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Abstract. Based on our result of constructing the real integral solution of the complex diffusion

equation, we successfully generate, via the pull back operation in the space of classical paths I' kla s
the solution of the complex diffusion equation with complex quadratic potential as a Feynmannian

path integral with built-in Feynmannian measure in ke

1. Motivation

This article extends the framework set up by Shaharir [17, 19, 20] to formulate the
Feynman integral. Intrinsically, Shaharir’s framework aspired to generalise the work
done by Albeverio and Hoegh-Krohn [2,3] and to generate a path integral over the
Riemannian manifold which possesses the qualitative characteristics of the original
Feynman integral, specifically the concept of ‘sum over all the classical paths’.
The central part of our work encompasses the effort to derive a ‘Feynmannian’ integral
(lending Shaharir’s [17] connotation) or simply a Feynman integral type from the path
integral solution y of the complex diffusion equation in the space of n-tuples set of

complex number C" :
y = aly + BV (Q)y (1.1)

a,feC, complex numbers and 7 (q) a complex quadratic potential. Subsript ¢

represents partial differentiation with respect to # and A is the Laplacean. Essentially
this is done via a refinement of the complex Hilbert space

H = {y e L**([0, 1];C"), y(r) =0 almost everywhere, and for any y and 7 in the L*?
t

(7|n) = [ G(&) - 7(s) + 7(s) - n(s)) ds } (12)

0
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into

['#la = { classical paths over C" with the inner product as in H }

={yimy =-VV(y), y(0)=0qy, 7(t)=q and V' a potential } (1.3)

L*? isa space of twice differentiable function and each derivative is a Lebesgue square
integrable.

This ‘Feynmannian’ integral is found to be more in agreement with the qualitative
aspects of the original Feynman path integral. This article clearly shows the relation
between this integral with the original Feynman path integral and the real integral via
path integral solution for the complex diffusion equation with complex quadratic

potentialin C".

2. Principal results

In the following we give the necessary results to produce our main conclusion in
Theorem 5.

Lemma 1. (Separable complex Hilbert space, H)
H is a separable complex Hilbert space.

Proof. We’ll show that H is a direct sum of two separable complex Hilbert spaces H,
and H, (i.e. Hy ©® H,), where

H, = {7/ e L**([0,¢]; CM), y(t) =0 almost everywhere, and for each pair y,, 7,,

(nlra), =] yl(s>-72(s)ds},
0

and

H, = { nel*([0,/]]; C™), n(t)=0 almost everywhere, and for each pair #;, 75,

<771|772>2 = I m(s)- 77;2(s) ds}.
0
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The facts that H;,i=1,2 are complex vector spaces with an inner product <-|->; are
trivial. The norms || "1 in H;, which are determined by the above inner products, are
given respectively by

! 1/2 !
I (e al.= | fliora]

1/2

Refering to Weierstrass’s theorem (refer Kufner et al [10]) every path
y,neL?2([0,7]; C") can be approximated in the normed space by a polynomial
sequence, i.e.

Va(s) = \\z a;s’, y,()=0and a,, =a,, = =0,
JjI<n

77n(S) = HZ bjsj’nn(t) = 0 and bn+1 = bn+2 = . = O’
J|=n

n=0,1,2,---,a;, b; €C, such that ||;/ _7n"1 < g, ||77 —77”"2 < &

Consequently,

2
ds ,

t

t
7 =7 = [lr=nlds . |n-nl:=]
0 0

= (i}y

show that y and 7 are respectively limits of the sequences {y,},{n,} in L*?. Via the

completion of L*?, the sequences {7.},{n,} converge separately to » and 77, and as

i[5

These outcomes imply Cauchy sequences in  L*? (i.e. converge in the mean square) and
subequently y € H,, n € H,, and H;,H, are complete. These conclusions

a result

2
ds .

t t
timlly =5, = [l7 =9l ds. tim|y—n,; =]
0 n 0

guarantee that both H,, H, are complex Hilbert spaces.
In order to show that H,, H, are separable, we consider the sets D;, D, of all
paths y, 7 which originate from H,,H, respectively. With reference to Naimark’s

theorem [12] (i.e. for each coefficient a ; of the polynomial y,, there exists a

rational number coefficient u; of the polynomial T such  that

J n
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|aj - uj| < (g/xd‘j‘),g >0, ‘sj‘ < d‘j‘,d a positive number, and X the number

of coefficients @), there exist in the sets D, D, other polynomials I, and IT,,

where u i and Vv ; are the respective rational coefficients, such that

Yn — Fn" < g, " n, — Hn" < &
| | )

Moreover y,(t) =7, (t)=0, and accordingly u,,; =, =-=0,v,,1 =V, =--=0
for some integer n, n=0,1,2,---. As a consequence, all the polynomials
r,,, ; n =0,1, - with the rational coefficients u j and v IB of the sets D;, D, are

countable. These are due to the fact that the sets can be numerated by the natural
numbers 7.

The sets D;, D, can be shown as follows to be dense everywhere in
H,, H, respectively. Let us consider any paths y € H, and n € H,, where I', and

IT, respectively represent the polynomials with rational coefficients u;, and V.

For any ¢ > 0 and since y, 7 € L?, then there exist Yan €Dy, n,€D,,
such that ||7/ -7 ||1 <eg, ||77 -n, ||2 < ¢ (via Weierstrass’s theorem) and
|| va — T, ||1 < &, || n, - Hn"2 < &. (via Naimark’s theorem).

As a result, we obtain

|y =Tl <7 =7, +7.- T, = 22

7 -1, < v = nl, + |7, -1, = 22,

which indicate that D, and D, are respectively dense everywhere in H,, H,, and thus
demonstrate that H,, H, are separable.
The above results show that H,, H, are separable complex Hilbert spaces. Finally

we proceed by referring to a theorem by Prugovecki [14] which states that:
if H,, H,,--- represent a finite or infinite sequence of countable separable Hilbert

spaces, then the direct sum @ ,H, =H corresponds to a separable Hilbert spaces.
As a consequence of this theorem, the abovementioned direct sum of H, @ H, will
form a separable complex Hilbert space with an inner product <-|->, as stated in the

proposition of Lemma 1.
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The form of the inner product (1.2) on the L*?(G) space, G a domain in R”,
has been briefly mentioned in Rektorys [15] and Griffel [8].

Corollary 2. (construction of T**)

I

o e L**([0,f] ; C"),m& = —=V(y — q), where m mass of the
particle which is being influenced by a potential

V(z) = (1/2)2T Qz + L-z + P,Q Hermitean matrice, L vector
rke — 1 Pcomplex constant ; o(t) =0 almost everywhere,

and for any o and [ in the set

(olp)=2 J(a'(s) - p(s) + o) [Qjas)jds, p>0,
0

m

then THa js a closed subspace of H .
The proof of Corollary 2 is given after the following remarks.

Remarks 3. (form of the classical path ¢ of interest)
The substitution ¢ =y —q is used to obtain I'* instead of the space

ye L>2([0,£]; CM), = =VV(y), 7(0) = o, y() = q almost everywhere,
t . Q

and for any pair of y and # <y| ;7> = %I (y(s) - n(s)+ y(S)T(—j ﬁ(s)] ds.
0 m

This implies that T'*“ corresponds to the space of classical paths ¢ =y — q. The
path o, mentioned in the above Corollary 2, is formed from the consideration of the
complex quadratic potential

40) =quTﬂq +L-q+P
together with the Euler-Lagrange equation

y 1 .
y = —(ZJ(QH L), 7(0) = Qo, 7(®) = q, ie.thepath o =y —q

=6 =2 ra £ 1. 00 = g - 6 a0 <0
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Proof of Corollary 2

It can be seen that M@ — L22 is a vector subspace of L2, since o, p € ['¥@ implies
that ac + bp is an element of ' for all scalars a,b € C. Moreover  ['Ka < [22

forms a closed subspace of 1?2 (accordingly of H ): if I'¥@ is a vector subspace and
{o,} < TkHa then 6, - o implies ¢ e ke,

With reference to the proof of Lemma 1, evidently we have in T'*# < [22

2
e = ”O' - Un”rkm )

(-

These show that the convergence of o, — ¢ signifies that the simultaneous convergence

(o*—an o-0, >

and

2

A ge)
lo-a,|tu = ﬂ [ij ol s

of the sequence {o,} and the corresponding sequence of derivatives {¢,} in I'*# to

their respective limits &, and &,. Consequently, via the completeness of L*?,

o— J o,
s

this result implies Cauchy sequence in L*2? and thus for o¢,6 €%, we have a

2

t
limﬁj (9j|a—an|2 + ds=0,
noty m

complete ['¥e_  This implies that T'% represents a closed subspace of H .

Lemma 4. (use of the pull-back operation in e )

1. Let Cy[(0,2); CN] be a set of twice differentiable smooth mapping from (0,t) to
unitary space C" such that mo = —VW (o), W(o) = V(y — Q). m stands for
the particle’s mass which is being influenced by the quadratic potential
V(z) = (%)ZTQ Z+ L-z+ P, Q anonsingular Hermitean matrix (if Q # 0),
L vector, P a complex constant; o(t)=0, and the inner productin C" is given by

g1 gi(a,b) = a - b.
Let

evy : Co[(0, ) ; C"] > C", 0 b ev,(0) = a(s),
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represents the evaluation map at s. As a result <,>, is an inner product on

Co[(0,2); CM] and is defined by

(0.0), = &1(0(s), p(s)) = o(s) - P(s).

’

g : C"xC">C, (o,p) & o-p isthe ‘pull-back’ by the mapping ev.,
<,>1 = evs*gl.

2. The inner product <,>, on Cy[(0,¢); C"], which is defined by
(a, p)z = o(s) - ,3(5), is the pull-back g, by the mapping

dev,: Cy[(0,8); C"] > C", o > dev (o) = o(s).

3. The inner product on TKa  which is defined in the Corollary 2, is a pull-back of the
metric g (ie. g = 1D g5)

g = (evy 4, + devy, ,) 1 THa — Cn,
for the constant a and fixed s,
g = (evso,a + devsu,a )(a) = a (U(SO) + O-(S))’

and also the inner product g is the pull-back <,>, a metric on T*e by the
mapping

F:Ch > THhe 7 5 F(2) =0,

o as in Remarks 3.

Proof-

1. Since ev, is linear and via the definition of the Frechet derivative (see Abraham
etal [1], Lang [11]),

D(evy) (po)(n) = n(s)
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for any pg € Co[(0,6); C"] and #n €T, Cy[(0,7); C"], the tangent space of
Col(0,7); CN] at py. From the definition of the pull-back (see Abraham et al. [1])

(0.4), = v, (&)@, 4); 0. 2 € Gyl(0, 1); C"]
<O-> /1> 1 = &1 (evs (pO )) (Tpg €Vg (0) > Tpo evg (l))
= 21(po(s)(a(s), () = (s) - A(s)

Since dev, is linear,

T, dev () =(dev(py), D(dev,(po)(m) = (devy(po), 7(s))

and similarly as part 1 above mentioned,

<0-9 A) 2= devs*gZ (0-9 j’) =82 (devs (pO )) (Tpo devs (U)s Tpo devs (’1))

= ga(dev, () (6(5). A(s)) = 6(s) - A(s)
(a) The first part: We have to show that

(0,4)2 = g(0,2)
= devso,a*gZ (Us /1) + evso,a*gl (O’, /1)
=a2(6(sg) - A(sg) + 0(sg) - A(s0)); S is fixed (1.4)
This result is obtained with reference to the fact that for any constant of motion
T (energy for a conservative system as similar to this case), we have
1 t
T(o(s0) = - [ T(a(s))ds
0

where  T(o(s)) = (%)|o"(s)|2 + V(o(s)), m is the particle’s mass with

potential V. Accordingly for ¢ and 4 in [

T(o(se) + T(Alsy)) = } [1(T(0(s) + T(As)) ds,
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ie.,
(%]Od(soﬂ \z(m\j (7 (250 + V(o(s0))

¢t Jo

_1 I’[ j( O'(S)| ‘/I(S)‘ + (V(As)) + V(U(S))j

As a consequence of this, for the case of a generalised complex harmonic
oscillator, ¥ (q) = (%)qT Qq, we have

( j\a(so)wso)\ ~ m6(sy) z(so){ ](a<s0) + Mso)) 2 (3 (s0)

+ A(s9)) —0(s9)" Q A(s9)

-, I(ﬁ([ j‘ U(S)+/1(S)‘ —mao(s) - /1(S)+( j(a(s)-i-/l(S))TQ (@ (s0)+ A(50))

t
—a(s)" QA (s)j ds

or

(210l + (3 orsonr o - {mita) - Zsu) + atsor 0|

i {[%jl o + (5000 are) - (i) - 7o + a(s)rgz@))} @

t

where o,4, y e I'ke,

Since y = a + A e T'Ma_ therefore T(o(sy)) = %J‘é T(y(s)) ds, and

accordingly we have the result

{o(so) i<s0>+a<sO>T( ji(so)} 1j0’{c'r(s) A<s>+a<s>f( ji(s)}
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or referring to (1.4), we have instead
2) - - r( Q)7
a {O'(So) < A(sg) + o(sg) (;jfl(so)}
2 ¢ - _
_ ”T IO {d'(s) S 2(s) + O'(S)T(%jﬂ(s)}ds =(o.1),,

for the case of a generalised complex harmonic oscillator.
For the complex affine potential V' (q) = L - q + P,

@“}“0) # Jso)|| = mitsu) - As) + L+ (o(s0) + As0)) + €

= 1!;{(%}‘0(5‘) + i(s)‘z_ mO'(S) . /T(S) + |_ . (O'(S)+/1(S))+C}ds,

t

where C is a constant, or this can be expressed as

= 1jt{(%j|7}(s)|2 —m&(s) - A(s) +L - p(s) + C}ds,

tJo

o,4,ye ke and therefore o + 1 =y e [, As a result, for complex affine
potential, we obtain (again referring to (1.4))

az{d'(so) : Z(so)} - ?IO’ {d(s) : Z(s)} ds = (0,4); .

Consequently  for the generalised complex quadratic potential,
Vq) = (%)QT Q g+L-q +P, wehave the result

(0, 2) = ? j O’{d(s) () + JT(% I(s)} ds

as stated in Lemma 1 and Corollary 2.
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(b) The second part: this part shows that the inner product g can be constructed
from the pull-back <,>a metric on ' by the mapping F. According
to Shaharir and Zainal [20], for the generalised complex quadratic
potential ¥V (q) = (%)qT Qq+ L-qg+P, Q anonsingular Hermitian matrix
(if Q # 0) of size n, it can be written explicitly that

— 2
Lo+ s-ne 0= YgogortL], r>0:if Q=0
2m - Tt 2m

sin-1[vear] (sin [veas]) x —sin[veas - o] ¥ - x).

if Q # 0 and nonsingular,
(Jﬁ)z =0, X=q +(\/§T1 LY =q +(x/5T1L ; whereas

F(2)(s)=o(s) = 1€(0,tyi), fmin = Min T for aff <0  where
i

‘sin[\/ﬁt” :ﬁ sin[@t], or t>0 for of >0, or
j=1

J

T
tnin = min for afeC
e J [Im A ] &

LeC", Q = 0 for the complex affine potential and Q # 0 for the complex
quadratic potential, A ; is the eigenvalue of Q..
Accordingly DF(zy)(z) =0, and as a result

g(ZO)(27 W) = F*(< > >) (Z’ W)

= < T,,F(2), TZOF(W)> = <‘7’ ’1>

= ”7215 {é(s) () + o(s)! (%)ﬂs)} ds,
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and explicitly,
1 2O 2
7 {QO - EQ—EJ” o |l - a) - L]|, Q=0;
[Y - COS_][x/at]X]T z_l [Y — cos™ [\/at]X]
dez) =1+ (@ - 9" VO@ - @)+ 2[i@ - @) LI, @0,

Z(l) = 2_“ (Q)_l (tan [Qt]) , Le (Ontmin)a where Lnin = min z
t J M,j

for ¢ <0,0r t>0 for af >0, or ¢, = min d for ¢feC
/ Im(,Mw)

J

Theorem 5. (“Feynmannian’ integral)

Let ¢ :C" — C be Lebesgue integrable and a Fourier transform of a bounded complex

Borel measure on C"; then the solution of the complex diffusion equation (1.1)

with a quadratic complex potential V(Q) = (%)qT Qq+L-q+ P, where Q a

nonsingular Hermitian matrix (if Q#0), L vector, P a complex constant; can be
reduced to a ‘Feynmannian’ path integral

R(Q,1) = J' exp[ ﬁJ';L(a(s), 5(s) dsj dF (o), (1.5a)

T kla

where L(a(s), 6(s)) = Gjmp(s) |2 - W(o(s)), W)=V - q).

The entity L represents the classical Lagrangian of a particle of mass

i)
m=|—|,
2o

ke — {a e L**([0,1]; C"), m& = —=VW (o), o(t) =0 almost everywhere,

and for any such functions o, f the following inner product is well-

2 .
defined as <G| p> = aT J.(; (d—(s) - p(s) + G(S)T(%jﬁ(s)j ds}.
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IXa s the particle’s space of classical paths, and the Feynmannian measure F is given
by

dr = [Tpo(G)]*(dﬂ(p,q,s) > Po € l"kla (ISb)
G is defined as in Lemma 4 part (3), where

d:uw,q,s = (S_l)*(d,u(p,q)

.
{—} -z, if Q=0
20t

and S:C">C", zbqp=

[m‘ﬁ tan(ﬁt)‘]_%- 2, if Q=0

is the bounded complex Borel measure and the scalar mapping on C":
d:u(p,q(qO) = C&Xp (kq : qO) dlugo(qO) >
or equivalently

34 = [ exp(kq - do) du,(Cho).
(FT)(4)

F:C"»>THa 75 ¢ , where o is the classical path as in Lemma 4 part (3b) and

Qtal) -z . if Q=0

(20 VO tanVQ )" -z . if Q%0

IT=8"':C"»C", T(z) =

Proof. The proof is given separately for the case Q = 0 (complex affine potential) and
Q # 0 (complex quadratic potential).

CaseQ=0. From Shaharir and Zainal [20], the solution of the complex diffusion
equation (1.1) is given by
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n,

" ‘
R@D = [|——| exp (g2 2) exp (28] V(0(s) ds) p(q+2) dz
4ot 0

er
1 % Z-17 1 1282013
= exp| ——— + |—|pt(q+z) - L + + pPt
CJ; [47ratJ p( 4ot (ZJP @*+2 12 p J

{ [exp (k@@ + 2) - QOd/lzp(QO)} dz,

cn

VA _
I . .
- J(%m] o (_%] dor |exp[ (0o —ao)ar + ka - G~ kapr’sy

cl cn

2R2~43
+ (L [’)3‘” ] + pPt] duy(do); @ = z — 2at (kgy + (%j L)

= [ exp(- 200, %)) exp(ﬂIV(a(s)) dsj exp (kq - Go) dty(%o)
0

cn

upon consideration of Fubini’s theorem and characteristics of a ‘multinormal complex
distribution’ (see Shaharir [17] and Andersen et al. [5]). As a result we obtain

cn

R(@,0)= [ exp(-g(do — o)) exp (ﬁ [V(ots) dsj dity,¢(Ch) ;
0

and
d;uq),q(qO) = eXP(kq ' qO) dluq)(qO):

ki t
= [ exp [—%g(z, z)] exp (ﬂ [V(a(s)) dsJ dityq5(2),
0

cn

(where p represents the phase of 1/a) or in terms of the differential form,
ditygs =S (du,,), the pull-back of du,, by S~'.

Meanwhile we can write

R@N= [ exp(-ag(3,,0) T,,0) exp (ﬂ [V(3,,@6) ds} ity 4,4(3,(0),
0

T,Cn

1
a= [Ej e, b=apy(sy), py € THa.
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Together with the choice

Sy, (@) = T,,G(0),

and G as in Lemma 4 part (3), and via Lemma 4 and the general theory of the
transformation of a variable of an integral with respect to a differential form, we obtain

R(q,7) = j exp(—a<a,0>)exp (/g j V(a(s)) ds] dF (o) (1.6a)
0

T,T kla
or

R(9,1)= Jexp(—a<y—q,y—q>)exp(ﬁjV(y(s)—q)dstF@—q) (1.6b)
0

7,T kla

The first part of the theorem is obtained when we identify T pol“k’” as THe and

upon considering the formulation of Albeverio and Hoegh-Krohn (as in [2]) which states
that the normalised integral (or Fresnel integral) on H is invariant under the group
transformation of Euclidean type, and the result by Parthasarathy [13] which states that a
measure in the function space (eg. Wiener measure) is invariant under such
transformation.

We prove the last part of the theorem via the same arguments as proposed in the
results of the second part of Lemma 4 and the theory relating to the Borel measure,
together with the fact that the trasformation 7 and F are proper mappings. The measure F
is obtained via theorem of Radon-Nikodym (see Halmos [9]).

Case Q= 0. Referring to results obtained in Shaharir and Zainal [20], the solution of
the complex diffusion equation (1.1) is given by

R@0) = | _ %ex (—g(z,2)) ex {2 ﬁj V(o (s)) ds] (z+cos‘1[x/61]X)dz
> Rn 27T|Z (t)| p(=g(s, p ) [ 5
X =q+ (o) L Y=g+ L

or

_ | al)s
_Iél.” 47wc‘tan[x/5t] (@t L/a])

__1 2T
7o,

(o @]]% ]
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+ ;—aXT(\/ﬁ tan[x/at]))?} exp{nﬁ(P—% L (Jﬁ)‘ Etj]go (Z+cos‘1 L/at]x)dz

%

- ‘\/5‘ -1 - 4 _ VA
) CJ. CI 47r0t‘tan[\/5f” exp{%w (@ . [\/at])w}dw (Cosmt])

exp (—aYT((\/E)_I tan[dﬁt]j? + kX Tcos™ [ﬁt])?
" i XT (V0 tan [J@]))?j exp [nﬂ(P - % r(Va) E) tj duy(Y),

. T
t € (0,tyin), Imin = min—— for of <0 ; or >0 for af >0, or
J

\//1_,»

tin = minL) for af € C ,where w = z-2ka ((@Tl tan[x/at]jY,

J Im( A

together with certain manipulation with respect to the second factor of the integrand and
the condition that (a(Jﬁ)—l tan(x/ﬁt)) is a positive semidefinite complex (hermitian)
matrice with non negative real eigenvalues (see Gantmacher [7], Andersen ef al. [5]);

R@,0) = [ exp(=g(Y,Y) exp (B[V(o(5)) ds) du,(Y);
0

C n
where

dug . (Y) = exp (kY Tcos™! [JE;]Y) duy(Y),

and taking into account Fubini's theorem and characteristics of the 'complex multinormal
distribution'. We can use the same arguments as the case Q2 =0 to obtain the result (1.5).

Remarks 6

(@)  T,THa represents the tangent vector set at f,eT'¥a.  The space T, T is
identified naturally with T*¢ by associating a tangent vector with an element of
['Ma_ Furthermore, T, '@ being a vector space, it can be naturally identified as

isomorphic with respect to I'*@, Nevertheless this natural isomorphism is no

longer assumed when we generalise to a manifold. In this case it is necessary to
treat the tangent spaces at various points as different (see for example, Crampin
and Pirani [6]).
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(b)  Referring to the formulation of Albeverio and Hoegh-Krohn [2], the potential
function V" as in Theorem 5 (affine complex and quadratic complex potentials) is
derivable from the space F(C"), Fresnel integrable function space on C".

Briefly V is a Fourier transformation of x , which is a bounded complex Borel
measure on C", i.e.

V@ = [ explkq-T)dun). (1.7)

on
With reference to Parthasarathy [13],

@) V(q) is uniformly continuous in a normed topology,
(i) if (@ ="r(q) forall qeCPh, then 1 =y,
(iii)  convolution (V] * Vo) (q) = V(q)V>(q) forall qeC" and g, u, are

bounded Borel measures on C", and

(v) V(@) = V@)

In addition, V' :C" — C isa function S* whereby the first differential is bounded and

all the higher order derivatives are most likely experiencing linear growth, i.e.
(see Albeverio and Brzezniak [4])

, v| =1
D7 (g)| < i
m(1+|a) >

(1.8)

3. Conclusions

Theorem 5 generates a solution for the complex diffusion equation (1.1) with a complex
quadratic potential V(Q) = (%)qTQq +L-q+ P (Q is nonsingular Hermitean
matrix, if Q # 0). This solution is in the form of a Feynmannian path integral (1.5a)

with the measure (1.5b) on the classical path space '@, This result enables the
extension of our framework to formulate the Feynman integral in order to include
complex quadratic potential in unitary space C". As a matter of fact, this result shows

qualitatively the connection between the Feynmannian integral with the original Feynman
path integral and its real integral form. Clearly this is shown via the pull-back operation

in T¥ with respect to the path integral solution of the complex diffusion equation with

quadratic potential in C". The extension to the quadratic potential in Riemannian
manifold can be done similarly.
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