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Abstract.   Let  ),( δαG  denote the class of functions f, 01)0()0( =−= ff  for which 

δα >′ )(Re zfe i  in  }1:{ <= zzD  where  πα ≤  and .0cos >− δα   We discuss some 

basic properties of the class including representation theorem, extremals and argument of  .),( δαG  
 
 

1. Introduction 
 
We denote ),( δαG  the class of normalized analytic functions f  in the unit disc D where 
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 satisfying  δα >′ )(Re zfei  where πα ≤  and cos .0>− δα  
 Many of the classes ),( δαG  have been studied by several researchers such as 
MacGregors [3]  for ,)0,0(G  Goel and Mehrok [1] for  )0(),( ≥δδαG and Silverman 
and Silvia [4] for .)0,(αG   Writing  
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clearly  ),( δαG∈f  if and only if  ,Pp∈  the class of functions with positive real parts.  
 Solving (1) for )(' zf  yields 
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2. Representation theorem 
 
We obtain the representation theorem for ,),( δαG  sharing the same approach through 
Herglotz Representation Theorem for functions in P. 
 
Theorem 2.1.   Let  .),( δαgf ∈   Then for some probability measure μ  on the unit 
circle X, 
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Conversely, if  f is given by the above equation, then  .),( δαG∈f  
 
Proof.   For some probability measure μ  on the circle X, 
 

).(  
1
1)(      xd

xz
xzzpPp μ∫ −

+
=⇔∈  

 
Using (2), we have  
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and the desired representation theorem is obtained by reversing the order of integration 
and integrating with respect to ψ . 
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 We note that the extreme points of ),( δαG  are the unit point masses 
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with 1=x  and the derivatives of the extreme points for ),( δαG are the point masses 
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3. Extremal properties 
 
Following Silverman and Silvia [4], we now obtain a coefficient bound for functions in 

),( δαg  and distortion theorems for the derivatives of these functions. 
 
Theorem 3.1.    If  ,),( δαG∈f   then L,4,3,2,/2 =≤ nnAan  and equality is 
attained for each n when f is an extreme point of  ).,( δαG  
 
Proof.   Using (4) and since ∑∞=− 0 ,)()1(1 nxx ψψ we can write  
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follows immediately. 
 
 Our further result will be based on the following theorem. 
 
Theorem 3.2.   Let .),( δαG∈f   Then f ′  maps rz ≤  into the disc rD  with center 

)1/()2()2( 2rAeee iii −+−− −−− ααα δ  and radius  .)1/(2 2rAr −  
 
Proof.    If a and b are complex numbers with ,1<b  and if  ,10 << r  the range of 
the function  )1||()1()1( ≤++ ωωω brar  is the disc with center and radius 
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respectively.   By taking xreea ii ) 2( 2 αα δ −− −=  and  xrb =  where ,1=x  we see 
that 
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maps rz ≤  onto .rD   By convexity, any linear combination of functions of this form 
also maps D onto .rD   Since for some probability measure μ, we have 
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the stated result now follows. 
 
Theorem 3.3.   If ,),( δαG∈f  then 
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All bounds are sharp for any extreme point  f  of .),( δαG  
 
Proof.   By Theorem 3.2, we can write  
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so that  
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The results are obtained by simplifying the above inequalities. 
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 We note that if ,),( δαG∈f  then since ,1)0(0 =′f we have 0)(Re >′ zf  for 
ρ<z  and some ρ  in .]1,0(   However if 
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then the left side of inequality (5) is sharp so that 
 

)1(  )1)(cos(cos2    2)1)(2(1)(Re)1( 2
0

2 →−−→−−++=−′− rrAAArrfr αδαδ
 

and the last expression is negative if  .0≠α   This shows that 1≠ρ  in general, and it 
is natural to ask for the best possible value of ρ.   We answer this question in the 
following application of Theorem 3.2 
 
Theorem 3.4.  Let  ),( δαgf ∈  and put  .))2(1(1 AAA +−+= δρ   Then 

10 ≤< ρ  and  0)(Re ≥′ zf   fo r ρ<z  .   If ,1≤≤ rρ  then  0)(Re 0 <′ zf  for 

some z on .rz <  
 
Proof.   Let  ),( δαG∈f  and define ρ as above.  Obviously 0>ρ  since ,0>A and 

0cos1)2(1 2 ≥−+=+− αδδ AA . The inequality 1≤ρ  is equivalent to 

1)2(1 ≥+−+ AAA δ  and this is obviously true if .1≥A    If  ,1<A  it is true if 

and only if  2)1()2(1 AAA −≥+− δ , and thus reduces to the trivially true inequality 
cos .1≤α    So in both cases,  .1≤ρ  

 Now, put 12)1)(2()( 2 +−−+= xxAAx δσ  for real values of x.   From (5), 

we have )10(   )()(Re)1( 2 <=≤≥′− rzrzfr σ  with equality for each r when 

off =  and  z  is a suitable value on .rz =    To prove the theorem, it is sufficient to 
show that )(xσ  is positive on  ),0[ ρ  and non-positive on  .]1,[ρ  
 If  ,1)(2 =+ δAA  so that )(xσ  is linear in x, then  )2/(1 A=ρ  and it is clear that 

)(xσ  is positive on ),0[ ρ and non-positive on .]1,[ρ   When )(,1)(2 xAA σδ ≠+  is 
quadratic and has zeros  
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One of the zeros is ρ.   Let the other zero be μ,  If ,1)(2 <+ δAA  then  0<μρ  and 
(7) shows that 0<μ  and .0>ρ   Since σ is concave, )(xσ  is positive on ),0[ ρ and            
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non-positive on .]1,[ρ   If  ,1)(2 >+ δAA  then  0, >ρμ  since ,0>μρ  .0>+ ρμ  
Also μρ <   by  (5).  In this case σ is convex so )(xσ  is positive on ),0[ ρ  and              
non-positive on .],[ μρ    In particular, since )(,0)1(cos2)1( xA σασ ≤−=  is            
non-positive on  .]1,[ ρ    This completes the proof. 
 
We next obtain a distortion theorem for .),( δαG  
 
Theorem 3.5.  If ,),( δαG∈f  then 
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and the bound is sharp for any extreme point  f of  .),( δαG  
 

Proof.   Let 
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as required. 
 
 
4. Argument of  )(zf ′  
 
We see that if  ,0≥δ  then f ′  is non-zero throughout D, and has continuous argument. 
But if ,0<δ  and if  of  is any extreme function of ,),( δαG  then at some point of D, 

0f ′  has a zero and hence no argument.  So to obtain result for argument of f ′ , we 
restrict the values of z  considered in the case .0<δ   We will also use the following 
property for argument:  for a given α  in ],[ ππ−  and as x varies in some interval ,],0[ c  

so that 0≠+ xeiα , )(xαφ  is the continuous argument of xei +α , for which 
αφα =)0( .  We have 
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when ,0 πα <<  and similar formulae for the case .,0,0 πααπ ±=<<−  
 
Theorem 4.1.   Let ,),( δαG∈f  and put )10(  )1(2)( 22 <≤−= rrArrx .  Let 
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Then, for ,0 orrz <=<  and for suitable determination of argument 
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where )(xαφ  is defined on ))(,0[ orx  as above and )(rC  is given by (8). 
 
Proof.    We restrict the value of rz =  by the condition 
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to ensure that 0)( ≠′ zf .   Squaring both sides and simplifying, we have 
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The inequality holds for all r in )1,0[  if 0≥δ  and for Ar δ4110 −<≤  if .0<δ   

This establishes the restriction on  .z   By using (6) and Theorem 3.5, we deduce that 
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and also  
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Put )1/(2)( 22 rArrx −= , then  ))(()(arg rxr αφα +−=Γ  and the desired result 
follows using (10).  
 We obtain another result for argument of ,),( δαG  features ))((arg kzf +′  for 
some real k that satisfy 0)( ≠+′ kzf  for  Dz∈  and for all  .),( δαG∈f   When 
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both these half planes contain 0.   If ,2/πα ≠  any choice of k with 0cos >+ δαk  
ensures that 0)(0 ≠+′ kzf  for Dz∈ ,  .),( δαG∈f  
 In the statement of the following theorem, for a given ,],[ ππα −∈  and as x varies in 
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xek i ++ α)1(  for which )0(αψ  is principal. 
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where )(αψα  is defined on ),0[ ∞  as above, and  
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Proof.   Let 2/πα ≠ , and let k satisfy 0cos >+ δαk .   We have, using (6), 
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where 
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and the proof is complete by using (12).  
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