On a Class of Functions whose Derivatives
 Map the Unit Disc into a Half Plane

Daud Mohamad

Universiti Teknologi MARA, Kampus Bukit Sekilau, 25200 Kuantan, Pahang, Malaysia

Abstract

Let $\mathrm{G}(\alpha, \delta)$ denote the class of functions $f, f(0)=f(0)-1=0$ for which $\operatorname{Re} e^{i \alpha} f^{\prime}(z)>\delta$ in $D=\{z:|z|<1\}$ where $|\alpha| \leq \pi$ and $\cos \alpha-\delta>0$. We discuss some basic properties of the class including representation theorem, extremals and argument of $\mathrm{G}(\alpha, \delta)$.

1. Introduction

We denote $\mathrm{G}(\alpha, \delta)$ the class of normalized analytic functions f in the unit disc D where

$$
f(z)=z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots
$$

satisfying $\operatorname{Re} e^{i \alpha} f^{\prime}(z)>\delta$ where $|\alpha| \leq \pi$ and $\cos \alpha-\delta>0$.
Many of the classes $\mathrm{G}(\alpha, \delta)$ have been studied by several researchers such as MacGregors [3] for $\mathrm{G}(0,0)$, Goel and Mehrok [1] for $\mathrm{G}(\alpha, \delta)(\delta \geq 0)$ and Silverman and Silvia [4] for $\mathbf{G}(\alpha, 0)$. Writing

$$
\begin{equation*}
p(z)=\frac{e^{i \alpha} f^{\prime}(z)-i \sin \alpha-\delta}{\cos \alpha-\delta} \quad(z \in D) \tag{1}
\end{equation*}
$$

clearly $f \in \mathrm{G}(\alpha, \delta)$ if and only if $p \in P$, the class of functions with positive real parts.
Solving (1) for $f^{\prime}(z)$ yields

$$
\begin{equation*}
f^{\prime}(z)=e^{-i \alpha}(A p(z)+i \sin \alpha+\delta) \quad(z \in D) \tag{2}
\end{equation*}
$$

where $A=\cos \alpha-\delta$.

2. Representation theorem

We obtain the representation theorem for $\mathrm{G}(\alpha, \delta)$, sharing the same approach through Herglotz Representation Theorem for functions in P.

Theorem 2.1. Let $f \in g(\alpha, \delta)$. Then for some probability measure μ on the unit circle X,

$$
\begin{equation*}
f(z)=\int_{X}\left[-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right) z-2 e^{-i \alpha} A \bar{x} \log (1-x z)\right] d \mu(x) . \tag{3}
\end{equation*}
$$

Conversely, if f is given by the above equation, then $f \in \mathrm{G}(\alpha, \delta)$.
Proof. For some probability measure μ on the circle X,

$$
p \in P \Leftrightarrow p(z)=\int \frac{1+x z}{1-x z} d \mu(x) .
$$

Using (2), we have

$$
f^{\prime}(z)=e^{-i \alpha}\left[A \int \frac{1+x z}{1-x z}+i \sin \alpha+\delta\right] d \mu(x)
$$

and so

$$
\begin{align*}
f(z) & =e^{-i \alpha}\left[\int_{0}^{z}\left(\int_{X} A\left(\frac{1+x \psi}{1-x \psi}\right)+(i \sin \alpha+\delta) d \mu(x)\right) d \psi\right] \\
& =\int_{0}^{z}\left[\int_{X} \frac{1+\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) x \psi}{1-x \psi} d \mu(x)\right] d \psi \tag{4}\\
& =\int_{0}^{z}\left[\int_{X}-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\frac{2 e^{-i \alpha} A}{1-x \psi} d \mu(x)\right] d \psi
\end{align*}
$$

and the desired representation theorem is obtained by reversing the order of integration and integrating with respect to ψ.

We note that the extreme points of $\mathrm{G}(\alpha, \delta)$ are the unit point masses

$$
f_{x}(z)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right) z-2 e^{-i \alpha} A \bar{x} \log (1-x z)
$$

with $|x|=1$ and the derivatives of the extreme points for $\mathrm{G}(\alpha, \delta)$ are the point masses

$$
f_{x}(z)=\frac{1+\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) x z}{1-x z},|x|=1
$$

3. Extremal properties

Following Silverman and Silvia [4], we now obtain a coefficient bound for functions in $g(\alpha, \delta)$ and distortion theorems for the derivatives of these functions.

Theorem 3.1. If $f \in \mathrm{G}(\alpha, \delta)$, then $\left|a_{n}\right| \leq 2 A / n, n=2,3,4, \cdots$ and equality is attained for each n when f is an extreme point of $\mathrm{G}(\alpha, \delta)$.

Proof. Using (4) and since $1 /(1-x \psi)=\sum_{0}^{\infty}(x \psi)^{n}$, we can write

$$
f(z)=z+2 e^{-i \alpha} A \int_{X} \sum_{n=2}^{\infty} x^{n-1} d \mu(x) \frac{z^{n}}{n} .
$$

Now, let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$. Then $a_{n}=\frac{2 e^{-i \alpha} A}{n} \int_{X} x^{n-1} d \mu(x)$ and the result follows immediately.

Our further result will be based on the following theorem.
Theorem 3.2. Let $f \in \mathrm{G}(\alpha, \delta)$. Then f^{\prime} maps $|z| \leq r$ into the disc D_{r} with center $-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\left(2 e^{-i \alpha} A\right) /\left(1-r^{2}\right)$ and radius $2 A r /\left(1-r^{2}\right)$.

Proof. If a and b are complex numbers with $|b|<1$, and if $0<r<1$, the range of the function $(1+\operatorname{ar} \omega) /(1+\operatorname{br} \omega)(|\omega| \leq 1)$ is the disc with center and radius

$$
\frac{1-a \bar{b} r^{2}}{1-|b|^{2} r^{2}} \quad, \quad \frac{|a-b| r}{1-|b|^{2} r^{2}}
$$

respectively. By taking $a=\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) x r$ and $b=x r$ where $|x|=1$, we see that

$$
\frac{1+\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) x z}{1-x z}
$$

maps $|z| \leq r$ onto D_{r}. By convexity, any linear combination of functions of this form also maps D onto D_{r}. Since for some probability measure μ, we have

$$
f^{\prime}(z)=\int_{X} \frac{1+\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) x z}{1-x z} d \mu(x),
$$

the stated result now follows.
Theorem 3.3. If $f \in \mathrm{G}(\alpha, \delta)$, then

$$
\begin{equation*}
\frac{1+r^{2}(2 A(A+\delta)-1)-2 r A}{1-r^{2}} \leq \operatorname{Re} f^{\prime}(z) \leq \frac{1+r^{2}(2 A(A+\delta)-1)+2 r A}{1-r^{2}} \tag{5}
\end{equation*}
$$

and

$$
\frac{-2 A r\left(1+r \sqrt{1-(A+\delta)^{2}}\right)}{1-r^{2}} \leq \operatorname{Im} f^{\prime}(z) \leq \frac{2 A r\left(1+r \sqrt{1-(A+\delta)^{2}}\right)}{1-r^{2}}
$$

All bounds are sharp for any extreme point f of $\mathrm{G}(\alpha, \delta)$.
Proof. By Theorem 3.2, we can write

$$
\begin{equation*}
\left|f^{\prime}(z)-\left\{-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\frac{2 e^{-i \alpha} A}{1-r^{2}}\right\}\right| \leq \frac{2 A r}{1-r^{2}} \tag{6}
\end{equation*}
$$

so that

$$
\frac{-2 A r}{1-r^{2}} \leq \operatorname{Re}\left\{f^{\prime}(z)+e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)-\frac{2 e^{-i \alpha} A}{1-r^{2}}\right\} \leq \frac{2 A r}{1-r^{2}}
$$

and also

$$
\frac{-2 A r}{1-r^{2}} \leq \operatorname{Im}\left\{f^{\prime}(z)+e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)-\frac{2 e^{-i \alpha} A}{1-r^{2}}\right\} \leq \frac{2 A r}{1-r^{2}}
$$

The results are obtained by simplifying the above inequalities.

We note that if $f \in \mathrm{G}(\alpha, \delta)$, then since $f_{0}^{\prime}(0)=1$, we have $\operatorname{Re} f^{\prime}(z)>0$ for $|z|<\rho$ and some ρ in $(0,1]$. However if

$$
f_{o}(z)=\frac{1+\left(e^{-i 2 \alpha}-2 \delta e^{-i \alpha}\right) z}{1-z}, \quad(z \in D)
$$

then the left side of inequality (5) is sharp so that

$$
\left(1-r^{2}\right) \operatorname{Re} f_{0}^{\prime}(-r)=1+r^{2}(2 A(A+\delta)-1)-2 r A \rightarrow 2(\cos \alpha-\delta)(\cos \alpha-1)(r \rightarrow 1)
$$

and the last expression is negative if $|\alpha| \neq 0$. This shows that $\rho \neq 1$ in general, and it is natural to ask for the best possible value of ρ. We answer this question in the following application of Theorem 3.2

Theorem 3.4. Let $f \in g(\alpha, \delta)$ and put $\quad \rho=1 /(A+\sqrt{1-A(2 \delta+A)})$. Then $0<\rho \leq 1$ and $\operatorname{Re} f^{\prime}(z) \geq 0$ for $|z|<\rho$. If $\rho \leq r \leq 1$, then $\operatorname{Re} f_{0}^{\prime}(z)<0$ for some z on $|z|<r$.

Proof. Let $f \in \mathrm{G}(\alpha, \delta)$ and define ρ as above. Obviously $\rho>0$ since $A>0$, and $1-A(2 \delta+A)=1+\delta^{2}-\cos \alpha \geq 0$. The inequality $\rho \leq 1$ is equivalent to $A+\sqrt{1-A(2 \delta+A)} \geq 1$ and this is obviously true if $A \geq 1$. If $A<1$, it is true if and only if $1-A(2 \delta+A) \geq(1-A)^{2}$, and thus reduces to the trivially true inequality $\cos \alpha \leq 1$. So in both cases, $\rho \leq 1$.

Now, put $\sigma(x)=(2 A(A+\delta)-1) x^{2}-2 x+1$ for real values of x. From (5), we have $\left(1-r^{2}\right) \operatorname{Re} f^{\prime}(z) \geq \sigma(r)(0 \leq|z|=r<1)$ with equality for each r when $f=f_{o}$ and z is a suitable value on $|z|=r$. To prove the theorem, it is sufficient to show that $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, 1]$.

If $2 A(A+\delta)=1$, so that $\sigma(x)$ is linear in x, then $\rho=1 /(2 A)$ and it is clear that $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, 1]$. When $2 A(A+\delta) \neq 1, \sigma(x)$ is quadratic and has zeros

$$
\begin{equation*}
x=\frac{A \pm \sqrt{1-A(2 \delta+A)}}{2 A(A+\delta)-1}=\frac{1}{A \mp \sqrt{1-A(2 \delta+A)}} . \tag{7}
\end{equation*}
$$

One of the zeros is ρ. Let the other zero be μ, If $2 A(A+\delta)<1$, then $\mu \rho<0$ and (7) shows that $\mu<0$ and $\rho>0$. Since σ is concave, $\sigma(x)$ is positive on $[0, \rho)$ and
non-positive on $[\rho, 1]$. If $2 A(A+\delta)>1$, then $\mu, \rho>0$ since $\mu \rho>0, \mu+\rho>0$. Also $\rho<\mu$ by (5). In this case σ is convex so $\sigma(x)$ is positive on [$0, \rho$) and non-positive on $[\rho, \mu]$. In particular, since $\sigma(1)=2 A(\cos \alpha-1) \leq 0, \sigma(x)$ is non-positive on $[\rho, 1]$. This completes the proof.

We next obtain a distortion theorem for $\mathrm{G}(\alpha, \delta)$.

Theorem 3.5. If $f \in \mathrm{G}(\alpha, \delta)$, then

$$
\left|f^{\prime}(z)\right| \leq C(r)+\frac{2 A r}{1-r^{2}}
$$

where

$$
\begin{equation*}
C(r)=\sqrt{\frac{4 A r^{2}}{1-r^{2}}\left(\frac{A}{1-r^{2}}+\delta\right)+1} \tag{8}
\end{equation*}
$$

and the bound is sharp for any extreme point fof $\mathbf{G}(\alpha, \delta)$.
Proof. Let $\Gamma(r)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\frac{2 e^{-i \alpha} A}{1-r^{2}}$. By using (6) we have

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq|\Gamma(r)|+\frac{2 A r}{1-r^{2}} \\
& =C(r)+\frac{2 A r}{1-r^{2}}
\end{aligned}
$$

as required.

4. Argument of $f^{\prime}(z)$

We see that if $\delta \geq 0$, then f^{\prime} is non-zero throughout D, and has continuous argument. But if $\delta<0$, and if f_{o} is any extreme function of $\mathrm{G}(\alpha, \delta)$, then at some point of D, f_{0}^{\prime} has a zero and hence no argument. So to obtain result for argument of f^{\prime}, we restrict the values of $|z|$ considered in the case $\delta<0$. We will also use the following property for argument: for a given α in $[-\pi, \pi]$ and as x varies in some interval $[0, c]$, so that $e^{i \alpha}+x \neq 0, \phi_{\alpha}(x)$ is the continuous argument of $e^{i \alpha}+x$, for which $\phi_{\alpha}(0)=\alpha$. We have

$$
\phi_{\alpha}(x)=\left\{\begin{array}{cl}
\tan ^{-1}\left(\frac{\sin \alpha}{\cos \alpha+x}\right) & , \text { if } x+\cos \alpha>0 \\
\pi+\tan ^{-1}\left(\frac{\sin \alpha}{\cos \alpha+x}\right), & \text { if } x+\cos \alpha<0 \\
\pi / 2 & , \text { if } x+\cos \alpha=0
\end{array}\right.
$$

when $0<\alpha<\pi$, and similar formulae for the case $-\pi<\alpha<0, \alpha=0, \pm \pi$.
Theorem 4.1. Let $f \in \mathrm{G}(\alpha, \delta)$, and put $x(r)=2 A r^{2} /\left(1-r^{2}\right)(0 \leq r<1)$. Let

$$
r_{o}=\left\{\begin{array}{cc}
1 & , \quad \delta \geq 0 \\
\frac{1}{\sqrt{1-4 A \delta}} & , \quad \delta<0
\end{array}\right.
$$

Then, for $0<|z|=r<r_{o}$, and for suitable determination of argument

$$
\begin{equation*}
\left|\arg f^{\prime}(z)+\alpha-\phi_{\alpha}(x(r))\right| \leq \sin ^{-1} \frac{2 A r}{\left(1-r^{2}\right) C(r)} \tag{9}
\end{equation*}
$$

where $\phi_{\alpha}(x)$ is defined on $\left[0, x\left(r_{o}\right)\right)$ as above and $C(r)$ is given by (8).
Proof. We restrict the value of $|z|=r$ by the condition

$$
\left|\frac{2 A}{1-r^{2}}+2 \delta-e^{-i \alpha}\right|>\frac{2 A r}{1-r^{2}}
$$

to ensure that $f^{\prime}(z) \neq 0$. Squaring both sides and simplifying, we have

$$
\frac{4 A \delta}{1-r^{2}}-4 A \delta+1>0
$$

The inequality holds for all r in $[0,1)$ if $\delta \geq 0$ and for $0 \leq r<1 / \sqrt{1-4 \delta A}$ if $\delta<0$. This establishes the restriction on $|z|$. By using (6) and Theorem 3.5, we deduce that

$$
\begin{equation*}
\left|\arg f^{\prime}(z)-\arg \Gamma(r)\right| \leq \sin ^{-1} \frac{2 A r}{\left(1-r^{2}\right) C(r)} \tag{10}
\end{equation*}
$$

and also

$$
\begin{aligned}
\arg \Gamma(r) & =\arg \left[-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\frac{2 e^{-i \alpha} A}{1-r^{2}}\right] \\
& =-\alpha+\arg \left[e^{i \alpha}+\frac{2 A r^{2}}{1-r^{2}}\right]
\end{aligned}
$$

Put $x(r)=2 A r^{2} /\left(1-r^{2}\right)$, then $\arg \Gamma(r)=-\alpha+\phi_{\alpha}(x(r))$ and the desired result follows using (10).

We obtain another result for argument of $\mathrm{G}(\alpha, \delta)$, features $\arg \left(f^{\prime}(z)+k\right)$ for some real k that satisfy $f^{\prime}(z)+k \neq 0$ for $z \in D$ and for all $f \in \mathrm{G}(\alpha, \delta)$. When $|\alpha|=\pi / 2$, such a choice is impossible, for if f_{o} is an extreme function in $\mathrm{G}(\alpha, \delta)$, then $f_{0}^{\prime}(z)+k$ maps D onto either $\operatorname{Im} w>\delta$ or $\operatorname{Im} w<-\delta$ and since $\delta<0$ both these half planes contain 0 . If $|\alpha| \neq \pi / 2$, any choice of k with $k \cos \alpha+\delta>0$ ensures that $f_{0}^{\prime}(z)+k \neq 0$ for $z \in D, f \in \mathrm{G}(\alpha, \delta)$.

In the statement of the following theorem, for a given $\alpha \in[-\pi, \pi]$, and as x varies in some interval $[0, c)$, so that $(k+1) e^{i \alpha}+x \neq 0, \psi_{\alpha}(\alpha)$ is the continuous argument of $(k+1) e^{i \alpha}+x$ for which $\psi_{\alpha}(0)$ is principal.

Theorem 4.2. Let $f \in \mathrm{G}(\alpha, \delta)$, where $|\alpha| \neq \pi / 2$. Put $x(r)=2 A /\left(1-r^{2}\right)(0 \leq r<1)$ and let k be a real number such that $k \cos \alpha+\delta>0$. Then

$$
\left|\arg \left(f^{\prime}(z)+k\right)+\alpha-\psi_{\alpha}(x(r))\right| \leq \sin ^{-1} \frac{2 A r}{\left(1-r^{2}\right) C_{1}(r)}
$$

where $\psi_{\alpha}(\alpha)$ is defined on $[0, \infty)$ as above, and

$$
\begin{equation*}
C_{1}(r)=\sqrt{\frac{4 A r^{2}}{1-r^{2}}\left(\frac{A}{1-r^{2}}+k \cos \alpha+\delta\right)+(k+1)^{2}} . \tag{11}
\end{equation*}
$$

Proof. Let $|\alpha| \neq \pi / 2$, and let k satisfy $k \cos \alpha+\delta>0$. We have, using (6),

$$
\left|f^{\prime}(z)+k-(\Gamma(r)+k)\right| \leq \frac{2 A r}{1-r^{2}}
$$

where

$$
\Gamma(r)=-e^{-i \alpha}\left(e^{-i \alpha}-2 \delta\right)+\frac{2 e^{-i \alpha} A}{1-r^{2}}=1+\frac{2 A r^{2}}{1-r^{2}} e^{-i \alpha}
$$

Hence

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)+k\right)-\arg (\Gamma(r)+k)\right| \leq \sin ^{-1} \frac{2 A r}{\left(1-r^{2}\right) C_{1}(r)} \tag{12}
\end{equation*}
$$

where $C_{1}(r)=|\Gamma(r)+k|$ and is written as in (11). Now

$$
\arg (\Gamma(r)+k)=-\alpha+\arg \left[2 \delta-e^{-i \alpha}+\frac{2 A}{1-r^{2}}+k e^{i \alpha}\right]=-\alpha+\psi_{\alpha}(x(r))
$$

and the proof is complete by using (12).

References

1. R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Maths Soc. (Series A) 35 (1983), 1-17.
2. A.W. Goodman, Univalent Functions, Vol. I and II, Mariner Publishing Co. Inc. Tampa, Florida, 1983.
3. T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537.
4. H. Silverman and E.M. Silvia, On α-close to convex function, Publ. Math. Debrecen, 49 (1996), 532-537.
