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Abstract. Let G(a,d) denote the class of functions f, f(0) = f(0) — 1 = 0 for which

Re e'“f'(z)>& in D ={z:|z|<1} where |a| < 7 and cos @—& > 0. We discuss some

basic properties of the class including representation theorem, extremals and argument of G(e, J) .

1. Introduction

We denote G(e, 8) the class of normalized analytic functions f in the unit disc D where
f(z) =z + a,z°+ - +a,z"+ -

satisfying Re e'“f'(z) > & where |a| < 7 andcos @ — & > 0.

Many of the classes G(«,d) have been studied by several researchers such as
MacGregors [3] for G(0,0), Goel and Mehrok [1] for G(e,5)(6 = 0)and Silverman
and Silvia [4] for G(a, 0). Writing

e f'(2)-i sina-&
cosa—o0

p(z) = (z D), @)

clearly f eG(e, ) ifandonly if p e P, the class of functions with positive real parts.
Solving (1) for f'(z) yields

f'(z) = e‘i”(Ap(z) +isina +6) (z €D) (2)

where A=cosa—9.
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2. Representation theorem

We obtain the representation theorem for G(e, 5), sharing the same approach through
Herglotz Representation Theorem for functions in P.

Theorem 2.1. Let f eg(a,§). Then for some probability measure x on the unit
circle X,

(@)= [ e (e —26)2 — 2677 AX log (- x2) ] du(x). 3)
X

Conversely, if fis given by the above equation, then f eG(«, ).

Proof. For some probability measure z on the circle X,

1+xz
1-xz

peP o p@) = | da().

Using (2), we have

1+xz
1-xz

f'(z)zeio{Aj +isina+§}dy(x)

and so

“ia o 1+Xl// ..
f(z) = Al —— 0)d d
(2) =e [ E{[J‘ (1—ij + (isina + o) ,u(X)J «//]

X

| e g |y @
ol x 1-xy

_ j [-etee™ - 26) + 2e A d,u(X)] dy
ol x 1=xy

and the desired representation theorem is obtained by reversing the order of integration
and integrating with respect to .
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We note that the extreme points of G(«, §) are the unit point masses
f(z) = —e "% (e - 26)z — 27 AX log(l — xz)
with | x| = 1 and the derivatives of the extreme points for G(«, §) are the point masses

1+(e7'% - 26e7)xz
1- xz

f (2) = x| =1.

3. Extremal properties

Following Silverman and Silvia [4], we now obtain a coefficient bound for functions in
d(a, ) and distortion theorems for the derivatives of these functions.

Theorem 3.1. If feG(e,d), then |a,| < 2A/n, n=234,--- and equality is
attained for each n when f is an extreme point of G(«, o).

Proof. Using (4) and since ]/(1—Xl//) = > o(xy)", we can write

i 00 n
f@) =2+ 27A[ %" du(x) r
X n=2 n

© —ia
Now, let f(z) =z + Ya,z". Then a, = 2e A Ix”’l du(x) and the result
n=2 n

X

follows immediately.

Our further result will be based on the following theorem.

Theorem 3.2. Let f €G(a,5). Then f’ maps |z| < r into the disc D, with center
—e (e _25) + (267 A)/(1 - r?) and radius 2Ar /(1 — r?).

Proof. If a and b are complex numbers with |b| <1, andif 0 < r <1, the range of
the function (1 + arm)/( + brw) (Jw| < 1) is the disc with center and radius

1- abr? la - b|r
1-|bf’r2 " 1-|b’r?
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—-i2a _

respectively. By taking a= (e
that

26e7“)xr and b=xr where |x| =1, we see

1+ (7% - 25e7 )z
1-xz

maps |z | < r onto D,. By convexity, any linear combination of functions of this form
also maps D onto D, . Since for some probability measure x, we have

1+ (7% - 25e7 )z
1-xz

') = | du(x),

X
the stated result now follows.

Theorem 3.3. If f eG(e, ), then

1+ r2(2A(A + 8)-1) — 2rA L+ r2(2A(A + 8)-1) + 2rA

- < Re f'(2) > ()
1-7r 1-7r
and
—2Ar(1 + ry1 — (A+6)? 2Ar(L + ryl — (A + 6)?
( \/2( ") it < AT (A 0))
1-r 1-r
All bounds are sharp for any extreme point f of G(«, o).
Proof. By Theorem 3.2, we can write
' i/ —ia 2e"i°‘A 2Ar
f'(z) —<—e %™ - 26)+ > < 5 (6)
1-r 1-r
so that
— ) i —ia
2Ar2 < Red f/(2) + e (e — 25) — 28 ? < 2Ar2
1-7r 1-r 1-7r
and also

_ . i —ia
ZA'; < Iml £/(2) + e (e - 25) — 28 2A < A
1-7r 1-r

The results are obtained by simplifying the above inequalities.
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We note that if f eG(a,0), then since f;(0)=1, we have Re f'(z) > 0 for
| z| < p and some p in (0,1]. However if

1+ (7% - 25e7'%)z

fo(z): 1- 7

, (z eD),

then the left side of inequality (5) is sharp so that
A-r?)Re fj(-r) =1 + r’(2A(A+6) — 1) — 2rA — 2(cosa—5)(cosa — 1) (r - 1)

and the last expression is negative if |a| # 0. This shows that p =1 in general, and it

is natural to ask for the best possible value of p. We answer this question in the
following application of Theorem 3.2

Theorem 34. Let feg(e,8) and put p =1/(A+ 1-A@5 + A)). Then
0O<p<land Ref'(z) 20 for|z|]<p. If p<r <1, then Refj(z) <O for

somezon |z| <.

Proof. Let f eG(a,0) and define p as above. Obviously p >0 since A>0,and
1-AQ56 + A) =1+ 62— cosa > 0. The inequality p <1 is equivalent to
A+ 1 - A@5 + A) > 1 and this is obviously true if A >1. If A <1, itis true if
andonly if 1 — A(26 + A) > (1 — A)?, and thus reduces to the trivially true inequality
cos a < 1. Soinbothcases, p <1.

Now, put o(x) = 2A(A + &) — )x%? — 2x + 1 for real values of x. From (5),
we have (1 — r?)Re f'(z) = o(r) (0 < |z| = r < 1) with equality for each r when
f =1, and z is a suitable value on |z| =r. To prove the theorem, it is sufficient to
show that o(x) is positive on [0, p) and non-positive on [p,1].

If 2A(A + &) =1, sothat o(x) is linearin x, then p=1/(2A) and it is clear that
o(x) is positive on [0, p) and non-positive on [p,1]. When 2A(A + 6) # 1, o(X) is
quadratic and has zeros

A J1- A2+ A 1 )

2AA+8) -1 AT I- AR5 + A

One of the zeros is p. Let the other zero be x4, If 2A(A + 6) < 1, then up < 0 and
(7) shows that #< 0 and p > 0. Since ois concave, o(x) is positive on [0, p)and
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non-positive on [p,1]. If 2A(A + 6)>1, then u,p>0 since ypo>0, u+p>0.
Also p<u by (5). In this case o is convex so o(x) is positive on [0, p) and
non-positive on [ p, u]. In particular, since o(l) = 2A(cosa—-1) < 0,0(x) is
non-positive on [ p,1]. This completes the proof.

We next obtain a distortion theorem for G(«, o).

Theorem 3.5. If f eG(a,d), then

, 2Ar
|f(z)|§C(r)+1_ 5
where
2
c(r) = 4Ar2 A2+5 +1 ©)
1-r“{1-r

and the bound is sharp for any extreme point fof G(e, ).

277 A
—.

Proof. Let I'(r) = —e % (e™'* —25) + By using (6) we have

| t/(2)] <|T()| + ZArz
1-r

—cn + 2Ar2

1-r

as required.

4. Argument of f'(z)

We see that if 6 >0, then f' is non-zero throughout D, and has continuous argument.
But if 6 <0, and if f, is any extreme function of G(«, ), then at some point of D,
fo has a zero and hence no argument. So to obtain result for argument of f', we
restrict the values of | z| considered in the case 6 <0. We will also use the following
property for argument: for a given « in [-z, 7] and as X varies in some interval [0, c],
so that e“+ x # 0, ¢,(x) is the continuous argument of e'* +x, for which
¢,(0) =a. We have
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sin .
tanl(—aj . if x+cosa>0
COS ¢ + X
P (X) = s tan sina . if x+cosa <0
COS ¢ + X
, If x+cosa=0
l?2

when 0 < a < 7, and similar formulae for the case —r <a <0, a = 0, £r.

Theorem 4.1. Let f eG(a, ), and put x(r) =2Ar?/(1—r?) (0<r<1). Let

fo = 1 , 5<0.

J1-4A0

Then, for 0 < |z| =r < r,, and for suitable determination of argument

larg £'(z) + & —¢, (x(r)] < sin‘lﬁ
where ¢, (x) is defined on [0, x(r,)) as above and C(r) is given by (8).

Proof. We restrict the value of | z| = r by the condition

2A L 95 _ ee| 5 2AT
1-r? 1-r?

to ensure that f'(z) = 0. Squaring both sides and simplifying, we have

4Ai - 4A6 +1>0.
1-r

169

©)

The inequality holds for all rin [0,1) if 6 > 0 andfor 0 < r < 1/1/1—45A if 6<0.

This establishes the restriction on | z | By using (6) and Theorem 3.5, we deduce that

1 2Ar

|arg f’(Z) — argF(r)| < sin” m

(10)
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and also

arg(r) = arg{—e‘i“(e‘i“ — 25) + A
-

. 2
:—a+arg{e'“+ 2Ar }

2ela A}

1-r2

Put x(r)=2Ar?/(1-r?), then argD(r) = —a + ¢,(x(r)) and the desired result

follows using (10).
We obtain another result for argument of G(«, o), features arg(f'(z) + k) for

some real k that satisfy f'(z) + k # 0 for zeD and for all f eG(a, §). When
|a|:7r/2, such a choice is impossible, for if f, is an extreme function in
G(e, 8),then f;(z)+k maps D onto either Imw >¢6 or Imw<—¢ and since 5 <0
both these half planes contain 0. If || # 7 /2, any choice of k with kcosa + &6 >0

ensuresthat fy(z) + k = 0 for ze D, f eG(e,9).
In the statement of the following theorem, for a given « €[z, 7], and as x varies in

some interval [0,c), so that (k +1)ei“ +x#0, y,(a) is the continuous argument of

(k +1)ei"‘ + x for which y, (0) is principal.

Theorem4.2. Let f e G(a, 5), where || # /2. Put x(r)=2A/1-r*)(0 < r<1)
and let k be a real number such that kcosa + & > 0. Then

1 2Ar

|arg(f'(2) + k) + & — w, (x(r)| < sin” m

where v, () is defined on [0, ) as above, and

2
Cy(r) = | 2A A Kcosa + 8|+ (k+1)? (11)
! 1-r2(1-r?

Proof. Let |a| # 7/2,and letk satisfy kcosa + &>0. We have, using (6),

2Ar
1-r?

| £'(2) + k - (T(r) + k)| <
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where
. . —-ia 2 .
(r) = —e'“(e™* -26) + 2 A1, 2Ar2 e ',
1-r 1-r
Hence
|arg(f(2) + k) — arg("(r) + k)| < sint_— 2AT (12)

(L-r?)Cy(r)

where C,(r) = |T(r) + k| and is written as in (11). Now

arg(C(r) + k)= —a + arg[Zﬁ—ei”‘ +12—A2+kei“} = —a + y, (X(r)
-r

and the proof is complete by using (12).
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