj (xv )’) ai'f;m(xv )’) + d!Al,j (-x’ y) ain:l,”jl' (x’ y)

+ el () al i (xy) )

where a{f’j (x,y)=01if i, j<0O or i+ j>m. Then we shall see that I3(x, y) can be

written in terms of both £, (x,y) and a/;" (x, y) for any m satisfying 0 < m < n.

Theorem 3. Let lg(x, y) be the interpolating polynomial on a g-triangle of order n

generated by the generalised Neville-Aitken algorithm. Then, for m = 0, 1, ---, n,
~ n-m n-—m-—j
P(x,y) = D, 1 el (xy) (®)
j=0 =0

Proof. The formula is true for m =n since a8,0 (x,y)=1land fgo(x,y) = Ig(x, y) is

the polynomial generated by (5) and interpolates f on Tg,. Suppose the formula is true
for some m>0. We shall show that it is also true for m—1. On applying (5) to

£ (x, y) in equation (8) we see that

J
el y) alm (e y) T (e y)

- n—-m n—m—
P(x,y) = Y
i=0

~.
(=4

n-m n-m-—j+l

+ Y Y dr ) api e y) fr ()
j=0 k=l

n—m+l n—-m—k+1

+ Y el (ny) alin(xny) fi(ny)
k=1 =l

3
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where we have written h=i+1 and k = j+1 in the last two double summations. Thus

n-m+1 n—-m—j+1

Px,y) = Y 3 cMuyalimuy £ (xy)
j=0 =0

n—m+1 n—m— j+1

+ 2 2 d;ln—l,j(xo }’) a)’::],?l (xs .y) fh',nj_l (x, _Y)
=0 k=0

n—m+1 n—m—k+1

+ > Y ey alliny) £ ()
k=0 i=0

where the added terms in each double summation are all zero. This follows, since by
definition ai’,j (x,y)=01if i, j<O or i+ j>r. Finally, on using (5) we obtain

n—-m+l n—m+l—j
n-m+l

P(x,y) = 2 z D y) al Mt (0 y)
=0 i=0

Therefore by induction the formula is true for all m= 0,1,---,n. In particular, for
m =0, the interpolating polynomial in Theorem 3 reduces to

1~’(x,y) = i nzj fi?j ai’:j(x9y)

j=0 =0

and thus ai'fj (x,¥), i, j20, i+ j<n, are the Lagrange coefficients for 13(x, ¥).
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