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Abstract.  Based on our result of constructing the real integral solution of the complex diffusion 
equation, we successfully generate, via the pull back operation in the space of classical paths klaΓ , 
the solution  of the complex diffusion equation with complex quadratic potential as a Feynmannian 
path  integral with built-in Feynmannian measure in klaΓ . 

 
 
1. Motivation 
 
This article extends the framework set up by Shaharir [17, 19, 20] to formulate the 
Feynman integral.  Intrinsically, Shaharir’s framework aspired to generalise the work 
done by Albeverio and Hoegh-Krohn [2,3] and to generate a path integral over the 
Riemannian manifold which possesses the qualitative characteristics of the original 
Feynman integral, specifically the concept of ‘sum over all the classical paths’.              
The central part of our work encompasses the effort to derive a ‘Feynmannian’ integral 
(lending Shaharir’s [17] connotation) or simply a Feynman integral type from the path 
integral solution ψ  of the complex diffusion equation in the space of  n-tuples set of 

complex number nC : 
 

   ψVβψαψ t )(q+Δ=                                                 (1.1) 
 

C∈βα, , complex numbers and )(qV  a complex quadratic potential.  Subsript t 
represents partial differentiation with respect to t and Δ  is the Laplacean.  Essentially 
this is done via a refinement of the complex Hilbert space 
 

00 =∈= )(,);],[({ 2,2 ttLH γγ nC  almost everywhere, and for any γ  and η  in the 2,2L  
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into  
 

klaΓ  = { classical paths over nC  with the inner product as in H } 
 

= qq ==∇−= )(,)0(),(:{ tV γγγγγ 0m &&   and V a potential }       (1.3) 
 

2,2L  is a space of twice differentiable function and each derivative is a Lebesgue square 
integrable. 
 This ‘Feynmannian’ integral is found to be more in agreement with the qualitative 
aspects of the original Feynman path integral.  This article clearly shows the relation 
between this integral with the original Feynman path integral and the real integral via 
path integral solution for the complex diffusion equation with complex quadratic 
potential in nC . 
 
 
2. Principal results 
 
In the following we give the necessary results to produce our main conclusion in 
Theorem 5. 
 
Lemma 1.  (Separable complex Hilbert space, H) 
 
H is a separable complex Hilbert space. 
 
Proof.   We’ll show that H  is a direct sum of two separable complex Hilbert spaces 1H  
and 2H  (i.e. 21 HH ⊕ ), where 
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The facts that  2,1, =iH i are complex vector spaces with an inner product  i>⋅⋅<  are 

trivial.  The norms i⋅  in ,iH  which are determined by the above inner products, are 
given respectively by  
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Refering to Weierstrass’s theorem (refer  Kufner et al. [10]) every path 

);],0[(, 2,2 nCtLηγ ∈  can be approximated in the normed space by a polynomial 
sequence, i.e.  
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show that γ  and  η&  are respectively limits of the sequences  }{},{ nn ηγ  in 2,2L .  Via the 

completion of 2,2L ,  the sequences  }{},{ nn ηγ converge separately to  γ  and  η& ,  and as 
a result  
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These outcomes imply Cauchy sequences in  2,2L  (i.e. converge in the mean square) and 
subequently  21 , HH ∈∈ ηγ & , and 21 , HH  are complete.  These conclusions 
guarantee that both  21 , HH  are complex Hilbert spaces.  
 In order to show that 21 , HH  are separable, we consider the sets 21, DD  of all 
paths ηγ ,  which originate from  21,HH  respectively.  With reference to Naimark’s 
theorem [12] (i.e. for each coefficient a j  of the polynomial nγ , there exists a                           

rational number coefficient ju  of the polynomial nΓ  such that 
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ddsxdua jjj
jj ,,0,)/( <><− εε  a positive number, and x  the number 

of coefficients  a j ), there exist in the sets  21 , DD  other polynomials nΓ  and  nΠ , 

where u j  and  v j  are the respective rational coefficients, such that  
 

.ε,ε γ 21 <Π−<Γ− nnnn η  
 

Moreover 0)()( == tηtγ nn ,  and accordingly  0,0 2121 ====== ++++ LL nnnn vvuu  
for some integer L,2,1,0, =nn . As a consequence, all the polynomials 

L,1,0;, =ΠΓ nnn  with the rational coefficients u j  and  v j , of the sets 21, DD  are 
countable.  These are due to the fact that the sets can be numerated by the natural 
numbers n.  
 The sets 21, DD  can be shown as follows to be dense everywhere in                    

21 , HH  respectively.  Let us consider any paths  1H∈γ  and  2H∈η ,  where nΓ  and  

nΠ  respectively represent the polynomials with rational coefficients u j  and  v j .                 

For any 0>ε  and since 2, L∈ηγ ,  then there exist 1Dn ∈γ , 2Dn ∈η ,                           
such that ., 21 εηηεγγ <−<− nn  (via Weierstrass’s theorem) and 

., 21 εηεγ <Π−<Γ− nnnn   (via Naimark’s theorem). 
As a result, we obtain  
 

,2111 εγγγ =Γ−+−≤Γ− nnnny  
 

,2222 εηηηη =Π−+−≤Π− nnnn  
 

which indicate that 1D  and  2D  are respectively dense everywhere in  21 , HH , and thus 
demonstrate that 21 , HH  are separable.  
 The above results show that 21 , HH  are separable complex Hilbert spaces.  Finally 
we proceed by referring to a theorem by Prugovecki [14] which states that:                             
if  L,, 21 HH  represent a finite or infinite sequence of countable  separable Hilbert 
spaces, then the direct sum  HH nn =⊕  corresponds to a separable Hilbert spaces.                
As a consequence of this theorem, the abovementioned direct sum of 21 HH ⊕  will 
form a separable complex Hilbert space with an inner product >⋅⋅< , as stated in the 
proposition of Lemma 1.   
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 The form of the inner product (1.2) on the  )(2,2 GL  space, G  a domain in ,nR          
has been briefly mentioned in Rektorys [15] and Griffel [8].  
 
Corollary 2.  (construction of  klaΓ ) 

If  
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then  klaΓ  is a closed subspace of  H . 
 
The proof of Corollary 2 is given after the following remarks. 
 
Remarks 3.   (form of the classical path σ of interest) 
 
The substitution  q−= γσ  is used to obtain  klaΓ  instead of the space 
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This implies that  klaΓ  corresponds to the  space of classical paths  q−= γσ .  The 
path ,σ  mentioned in the above Corollary 2, is formed from the consideration of the 
complex quadratic potential 
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together with the Euler-Lagrange equation 
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Proof  of  Corollary 2 
 
It can be seen that  2,2Lkla ⊂Γ  is a vector subspace of  2,2L , since klaρσ Γ∈,  implies 
that  ρbσa +   is an element of klaΓ   for all scalars .C∈ba,    Moreover  2,2Lkla ⊂Γ   
forms a closed subspace of  2,2L  (accordingly of H ):  if  klaΓ  is a vector subspace and  

,}{ kla
nσ Γ⊂  then σσ n →   implies klaσ Γ∈ . 

With reference to the proof of Lemma 1, evidently we have in  2,2Lkla ⊂Γ  
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These show that the convergence of σσ n →  signifies that the simultaneous convergence 
of the sequence  }{ nσ  and the corresponding sequence of derivatives  }{ nσ&  in klaΓ  to 

their respective limits  nσ  and  nσ& .   Consequently, via the completeness of  2,2L ,  
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this result implies Cauchy sequence in  2,2L  and thus for  klaσσ Γ∈&, ,  we have a 
complete  klaΓ .    This implies that klaΓ  represents a closed subspace of  H .  
 
Lemma  4.  (use of the pull-back operation in  Γ kla ) 
 
1. Let  ];),0[(0

nCtC  be a set of twice differentiable smooth mapping from ),0( t  to 

unitary space nC  such that  .)()(),( q−=∇−= γσσσ VWWm &&   m stands for 
the particle’s mass which is being influenced by the quadratic potential  

( ) Ω⋅Ω ,)( 2
1 PV ++= zLzzz T  a nonsingular Hermitean matrix  (if 0≠Ω ),          

L vector,  P a complex constant;  0=)(tσ ,  and the inner product in  nC  is given by 
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represents the evaluation map at s.  As a result 1,><  is an inner product on  
];),0([0

nCtC  and is defined by  
 

).()())(,)((, 11 sρsσsρsσgρσ ⋅==  
 

        ρσρσ ⋅→×′ a),(,:1 CCC nng     is the ‘pull-back’ by the mapping  ,sev  
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3. The inner product on klaΓ , which is defined in the Corollary 2, is a pull-back of the 
metric )..( 21 gggeig ⊕=  
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        σ  as in Remarks 3. 
 
 
Proof. 
 
1. Since sev  is linear and via the definition of the Frechet derivative (see Abraham       

et al. [1], Lang [11]),  
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       for any  ];),0([00
nCtCρ ∈   and   ];),0([00

nCtCTη ρ∈ ,  the tangent space of 

];),0([0
nCtC  at 0ρ .  From the definition of the pull-back (see Abraham et al. [1]) 
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  This result is obtained with reference to the fact that for any constant of motion 
T (energy for a conservative system as similar to this case), we have  
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  i.e., 
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 As a consequence of this, for the case of a generalised complex harmonic 
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or referring to (1.4), we have instead  
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for the case of a generalised complex harmonic oscillator. 
For the complex affine potential ,)( PV += qLq ⋅  
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where C is a constant, or this can be expressed as  
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klaγλσ Γ∈,,  and therefore .klaγλσ Γ∈=+   As a result, for complex affine 

potential, we obtain (again referring to (1.4))  
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Consequently for the generalised complex quadratic potential, 
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(b) The second part:  this part shows that the inner product g can be constructed 
from the pull-back >< , a metric on klaΓ  by the mapping  F.  According                 
to Shaharir and Zainal [20], for the generalised complex quadratic                  
potential  ( ) Ω⋅Ω ,)( 2

1 PV ++= qLqqq T  a nonsingular Hermitian matrix                      
(if 0≠Ω ) of size n, it can be written explicitly that  
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 0, =Ω∈ nCL  for the complex affine potential and 0≠Ω  for the complex 

quadratic potential, iλ  is the eigenvalue of  .Ω . 
 Accordingly  σDF =0 ))(( zz ,  and as a result  
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 and explicitly, 
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Theorem 5.  (‘Feynmannian’ integral) 
 
Let CC n →:φ  be Lebesgue integrable and a Fourier transform of a bounded complex 

Borel measure on  nC ; then the solution of the complex diffusion equation (1.1)        

with a quadratic complex potential ( ) Ω⋅Ω wherePV ,)( 2
1 ++= qLqqq T  a 

nonsingular Hermitian matrix (if 0≠Ω ), L vector, P a complex constant; can be 
reduced to a ‘Feynmannian’ path integral 
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klaΓ   is the particle’s space of classical paths, and the Feynmannian measure F  is given 
by  

 
kla

sqφρ ρμdGTdF Γ∈= ∗
0,, ;)()]([

0
                                (1.5b) 

 
G is defined as in Lemma 4 part (3), where  
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is the bounded complex Borel measure and the scalar mapping on nC : 
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Proof.   The proof is given separately for the case  0=Ω  (complex affine potential) and 
0≠Ω  (complex quadratic potential).  

 
Case .0=Ω   From Shaharir and Zainal [20], the solution of the complex diffusion 
equation (1.1) is given by  
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upon consideration of Fubini’s theorem and characteristics of a ‘multinormal complex 
distribution’ (see Shaharir [17] and Andersen et al. [5]).  As a result we obtain  
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Together with the choice  
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and G  as in Lemma 4 part (3),  and via Lemma 4 and the general theory of the 
transformation of a variable of an integral with respect to a differential form, we obtain  
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 The first part of the theorem is obtained when we identify  klakla asT

0
ΓΓρ  and 

upon considering the formulation of Albeverio and Hoegh-Krohn (as in [2]) which states 
that the normalised integral (or Fresnel integral) on H is invariant under the group 
transformation of Euclidean type, and the result by Parthasarathy [13] which states that a 
measure in the function space (eg. Wiener measure) is invariant under such 
transformation. 
 We prove the last part of the theorem via the same arguments as proposed in the 
results of the second part of Lemma 4 and the theory relating to the Borel measure, 
together with the fact that the trasformation T and F are proper mappings.  The measure F 
is obtained via theorem of Radon-Nikodym (see Halmos [9]). 
 
Case Ω ≠  0.   Referring to results obtained in Shaharir and Zainal [20], the solution of 
the complex diffusion equation (1.1) is given by  
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together with certain manipulation with respect to the second factor of the integrand and 
the condition that ))tan()(( 1 tΩΩ −α  is a positive semidefinite complex (hermitian) 
matrice with non negative real eigenvalues (see Gantmacher [7], Andersen et al. [5]);  
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and taking into account Fubini's theorem and characteristics of the 'complex multinormal 
distribution'.  We can use the same arguments as the case 0=Ω  to obtain the result (1.5).            
 
Remarks 6 
 
(a)  kla

ρ0
T Γ represents the tangent vector set at .kla

0β Γ∈   The space kla
ρ0

T Γ is 

identified naturally with klaΓ by associating a tangent vector with an element of 
.klaΓ  Furthermore, kla

ρ0
T Γ being a vector space, it can be naturally identified as 

isomorphic with respect to .klaΓ  Nevertheless this natural isomorphism is no 
longer assumed when we generalise to a manifold. In this case it is necessary to 
treat the tangent spaces at various points as different (see for example, Crampin 
and Pirani [6]). 
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(b) Referring to the formulation of Albeverio and Hoegh-Krohn [2], the potential 
function V as in Theorem 5 (affine complex and quadratic complex potentials) is 
derivable from the space )( nCF , Fresnel integrable function space on .nC   
Briefly V is a Fourier transformation of μ , which is a bounded complex Borel 
measure on nC , i.e.  
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With reference to Parthasarathy  [13],   
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In addition,  CC n →:V   is a function ∞S  whereby the first differential is bounded and 
all the higher order derivatives are most likely experiencing linear growth, i.e.             
(see Albeverio and Brzezniak [4]) 
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3. Conclusions 
 
Theorem 5 generates a solution for the complex diffusion equation (1.1) with a complex 
quadratic potential ( ) PV +⋅+Ω= qLqqq T

2
1)(  (Ω  is nonsingular Hermitean 

matrix, if  0≠Ω ).  This solution is in the form of a Feynmannian path integral (1.5a) 
with the measure (1.5b) on the classical path space .klaΓ  This result enables the 
extension of our framework to formulate the Feynman integral in order to include 
complex quadratic potential in unitary space nC .  As a matter of fact, this result shows 
qualitatively the connection between the Feynmannian integral with the original Feynman 
path integral and its real integral form.  Clearly this is shown via the pull-back operation 
in klaΓ with respect to the path integral solution of the complex diffusion equation with 
quadratic potential in nC .  The extension to the quadratic potential in Riemannian 
manifold can be done similarly.  
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