BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

On a Class of Functions whose Derivatives Map the Unit Disc into a Half Plane

DAUD MOHAMAD

Universiti Teknologi MARA, Kampus Bukit Sekilau, 25200 Kuantan, Pahang, Malaysia

Abstract. Let $G(\alpha, \delta)$ denote the class of functions f, f(0) = f(0) - 1 = 0 for which Re $e^{i\alpha} f'(z) > \delta$ in $D = \{z: |z| < 1\}$ where $|\alpha| \le \pi$ and $\cos \alpha - \delta > 0$. We discuss some basic properties of the class including representation theorem, extremals and argument of $G(\alpha, \delta)$.

1. Introduction

We denote $G(\alpha, \delta)$ the class of normalized analytic functions f in the unit disc D where

$$f(z) = z + a_2 z^2 + \dots + a_n z^n + \dots$$

satisfying Re $e^{i\alpha} f'(z) > \delta$ where $|\alpha| \le \pi$ and $\cos \alpha - \delta > 0$.

Many of the classes $G(\alpha, \delta)$ have been studied by several researchers such as MacGregors [3] for G(0, 0), Goel and Mehrok [1] for $G(\alpha, \delta)(\delta \ge 0)$ and Silverman and Silvia [4] for $G(\alpha, 0)$. Writing

$$p(z) = \frac{e^{i\alpha} f'(z) - i \sin \alpha - \delta}{\cos \alpha - \delta} \qquad (z \in D),$$
(1)

clearly $f \in G(\alpha, \delta)$ if and only if $p \in P$, the class of functions with positive real parts. Solving (1) for f'(z) yields

$$f'(z) = e^{-i\alpha} (Ap(z) + i \sin \alpha + \delta) \quad (z \in D)$$
⁽²⁾

where $A = \cos \alpha - \delta$.

D. Mohamad

2. Representation theorem

We obtain the representation theorem for $G(\alpha, \delta)$, sharing the same approach through Herglotz Representation Theorem for functions in *P*.

Theorem 2.1. Let $f \in g(\alpha, \delta)$. Then for some probability measure μ on the unit circle X,

$$f(z) = \int_{X} \left[-e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) z - 2e^{-i\alpha} A\overline{x} \log(1 - xz) \right] d\mu(x).$$
(3)

Conversely, if f is given by the above equation, then $f \in \mathbf{G}(\alpha, \delta)$.

Proof. For some probability measure μ on the circle X,

$$p \in P \iff p(z) = \int \frac{1+xz}{1-xz} d\mu(x).$$

Using (2), we have

$$f'(z) = e^{-i\alpha} \left[A \int \frac{1+xz}{1-xz} + i\sin\alpha + \delta \right] d\mu(x)$$

and so

$$f(z) = e^{-i\alpha} \left[\int_{0}^{z} \left(\int_{X} A\left(\frac{1+x\psi}{1-x\psi}\right) + (i\sin\alpha + \delta) d\mu(x) \right) d\psi \right]$$
$$= \int_{0}^{z} \left[\int_{X} \frac{1 + (e^{-i2\alpha} - 2\delta e^{-i\alpha})x\psi}{1-x\psi} d\mu(x) \right] d\psi$$
$$= \int_{0}^{z} \left[\int_{X} - e^{-i\alpha} (e^{-i\alpha} - 2\delta) + \frac{2e^{-i\alpha}A}{1-x\psi} d\mu(x) \right] d\psi$$
(4)

and the desired representation theorem is obtained by reversing the order of integration and integrating with respect to ψ .

We note that the extreme points of $G(\alpha, \delta)$ are the unit point masses

$$f_x(z) = -e^{-i\alpha}(e^{-i\alpha} - 2\delta)z - 2e^{-i\alpha}A\overline{x}\log(1 - xz)$$

with |x| = 1 and the derivatives of the extreme points for $G(\alpha, \delta)$ are the point masses

$$f_x(z) = \frac{1 + (e^{-i2\alpha} - 2\delta e^{-i\alpha})xz}{1 - xz} , \ |x| = 1 .$$

3. Extremal properties

Following Silverman and Silvia [4], we now obtain a coefficient bound for functions in $g(\alpha, \delta)$ and distortion theorems for the derivatives of these functions.

Theorem 3.1. If $f \in G(\alpha, \delta)$, then $|a_n| \le 2A/n$, $n = 2, 3, 4, \cdots$ and equality is attained for each *n* when *f* is an extreme point of $G(\alpha, \delta)$.

Proof. Using (4) and since $1/(1-x\psi) = \sum_{0}^{\infty} (x\psi)^{n}$, we can write

$$f(z) = z + 2e^{-i\alpha} A \int_X \sum_{n=2}^{\infty} x^{n-1} d\mu(x) \frac{z^n}{n} .$$

Now, let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then $a_n = \frac{2e^{-i\alpha}A}{n} \int_X x^{n-1} d\mu(x)$ and the result follows immediately:

follows immediately.

Our further result will be based on the following theorem.

Theorem 3.2. Let $f \in G(\alpha, \delta)$. Then f' maps $|z| \le r$ into the disc D_r with center $-e^{-i\alpha}(e^{-i\alpha}-2\delta) + (2e^{-i\alpha}A)/(1-r^2)$ and radius $2Ar/(1-r^2)$.

Proof. If *a* and *b* are complex numbers with |b| < 1, and if 0 < r < 1, the range of the function $(1 + ar\omega)/(1 + br\omega)(|\omega| \le 1)$ is the disc with center and radius

$$\frac{1 - a\overline{b}r^2}{1 - |b|^2 r^2} \quad , \quad \frac{|a - b|r}{1 - |b|^2 r^2}$$

D. Mohamad

respectively. By taking $a = (e^{-i2\alpha} - 2\delta e^{-i\alpha})xr$ and b = xr where |x| = 1, we see that

$$\frac{1+(e^{-i2\alpha}-2\delta e^{-i\alpha})xz}{1-xz}$$

maps $|z| \le r$ onto D_r . By convexity, any linear combination of functions of this form also maps D onto D_r . Since for some probability measure μ , we have

$$f'(z) = \int_{X} \frac{1 + (e^{-i2\alpha} - 2\delta e^{-i\alpha})xz}{1 - xz} d\mu(x),$$

the stated result now follows.

Theorem 3.3. If $f \in G(\alpha, \delta)$, then

$$\frac{1+r^2(2A(A+\delta)-1)-2rA}{1-r^2} \le \operatorname{Re} f'(z) \le \frac{1+r^2(2A(A+\delta)-1)+2rA}{1-r^2}$$
(5)

and

$$\frac{-2Ar(1+r\sqrt{1-(A+\delta)^2})}{1-r^2} \le \operatorname{Im} f'(z) \le \frac{2Ar(1+r\sqrt{1-(A+\delta)^2})}{1-r^2}.$$

All bounds are sharp for any extreme point f of $G(\alpha, \delta)$.

Proof. By Theorem 3.2, we can write

$$\left| f'(z) - \left\{ -e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) + \frac{2e^{-i\alpha}A}{1 - r^2} \right\} \right| \le \frac{2Ar}{1 - r^2}$$
(6)

so that

$$\frac{-2Ar}{1-r^2} \le \operatorname{Re}\left\{f'(z) + e^{-i\alpha}(e^{-i\alpha} - 2\delta) - \frac{2e^{-i\alpha}A}{1-r^2}\right\} \le \frac{2Ar}{1-r^2}$$

and also

$$\frac{-2Ar}{1-r^2} \leq \operatorname{Im}\left\{ f'(z) + e^{-i\alpha}(e^{-i\alpha} - 2\delta) - \frac{2e^{-i\alpha}A}{1-r^2} \right\} \leq \frac{2Ar}{1-r^2}.$$

The results are obtained by simplifying the above inequalities.

We note that if $f \in G(\alpha, \delta)$, then since $f'_0(0) = 1$, we have Re f'(z) > 0 for $|z| < \rho$ and some ρ in (0,1]. However if

$$f_o(z) = \frac{1 + (e^{-i2\alpha} - 2\delta e^{-i\alpha})z}{1 - z} , \ (z \in D) ,$$

then the left side of inequality (5) is sharp so that

$$(1-r^{2})\operatorname{Re} f_{0}'(-r) = 1 + r^{2}(2A(A+\delta) - 1) - 2rA \rightarrow 2(\cos\alpha - \delta)(\cos\alpha - 1) \ (r \rightarrow 1)$$

and the last expression is negative if $|\alpha| \neq 0$. This shows that $\rho \neq 1$ in general, and it is natural to ask for the best possible value of ρ . We answer this question in the following application of Theorem 3.2

Theorem 3.4. Let $f \in g(\alpha, \delta)$ and put $\rho = 1/(A + \sqrt{1 - A(2\delta + A)})$. Then $0 < \rho \le 1$ and $\operatorname{Re} f'(z) \ge 0$ for $|z| < \rho$. If $\rho \le r \le 1$, then $\operatorname{Re} f'_0(z) < 0$ for some z on |z| < r.

Proof. Let $f \in \mathbf{G}(\alpha, \delta)$ and define ρ as above. Obviously $\rho > 0$ since A > 0, and $1 - A(2\delta + A) = 1 + \delta^2 - \cos \alpha \ge 0$. The inequality $\rho \le 1$ is equivalent to $A + \sqrt{1 - A(2\delta + A)} \ge 1$ and this is obviously true if $A \ge 1$. If A < 1, it is true if and only if $1 - A(2\delta + A) \ge (1 - A)^2$, and thus reduces to the trivially true inequality $\cos \alpha \le 1$. So in both cases, $\rho \le 1$.

Now, put $\sigma(x) = (2A(A + \delta) - 1)x^2 - 2x + 1$ for real values of x. From (5), we have $(1 - r^2) \operatorname{Re} f'(z) \ge \sigma(r)$ $(0 \le |z| = r < 1)$ with equality for each r when $f = f_o$ and z is a suitable value on |z| = r. To prove the theorem, it is sufficient to show that $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, 1]$.

If $2A(A + \delta) = 1$, so that $\sigma(x)$ is linear in *x*, then $\rho = 1/(2A)$ and it is clear that $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, 1]$. When $2A(A + \delta) \neq 1$, $\sigma(x)$ is quadratic and has zeros

$$x = \frac{A \pm \sqrt{1 - A(2\delta + A)}}{2A(A + \delta) - 1} = \frac{1}{A \mp \sqrt{1 - A(2\delta + A)}}.$$
 (7)

One of the zeros is ρ . Let the other zero be μ , If $2A(A + \delta) < 1$, then $\mu \rho < 0$ and (7) shows that $\mu < 0$ and $\rho > 0$. Since σ is concave, $\sigma(x)$ is positive on $[0, \rho)$ and

non-positive on $[\rho, 1]$. If $2A(A + \delta) > 1$, then $\mu, \rho > 0$ since $\mu\rho > 0$, $\mu + \rho > 0$. Also $\rho < \mu$ by (5). In this case σ is convex so $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, \mu]$. In particular, since $\sigma(1) = 2A(\cos \alpha - 1) \le 0, \sigma(x)$ is non-positive on $[\rho, 1]$. This completes the proof.

We next obtain a distortion theorem for $G(\alpha, \delta)$.

Theorem 3.5. If $f \in G(\alpha, \delta)$, then

$$\left|f'(z)\right| \le C(r) + \frac{2Ar}{1-r^2}$$

where

$$C(r) = \sqrt{\frac{4Ar^2}{1 - r^2} \left(\frac{A}{1 - r^2} + \delta\right) + 1}$$
(8)

and the bound is sharp for any extreme point f of $G(\alpha, \delta)$.

Proof. Let $\Gamma(r) = -e^{-i\alpha}(e^{-i\alpha} - 2\delta) + \frac{2e^{-i\alpha}A}{1-r^2}$. By using (6) we have

$$\left| f'(z) \right| \le \left| \Gamma(r) \right| + \frac{2Ar}{1 - r^2}$$
$$= C(r) + \frac{2Ar}{1 - r^2}$$

as required.

4. Argument of f'(z)

We see that if $\delta \ge 0$, then f' is non-zero throughout D, and has continuous argument. But if $\delta < 0$, and if f_o is any extreme function of $\mathbf{G}(\alpha, \delta)$, then at some point of D, f'_0 has a zero and hence no argument. So to obtain result for argument of f', we restrict the values of |z| considered in the case $\delta < 0$. We will also use the following property for argument: for a given α in $[-\pi, \pi]$ and as x varies in some interval [0, c], so that $e^{i\alpha} + x \neq 0$, $\phi_{\alpha}(x)$ is the continuous argument of $e^{i\alpha} + x$, for which $\phi_{\alpha}(0) = \alpha$. We have

On a Class of Functions whose Derivatives Map the Unit Disc into a Half Plane

$$\phi_{\alpha}(x) = \begin{cases} \tan^{-1} \left(\frac{\sin \alpha}{\cos \alpha + x} \right) &, \text{ if } x + \cos \alpha > 0 \\\\ \pi + \tan^{-1} \left(\frac{\sin \alpha}{\cos \alpha + x} \right) &, \text{ if } x + \cos \alpha < 0 \\\\ \pi / 2 &, \text{ if } x + \cos \alpha = 0 \end{cases}$$

when $0 < \alpha < \pi$, and similar formulae for the case $-\pi < \alpha < 0$, $\alpha = 0, \pm \pi$.

Theorem 4.1. Let $f \in G(\alpha, \delta)$, and put $x(r) = 2Ar^2/(1-r^2)$ $(0 \le r < 1)$. Let

$$r_o = \begin{cases} 1 & , \quad \delta \ge 0 \\ \\ \frac{1}{\sqrt{1 - 4A\delta}} & , \quad \delta < 0. \end{cases}$$

Then, for $0 < |z| = r < r_o$, and for suitable determination of argument

$$\left|\arg f'(z) + \alpha - \phi_{\alpha}(x(r))\right| \le \sin^{-1} \frac{2Ar}{(1-r^2)C(r)}$$
 (9)

where $\phi_{\alpha}(x)$ is defined on $[0, x(r_o))$ as above and C(r) is given by (8).

Proof. We restrict the value of |z| = r by the condition

$$\left|\frac{2A}{1-r^2} + 2\delta - e^{-i\alpha}\right| > \frac{2Ar}{1-r^2}$$

to ensure that $f'(z) \neq 0$. Squaring both sides and simplifying, we have

$$\frac{4A\delta}{1-r^2} - 4A\delta + 1 > 0.$$

The inequality holds for all *r* in [0, 1) if $\delta \ge 0$ and for $0 \le r < 1/\sqrt{1-4\delta A}$ if $\delta < 0$. This establishes the restriction on |z|. By using (6) and Theorem 3.5, we deduce that

$$\left|\arg f'(z) - \arg \Gamma(r)\right| \le \sin^{-1} \frac{2Ar}{(1-r^2)C(r)}$$
 (10)

D. Mohamad

and also

$$\arg \Gamma(r) = \arg \left[-e^{-i\alpha} \left(e^{-i\alpha} - 2\delta \right) + \frac{2e^{-i\alpha}A}{1 - r^2} \right]$$
$$= -\alpha + \arg \left[e^{i\alpha} + \frac{2Ar^2}{1 - r^2} \right].$$

Put $x(r) = 2Ar^2/(1-r^2)$, then $\arg \Gamma(r) = -\alpha + \phi_{\alpha}(x(r))$ and the desired result follows using (10).

We obtain another result for argument of $G(\alpha, \delta)$, features $\arg(f'(z) + k)$ for some real k that satisfy $f'(z) + k \neq 0$ for $z \in D$ and for all $f \in G(\alpha, \delta)$. When $|\alpha| = \pi/2$, such a choice is impossible, for if f_o is an extreme function in $G(\alpha, \delta)$, then $f'_0(z) + k$ maps D onto either Im $w > \delta$ or Im $w < -\delta$ and since $\delta < 0$ both these half planes contain 0. If $|\alpha| \neq \pi/2$, any choice of k with $k \cos \alpha + \delta > 0$ ensures that $f'_0(z) + k \neq 0$ for $z \in D$, $f \in G(\alpha, \delta)$.

In the statement of the following theorem, for a given $\alpha \in [-\pi, \pi]$, and as x varies in some interval [0,c), so that $(k+1)e^{i\alpha} + x \neq 0$, $\psi_{\alpha}(\alpha)$ is the continuous argument of $(k+1)e^{i\alpha} + x$ for which $\psi_{\alpha}(0)$ is principal.

Theorem 4.2. Let $f \in G(\alpha, \delta)$, where $|\alpha| \neq \pi/2$. Put $x(r) = 2A/(1 - r^2)$ $(0 \le r < 1)$ and let k be a real number such that $k \cos \alpha + \delta > 0$. Then

$$\left|\arg(f'(z) + k) + \alpha - \psi_{\alpha}(x(r))\right| \le \sin^{-1} \frac{2Ar}{(1 - r^2)C_1(r)}$$

where $\psi_{\alpha}(\alpha)$ is defined on $[0,\infty)$ as above, and

$$C_1(r) = \sqrt{\frac{4Ar^2}{1 - r^2} \left(\frac{A}{1 - r^2} + k\cos\alpha + \delta\right) + (k + 1)^2}.$$
 (11)

Proof. Let $|\alpha| \neq \pi/2$, and let k satisfy $k \cos \alpha + \delta > 0$. We have, using (6),

$$|f'(z) + k - (\Gamma(r) + k)| \le \frac{2Ar}{1 - r^2}$$

On a Class of Functions whose Derivatives Map the Unit Disc into a Half Plane

where

$$\Gamma(r) = -e^{-i\alpha}(e^{-i\alpha} - 2\delta) + \frac{2e^{-i\alpha}A}{1 - r^2} = 1 + \frac{2Ar^2}{1 - r^2}e^{-i\alpha}.$$

Hence

$$\left|\arg(f'(z) + k) - \arg(\Gamma(r) + k)\right| \le \sin^{-1} \frac{2Ar}{(1 - r^2)C_1(r)}$$
 (12)

where $C_1(r) = |\Gamma(r) + k|$ and is written as in (11). Now

$$\arg(\Gamma(r) + k) = -\alpha + \arg\left[2\delta - e^{-i\alpha} + \frac{2A}{1 - r^2} + ke^{i\alpha}\right] = -\alpha + \psi_{\alpha}(x(r))$$

and the proof is complete by using (12).

References

- R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Maths Soc. (Series A) 35 (1983), 1-17.
- 2. A.W. Goodman, *Univalent Functions,* Vol. I and II, Mariner Publishing Co. Inc. Tampa, Florida, 1983.
- 3. T.H. MacGregor, Functions whose derivative has a positive real part, *Trans. Amer. Math. Soc.* **104** (1962), 532-537.
- 4. H. Silverman and E.M. Silvia, On α -close to convex function, *Publ. Math. Debrecen*, **49** (1996), 532-537.