Some Properties of a Function Connected to a Double Series

D.K. GANGULY AND CHANDANA DUTTA
Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road, Calcutta-700 019, India

Abstract

In this paper, we investigate some fundamental properties of the function associated with double series in a metric space.

1. Introduction

Let X denote the set of all permutations of the set of positive integers endowed with Frechet metric

$$
\rho(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left|x_{k}-y_{k}\right|}{1+\left|x_{k}-y_{k}\right|}
$$

where $x=\left\{x_{k}\right\}_{k=1}^{\infty}$ and $y=\left\{y_{k}\right\}_{k=1}^{\infty}$ are points of X.
Agnew [1] proved that the set of all sequences of positive integers endowed with the Frechet metric is a metric space of second category. But it is not complete.
H.M. Sengupta [4] studied some properties of a function defined on some subset of the above mentioned space X relating with a conditionally convergent series of real terms. His result leads us to define a function which maps the space X into an interval related to a double series.

Before the definition of the function, we need the following preliminaries. Let $\sum_{m, n} a_{m n}$ be a double series of real terms. We determine the position of a term $a_{m n}$ in the series $\sum_{m, n} a_{m n}$ according to the following plan. Let the double series $\sum_{m, n} a_{m n}$ be written in full length like a single series as

$$
\begin{align*}
& a_{11}+\left(a_{21}+a_{22}+a_{12}\right)+\left(a_{31}+a_{32}+a_{33}+a_{23}+a_{13}\right)+\cdots+\left(a_{n 1}+a_{n 2}+\cdots+a_{n n}+\right. \\
& \left.\quad a_{(n-1) n}+\cdots+a_{2 n}+a_{1 n}\right)+\cdots \tag{1}
\end{align*}
$$

If $a_{m n}$ occupies the r th position in this single series then the position of the term in the double series also be counted as r th position.

Now to each $x=\left\{x_{k}\right\}_{k=1}^{\infty} \in X$ there corresponds a subseries $\sum_{m, n} a_{m n}(x)$ which is obtained as follows:

We take those terms of the double series $\sum_{m, n} a_{m n}$ if the integers corresponding to the position of the terms of the double series are present in the sequence of integers $x=\left\{x_{n}\right\}_{n=1}^{\infty}$; otherwise we discard the term. Thus to each point $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in X$ there corresponds a series $\sum_{m, n} \varepsilon_{m n}(x) a_{m n}$ where $\varepsilon_{m n}(x)$ takes the value 0 or 1 according to the integers corresponding to the position of terms are absent or present in the sequence of positive integers $\left\{x_{n}\right\}$. Also for each subseries of $\sum_{m, n} a_{m n}$ there exists a point of X which corresponds to it.

Let $\sum_{m, n} a_{m n}$ be a non-absolutely convergent double series with $a_{m n} \rightarrow 0$ as $m, n \rightarrow \infty$ in Pringshein sense. We define a function $f \equiv f\left(\sum_{m, n} a_{m n}\right)$ on X depending on the double series $\sum_{m, n} a_{m n}$ below:

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sum \varepsilon_{m n}(x) a_{m n}}{1+\left|\sum_{m, n} \varepsilon_{m n}(x) a_{m n}\right|} & , \text { if } \sum_{m, n} \varepsilon_{m n}(x) a_{m n} \quad \text { converges, } \\
0, & \text { otherwise }
\end{array} .\right.
$$

We now investigate some interesting properties of the function $f: X \rightarrow(-1,1)$.
Theorem 1. If α is any real number in $(-1,1)$ then the set $\{x \mid x \in X, f(x)=\alpha\}$ is dense in X.

Proof. Let α be any real number in $(-1,1)$. Then there exists a series which converges to $\frac{\alpha}{1-\alpha}$ or $\frac{\alpha}{1+\alpha}$ according as $\alpha>0$ or $\alpha \leq 0$, of the series $\sum_{m, n} a_{m n}$ and hence there exists an $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in X$ which corresponds to this series. Therefore to each $\alpha \in(-1,1)$ there exists an $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in X$ such that $f(x)=\alpha$. Thus we obtain a subseries $\sum_{m, n} \varepsilon_{m n}(x) a_{m n}$ corresponding to this point $x \in X$ where $\varepsilon_{m n}(x)=0$ or 1 .

Denote by $A(x)$, the set of all $y=\left\{y_{n}\right\}_{n=1}^{\infty} \in X$ for which there exists a positive integer $\mu=\mu(y)$ such that for $m, n \geq \mu$, we have $\varepsilon_{m n}(x)=\varepsilon_{m n}(y)$. We will now prove that $A(x)$ is dense in X. Let $z=\left\{z_{i}\right\} \in A(x)$ and $\varepsilon>0$. It is sufficient to show that $A(x) \cap S(z, \varepsilon) \neq \phi$ where $S(z, \varepsilon)$ is the ε-sphere centered at z. Let l be the smallest positive integer for which $\sum_{i=l+1}^{\infty} 2^{-i}<\varepsilon$. We define the sequence $y=\left\{y_{i}\right\}_{i=1}^{\infty}$ in the set $A(x)$ as follows:
$y_{t}=z_{t}, t=1,2, \cdots, l$. If $z_{l} \leq x_{l+1}$ then $y_{t}=x_{t} ; t=l+1, l+2, \cdots$ and if $z_{l}>x_{l+1}$ then $y_{t}=x_{l}$ for $t=l+1, l+2, \cdots, m-1$ where m is the smallest positive integer with the property $z_{m} \leq x_{m+1}$ and $y_{t}=x_{t}$ for $t=m, m+1, m+2, \cdots$.
Obviously, $\rho(y, z)<\varepsilon$ holds for the sequence $y=\left\{y_{i}\right\}_{i=1}^{\infty}$ and there is a positive integer t_{0} such that $y_{t}=x_{t}, t=t_{0}, t_{0}+1, t_{0}+2, \cdots$. Therefore $\sum_{m, n} \varepsilon_{m n}(y) a_{m n}=\sum_{m, n} \varepsilon_{m n}(x) a_{m n}$ for $m, n>t_{0}$. Hence $y=\left\{y_{i}\right\}_{i=1}^{\infty} \in A(x)$ and $y \in S(z, \varepsilon)$ i.e., $A(x) \cap S(z, \varepsilon) \neq \phi$. Hence $A(x)$ is dense in X. Also the subseries $\sum_{m, n} \varepsilon_{m n}(y) a_{m n}$ converges if and only if the subseries $\sum_{m, n} \varepsilon_{m n}(x) a_{m n}$ converges. Hence $f(y)=f(x)=\alpha$ for each $y \in A(x)$. Hence the theorem follows.

Theorem 2. The function f is discontinuous everywhere.
Proof. Let $x_{0} \in X$ and $f\left(x_{0}\right)=\alpha_{0}$, by the consequence of the above theorem, it can be shown that for $\delta>0$ the sphere $S\left(x_{0}, \delta\right)$ contains a point $x \in X$ for which $f(x)=\alpha_{0}+1$. Hence the result follows.

Corollary. The function does not belong to the first Baire class.
Proof. It follows from the fact that the set of points of discontinuity of a function belonging to the first Baire class is set of first category [3].

Theorem 3. The function f belongs exactly to the third Borel class.
Proof. Since f is discontinuous everywhere, it cannot belong to the first Baire class. Therefore it suffices to show that for each real number a, each of the sets $A^{a}=\{x \in X: f(x)<a\}$ and $A_{a}=\{x \in X: f(x)>a\}$ belong to the third additive Borel class.

We first investigate for the set A^{a}. If $a \geq 1$ or $a \leq-1$ then $A^{a}=X$ or ϕ and therefore the above assertion is obvious.

Let $0<a<1$. Then we have $A^{a}=\left\{x \in X_{1}: f(x)<a\right\} \cup\left\{x \in X_{2}: f(x)>a\right\}$. Where $X_{1}=\left\{x \in X: \sum_{m, n} \varepsilon_{m n}(x) a_{m n}<+\infty\right\}$ and $X_{2}=X-X_{1}$. For each point $x \in X_{1}$,
we have

$$
f(x)=\underset{m, n \rightarrow \infty}{\operatorname{Lt}} S_{m n}(x),
$$

$$
S_{m n}(x)=\frac{\sum_{p=1}^{m} \sum_{q=1}^{n} \varepsilon_{p q}(x) a_{p q}}{1+\left|\sum_{p=1}^{m} \sum_{q=1}^{n} \varepsilon_{p q}(x) a_{p q}\right|} .
$$

Then

$$
\left\{x \in X_{1}: f(x)<a\right\}=\bigcup_{k=1}^{\infty} \bigcup_{r=1}^{\infty} \bigcap_{n=r}^{\infty} \bigcap_{m=r}^{\infty} M(k, m, n)
$$

where

$$
M(k, m, n)=\left\{x \in X_{1}: S_{m n}(x)<a-\frac{1}{k}\right\} .
$$

It is evident that for fixed $k, m, n, M(k, m, n)$ is closed in X and consequently the set $\left\{x \in X_{1}: f(x)<a\right\}$ is an F_{σ} set in X_{1}. By Cauchy's criterion of convergence of a double series we have

$$
\begin{aligned}
X_{1} & =\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q=1}^{\infty} \bigcap_{p=1}^{\infty}\left\{x \in X:\left|\sum_{i=m+1}^{m+p} \sum_{j=n+1}^{n+q} \varepsilon_{i j}(x) a_{i j}\right| \leq 1 / k\right\} \\
& =\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q=1}^{\infty} \bigcap_{p=1}^{\infty} H(m, n, p, q, k)
\end{aligned}
$$

where $\quad H(m, n, p, q, k)=\left\{x \in X_{1}:\left|\sum_{i=m+1}^{m+p} \sum_{j=n+1}^{n+q} \varepsilon_{i j}(x) a_{i j}\right| \leq 1 / k\right\}$.
It is evident that for fixed m, n, p, q, k, the set $H(m, n, p, q, k)$ is closed in X. Hence X_{1} is $F_{\sigma \delta}$ in X and also the set $\left\{x \in X_{1}: f(x)<a\right\}$ is F_{σ} in X_{1}. Therefore X_{2} is $G_{\delta \sigma}$ in X. Hence X_{2} is $F_{\sigma \delta \sigma}$ in X [2]. Hence the set A^{a} is an $F_{\sigma \delta \sigma}$ set in X.

If $-1<a \leq 0$, then we have $A^{a}=\{x \in X: f(x)<a\}$ and A^{a} can be shown to be an $F_{\sigma \delta \sigma}$ set in X in a similar manner. Using analogous considerations, it can be shown that $A_{a}=\{x \in X: f(x)>a\}$ is $F_{\sigma \delta \sigma}$ in X. The theorem follows.

We now define Darboux's property of a function.
Definition. Let f be a real valued function defined on a metric space X. Then f is said to have Darboux's property if for each $\varepsilon>0$, any real number c and every $u, v \in S(x, \varepsilon)$ with $f(u)<c<f(v)$ there exists a $w \in S(x, \varepsilon)$ such that $f(w)=c$.

Theorem 4. The function f has the Darboux's property.
Proof. By Theorem 1, for each $x \in X$ and any $\varepsilon>0$ we have $f(S(x, \varepsilon))=(-1,1)$. Hence the result.

Note. The function f is open in the sense that it maps each open set into an open set.

References

1. R.P. Agnew, On rearrangement of series, Bull. Amer. Math. Soc. 46 (1940),797-799.
2. C. Goffman, Real Function, Rinchart \& Co., N. Y., 1953.
3. K. Kuratowski, Topology, Vol. 1, Academic Press, N. Y., 1964.
4. H.M. Sengupta, Rearrangement of series, Proc. Amer. Math. Soc. 7 (1956), 347-350.

Keywords: rearrangement, Baire class, Darboux's property, Borel Class.

