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1. Introduction

Let M be a differentiable manifold. If M has a Lorentzian metric g, that is, a symmetric
nondegenerate (0,2)-type tensor field of index 1, then M is called a Lorentzian manifold.
Since the Lorentzian metric g is of index 1, Lorentzian manifold M has not only
spacelike vector fields but also timelike and lightlike vector fields. This variety gives
interesting properties on M.

A differentiable manifold has a Lorentzian metric if and only if the manifold has a
1-dimensional distribution. Hence an odd-dimensional manifold can be equipped with a
Lorentzian metric.

On the other hand, in some odd-dimensional manifolds, a normal contact
(Riemannian) metric structure (that is, a Sasakian structure) can be defined (cf. [3], [10]).
If we change the Riemannian metric of the Sasakian structure to a Lorentzian one, we
can define a normal contact Lorentzian metric structure. This definition was given at
almost starting time of the study of the Sasakian structure and some results were given (
see [14]). But more practical study of it has not been given yet. In [8] and [9], we
studied the fundamental properties of an odd-dimensional manifold with a normal contact
Lorentzian structure. In this paper we continue the study of it.

The purpose of this paper is to consider the normal contact Lorentzian manifold of
constant ¢ -sectional curvature, find the Jacobi field of it and characterize it by means of
geodesic spheres. After the preliminaries of Section 2, we consider the Jacobi fields
with respect to the structure vector field &in Section 3. Section 4 is devoted to the
determination of the Jacobi fields with respect to spacelike geodesics. In the final
section, we characterize the normal contact Lorentzian manifold of constant ¢-sectional
curvature by small geodesic spheres. This characterization is given by using the Jacobi
fields of Section 4.
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2. Normal contact Lorentzian manifolds

Let M be a (2n+1)-dimensional (n>2) differentiable manifold of class C*and g a

Lorentzian metric of M.
A non-zero vector X is called spacelike, timelike, null if it satisfies g(X, X) >0,

<0, =0, respectively.
A normal contact Lorentzian structure (¢,&,n,g)of M is given by a (1,1)-type
skew symmetric tensor field ¢, a vector field & a 1-form » and a Lorentzian metric g as

PPN =X +n(X)E,

n(¢xX)=0,n(5) =1, n(X) =-g(X,<),

(VY =g(¢X,Y),V x&=—¢X, @.1)
(VxP)Y =—g(X,Y)S-n(Y)X,

where X'is a vector field of M and V is the covariant derivative with respect to g.
The curvature tensor field R(X,Y) of M satisfies

R(X,Y)¢ =n(Y)-n(X)Y,
R(X,Y)¢Z = gR(X,Y)¢Z — g(4X, Z)Y 2.2)
—-g(X,Z)pY +g(¢Y, Z)(X +g(Y, Z)¢X .

A plane section of the tangent space at a point of M is called a g-section if it is
spanned by vectors X and ¢X orthogonal to & The sectional curvature of a ¢-section is
called a ¢-sectional curvature. If M has constant ¢-sectional curvature h, then the
curvature tensor satisfies

R(X,Y)Z = ?(g(Y,Z)X - g(X,2)Y)

+ LG y@x - @)y + (X 2 23
- gV, Z)(X)E + g(gY, 2)pX — g(pX, Z)pY — 22(¢X,Y)¢Z).

3. Jacobi fields with respect to &

Generally, a Jacobi field X is defined as follows. Let p be a point of M and u be a unit
tangent vector at p. By y, we denote a geodesic with the initial conditions y(0) = p

and y'(0)=u. We also denote by u the unit tangent vector field of y. A Jacobi field X
along y is a vector field that satisfies the equation
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V,V,X+R(X,u)u=0. (3.1)

In this section we consider the case u =¢, i.e., the geodesic y is an integral curve of
the vector field & Since M is a normal contact Lorentzian manifold, the curvature tensor

R(X, Y)Z satisfies (2.2). Hence, for a Jacobi field orthogonal to & along y, (3.1) reduces
to

From this equation we obtain

Theorem 3.1. Let M be a (2n+1)-dimensional normal contact Lorentzian manifold
with structure (¢,&,n,g}. Let y be an integral curve of the vector field & and X a

Jacobi vector field orthogonal to & along y. With respect to a parallel base
{f,Ea(a =2, 2n+l}, X can write as

2n+1

X = Z (4, sins+B, coss)E,
a=2

where A, B, are constants along vy and s is the arc length parameter of 7.

4. Jacobi fields with respect to spacelike geodesics

Let y be a geodesic with initial condition y(0) = p and y'(«) =u as in Section 2. In this
section we consider the case that « is a unit spacelike vector field.

Let D be the field of planes spanned by ¢gu and & + n(u)u along y and let D*
denote the orthogonal complement of D ®[u].

Lemma4.1. D and D™ are parallel along .
Proof. By using (2.1), it follows that

V(W) = -gw,V,&) = gu,gu) = 0.
So, n(u) is constant along y. Using this fact, we have

Vilgu) = (V,9)u = —n(u — gu,u)e = =& = nuu,

and

V(& +nw) =-du + nu)V,u =—du.
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Hence D is parallel along y. Therefore D is also parallel along y.

At the point p = y(0), we consider an orthonormal basis {e;,:--,e,,,1} With u=¢;
and

_ _cHn@u gu

eZn - ’ leH—l - T
1+ 7()? V 1+ 7(u)?

Let {F,, ---, E,,,1}be the base obtained by parallel translation of the basis

{e, ---, ey, ralong y. Then, from Lemma 4.1, we have
E2n = §+77—(u)uCOShS + Lsinhs,
1+ 77(u)2 1+ 77(14)2
E2n+1 = L(u)usinhs + LCOSh s,
L+17(u)* 1+7(u)’

where s denotes the arc length from p along .
We assume that M is of constant ¢-sectional curvature. Then, from (2.3), it follows
that

§UT w0 EE 1) = (h=3)+ (14 D9())3,.
g(R(u, E; )u, Ep, ) =0,

g(R(u:Ei)“:E2n+1) =0,

g(R(u,&)u, gu) =0,

g(R(u, gu)u, gu) = (~h = (h+Dn(u?)L+nw)?), (4.1)
g(R(u, Ey, u, Ey, ) =—1—(h+ 1)1+ 7)(u)?)sinh? s,

g(R(, Egyuq )ty g,y 1) = =1=(h+1)(L+1)(u)*) cosh? s,

g(Rw, Ey )u, Eyp) =—(h+D(A+ 77)(u)2 )sinh scosh s.

Let X be a Jacobi field orthogonal to y and put
2n-1
X = Z flEl +.f2nE2n +.f2n+lE2n+l .

i=2

Then, from (3.1) and (4.1), we have
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Proposition 4.1. The coefficients f;, fons fous1 Satisfy the following differential

equations.
I +%(h—3)+(h+1)n(u2)fi -0, (4.3)

oy — @+ (h+ D)L+ 7)) ?)sinh? 5) £,
—((h+1)(@+n(u)?)sinh s cosh s) f5,.4 =0, (4.4)

gnis — L+ (R + 1)L+ 1) (u)?) cosh? ) fo,.1
—((h+)(@+n(u)?)sinh s cosh s) £, =0. (4.5)

From (4.3), we easily have

Proposition 4.2.  The coefficients f; are given as follows:
If A=0, then f; =a;s+b;,

1

If A>0, then f; =a;sindA4ds + bicosﬂs;

1

If A<0, then f; =a;sinhy—A4s + b, coshy/—4s,

where A= %((h -3) + (h +1)77(u2) and a;,b; are constants alongy.

Next, we consider the differential equations with respect to f,, and f, .. From
(4.4) and (4.5), we have

2,;1 _f2n
—(h+D(A+ n(u)z)sinh s(f5, sinhs + f5,,, coshs) =0, (4.6)

and
2,;14—1 - f2n+1
+(h+1)A+n(u)?) cosh s(f5, sinhs+ f,, ., coshs)=0.  (4.7)

Therefore, it follows that

oy COSN s+ f5) 1 sinhs = f5, coshs+ f5,,, Sinh s (4.8)

and

on Sinhs+ 57 4 coshs = f,, sinhs+ f,,,; coshs
= (h+2)A+7()*)(fy SINN 5 + f,4 COSN 5).. (4.9)
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If we put
Fy, = f5,sinh s+ f5,.4 coshs,

Fous1 = fon COSN s+ f5,,5 sinh s,

then we have
Fy = fy, sinhs+ f5, coshs+ f5, ., coshs+ f5 4 Sinhs+Fy, .,
Fylq = fanCOShs+ for sinhs+2F,, +Fy,.;.
From (4.8), we obtain
ancoshs+ fo isinhs=F,, 4
By substituting this equation into (4.11), it follows that
Fop = 2F3,.
Similarily, from (4.9) and (4.10), we have
Fy =25, = (h+ )+ () *)F,

If we put G =F,, , this equation reduces to

G" +((h=3)+(h+1)nu)®)G =0.
Therefore, the differential equations with respectto 5, and f5, ., reduce to

FZ’;Hl =2G,
G=Fy,,
G"+((h=3)+(h+1)n(u)?)G =0.

From these equations we easily obtain

Proposition 4.3.  The coefficients f,, and f5,., are given as follows:
If A=0, then

= las3+bs2+cs+d coshs — 1asz+bs—i-c sinh s,
2n 3 2

Sonst :(%ass +bs? +cs+djcoshs—(%as2 +bs+cjsinhs,

(4.10)

(4.11)
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If A>0, then

fou =(—ﬂsm «/4As—ﬂcos«/4As+2cs+djcoshs

a a . .
—| ———=—=c0sv4A4s+——sinv4A4s+c |sinhs,
[ Va4 VéA j

cos+v4As +

Foris = [_L a
2n+1 m m

—[—%sin 44s +icosx/4As+2cs+djsinhs;

sinv/44s +c) cosh s,

If A<0, then

—ismh V—44s —Zcosh V—4A4s+2cs +dj cosh s

cosh vV4A4s +

|
( Navyi \/_aﬂsinh mS+cjsinhs,
v

cosh V—4A4s+

Sona = sinh \/—4As+choshs,

V=44
_(isinh MS +iCOSh \/—4As+20s+dJSinh S,

where A:= %((h =3) + (h+Dn(u) 2) and a, b, ¢, d are constants along y.

Putting Proposition 4.2 and Proposition 4.3 together, we obtain the following
theorem.

Theorem 4.1. Let M be a (2n+1)-dimensional normal contact Lorentzian manifold
with structure (p,&,1,g).  Assume that M is of constant p-sectional curvature h. Let

y be a spacelike geodesic and X a Jacobi field orthogonal to y. If we put

2n-1

X = Z JiEi+ fonEon + fonEopi s
i=2

with respect to a parallel base {y',E;, E,,,E,,.1} mentioned in this section, then the

coefficients f, fo,, fo,41 are given as follows:
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If A=0, then
fi=a;s+b,

fou :(%ass +bs? +cs+djcoshs—[%as2 +bs+cjsinh S,

1 1 .
Sonst =(Eas2 +bs+cjcoshs—(§as3 +bs? +cs+d]smhs;

If A>0, then
fi; =a;sin \/Zs+bi cos/As,

Son = [—isin V4As —icos\MAs +2cs +dj cosh s

—(—Lcos 44s +Lsin \/4As+c]sinh S,

Vi o

Sopu = [—Lcos 445 ——2_sin \4As +CJ cosh s

Vaa Va4

—[—isin 445+ 4 cosV4As+cjsinhs;

V24

If A<0, then
fi; =a; sinh+/— As+b; cosh/— 4s,

Son = (—isinh V—44s —icosh N—44s—2cs+ dj cosh s

a a . .
- cosh v—44s + sinhv/—44s+c |sinhs,
(\/—4A V-44 J

Jonia= (ﬁcosh N-44s+ Jflﬂ sinhv/—44s + chosh s

—[isinh V—4A4s+ 4 cosh \/—4As—2cs+dJsinh K

V24

where A= %((h -3)+(h+Dn)?) are constants along yand sis the arc length

parameter y

Remark. The Jacobi field with respect to timelike geodesics can be obtained by a
similar consideration as in this section (cf. [7]).
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5. Geodesic spheres

In this section, we characterize a normal contact Lorentzian manifold of constant
p-sectional curvature by using some extrinsic property of geodesic spheres. For this
purpose we use the Jacobi fields mentioned in the previous section.

For a point a e M, let U be a normal neighbourhood about p. In U, we consider a

geodesic sphere S(r) with center p and radius »(>0). Let y be a spacelike geodesic

starting at p and contained in U, and u its unit tangent vector field.
We denote the shape operator at a point y(s) of the geodesic sphere by 4. If 4
satisfies the equation

AX = aX +bg(8, X)& +cg(du, X)pu +dg (S, X)u + dg(fu, X)& (5.1)

at a point y(s), where a, b, ¢, d are functions, then S(») is called quasi-umbilical with
respect to the plane of &and @X at the point (where we assume that 7(u) =0).
Let X be a Jacobi field along y orthogonal to . Then the equation

R(u, X)u=A*X—(V, A)X (5.2)

is well-known [4]. Let {e;,-:-,e,,,1}be a parallel orthonormal base along y with
e, =u. Wedenote by 4,(a=2,---,2n+1), the Jacobi vector fields along y determined
by the intitial conditions

X,(0)=0, X,(0)=e,.

Let F be an 2nx2n matrix given by the components of X, with respect to the
frame {e,,---,e,,,1}, thatis, Fe, = X,. Then we have

A=-FF 1. (5.3)

Theorem 5.1. Let M be a (2n+1)-dimensional (n>2) normal contact Lorentzian

manifold. If for every point p and direction u orthogonal to & at p, the geodesic spheres
in some normal neighbourhood of p are quasi-umbilical with respect to the plane ¢ and
ou, then M is of constant g-sectional curvature. The converse also holds.

Proof.  Assume that geodesic spheres are quasi-umbilical. Then from (5.1) it follows
that

A’gu=((a+b)* —d®)pu+(2a—b+c)dé
and

(V, A)pu=(a'+c' —2d)pu+(~b—c+d")E .
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Substituting these equations into (5.2), we obtain
R, gu)u=(a+c)?—d? —a'—cVpu+((2a—b+c)d +b+c—d')E.

But, from (2.2), we have g(R(u,¢u)u,&)=0. So R(u,gu)u is collinear with pu

along y and hence, we conclude that M is of constant ¢-sectional curvature. (This fact is
easily proved as for the Riemannian case (see [12])).

Conversely, we assume that M is of constant p-sectional curvature.

Let y be a geodesic in a normal neighbourhood U. Assume that the tangent vector
field « of y is orthogonal to &  Along y, we have an orthonormal parallel base

{E1, Egpin} @S

El :y':u,
E,, =¢&coshs+gusinhs,
E;,q =&sinhs+gucoshs.

Then the Jacobi field

2n-1

X = z JiEi + fanEo + fonaEonn
i=2

orthogonal to & satisfies

" 1 _ _
fi +z(h 3)f; =0,

Son —@A+(h +1)sinh? 8)fo, —((h+1)sinhscoshs) f5,,1 =0
st — @+ (h+1)cosh? 5) £y, .4 +((h+1)sinh scosh s) £, =0,

by virtue of Proposition 4.1.

Therefore, for the Jacobi fields X, =22"+1

g2 JpaEp(@ f=2,2n+1), with

initial conditions
X,0)=0 ., X;(0)=E,(0),
we have (f4,) asamatrix is of the form

/Y 0
F = 0 f‘n—ln—l fn—ln
0 fnn—l fnn
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Hence 4=-FF ' has the same form and it follows that the geodesic spheres are
quasi-umbilical with respect to the plane of & and gu.
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