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Abstract.  In this paper, we investigate some fundamental properties of the function associated with 
double series in a metric space. 

 
 

1. Introduction 
 
Let X denote the set of all permutations of the set of positive integers endowed with 
Frechet metric 
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where ∞

== 1}{ kkxx  and ∞
== 1}{ kkyy  are points of X. 

Agnew [1] proved that the set of all sequences of positive integers endowed with the 
Frechet metric is a metric space of second category.  But it is not complete. 
 H.M. Sengupta [4] studied some properties of a function defined on some subset of 
the above mentioned space X relating with a conditionally convergent series of real terms.  
His result leads us to define a function which maps the space X into an interval related to 
a double series. 
 Before the definition of the function, we need the following preliminaries.                    
Let ∑

nm
mna

,
 be a double series of real terms.  We determine the position of a term mna  in 

the series ∑
nm

mna
,

 according to the following plan.  Let the double series ∑
nm

mna
,

be 

written in full length like a single series as 
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If mna  occupies the rth position in this single series then the position of the term in the 
double series also be counted as rth position. 
 Now to each Xxx kk ∈= ∞

=1}{  there corresponds a subseries ∑
nm

mn xa
,

)(  which is 

obtained as follows: 
 We take those terms of the double series  ∑

nm
mna

,
 if the integers corresponding to the 

position of the terms of the double series are present in the sequence of integers 
∞
== 1}{ nnxx ;  otherwise we discard the term.  Thus to each point Xxx nn ∈= ∞

=1}{  there 
corresponds a series  

mn
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mn ax)(
,
∑ ε   where )(xmnε  takes the value 0 or 1 according to 

the integers corresponding to the position of terms are absent or present in the sequence 
of positive integers .}{ nx   Also for each subseries of  ∑

nm
mna

,
 there exists a point of X 

which corresponds to it. 
 
 Let ∑

nm
mna

,
 be a non-absolutely convergent double series with 0→mna  as 

∞→nm,  in Pringshein sense.  We define a function  ⎟⎟
⎠
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 on X depending 

on the double series  ∑
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 below: 
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We now investigate some interesting properties of the function .)1,1(: −→Xf  
 
Theorem 1.   If α  is any real number in )1,1(−  then the set { }α=∈ )(,| xfXxx  is 
dense in X. 
 
Proof.  Let α  be any real number in .)1,1(−   Then there exists a series which converges 

to 
α

α
−1

 or 
α

α
+1

 according as 0>α  or ,0≤α  of the series ∑
nm

mna
,

 and hence there 

exists an Xxx nn ∈= ∞
=1}{  which corresponds to this series.  Therefore to each 

)1,1(−∈α  there exists an Xxx nn ∈= ∞
=1}{  such that α=)(xf .  Thus we obtain a 

subseries 
mn

nm
mn ax)(

,
∑ ε  corresponding to this point Xx∈  where 0)( =xmnε  or 1. 
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Denote by ,)(xA  the set of all Xyy nn ∈= ∞
=1}{  for which there exists a positive integer 

)(yμμ =  such that for μ≥nm, , we have .)()( yx mnmn εε =   We will now prove that 
)(xA  is dense in X.  Let )(}{ xAzz i ∈=  and 0>ε .  It is sufficient to show that 

φε ≠∩ ),()( zSxA   where ),( εzS  is the ε-sphere centered at z.  Let  l be the smallest 

positive integer for which  ∑
∞

+=

− <
1

.2
li

i ε    We define the sequence ∞
== 1}{ iiyy   in the set 

)(xA  as follows: 
 

ltzy tt ,,2,1, L== .   If 1+≤ ll xz  then L,2,1; ++== lltxy tt  and if 1+> ll xz  then 

lt xy =  for 1,,2,1 −++= mllt L  where m is the smallest positive integer with the 
property 1+≤ mm xz  and tt xy =  for L,2,1, ++= mmmt . 

Obviously, ερ <),( zy  holds for the sequence ∞
== 1}{ iiyy  and there is a                         

positive  integer 0t  such that L,2,1,, 000 ++== ttttxy tt .  Therefore  

mn
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mn axay )()(
,,
∑∑ = εε  for 0, tnm > .  Hence )(}{ 1 xAyy ii ∈= ∞

=  and 

),( εzSy ∈  i.e., φε ≠∩ ),()( zSxA .  Hence )(xA  is dense in X.  Also the subseries 

mn
nm

mn ay)(
,
∑ ε  converges if and only if the subseries  

mn
nm

mn ax)(
,
∑ ε  converges.   Hence 

α== )()( xfyf  for each .)(xAy ∈   Hence the theorem follows. 
 
Theorem 2.   The function  f  is discontinuous everywhere. 
 
Proof.   Let Xx ∈0  and 00 )( α=xf , by the consequence of the above theorem, it can 
be shown that for 0>δ  the sphere ),( 0 δxS contains a point Xx∈  for which 

.1)( 0 += αxf   Hence the result follows. 
 
Corollary.   The function does not belong to the first Baire class. 
 
Proof.  It follows from the fact that the set of points of discontinuity of a function 
belonging to the first Baire class is set of first category [3]. 
 
Theorem 3.   The function f belongs exactly to the third Borel class. 
 
Proof.   Since f is discontinuous everywhere, it cannot belong to the first Baire class. 
Therefore it suffices to show that for each real number a , each of the sets 

})(:{ axfXxAa <∈= and })(:{ axfXxAa >∈=  belong to the third additive Borel 
class. 
 We first investigate for the set aA .  If  1≥a  or 1−≤a  then XAa =  or φ  and 
therefore the above assertion is obvious. 
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 Let 10 << a .  Then we have { }.)(:})(:{ 21 axfXxaxfXxAa >∈∪<∈=  
Where })(:{

,
1 ∞+<∈= ∑ mn
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mn axXxX ε and 12 XXX −= .  For each point 1Xx∈ ,  
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 It is evident that for fixed ),,(,,, nmkMnmk  is closed in X  and consequently the set 

})(:{ 1 axfXx <∈ is an σF  set in 1X .  By Cauchy's criterion of convergence of a 
double series we have  
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It is evident that for fixed ,,,,, kqpnm  the set ),,,,( kqpnmH  is closed in X.  Hence          

1X  is σδF  in X  and also the set })(:{ 1 axfXx <∈  is σF  in 1X .  Therefore 2X  is 

δσG  in X .  Hence 2X  is σδσF in X [2].  Hence the set aA  is an σδσF set in X . 

 If ,01 ≤<− a  then we have })(:{ axfXxAa <∈=  and aA  can be shown to be an 

σδσF  set in X in a similar manner.  Using analogous considerations, it can be shown that 
})(:{ axfXxAa >∈=  is σδσF in X .  The theorem follows. 
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 We now define Darboux's property of a function. 
 
Definition.   Let f be a real valued function defined on a metric space X.  Then f  is said 
to have Darboux's property if for each 0>ε , any real number c and every  

),(, εxSvu ∈  with  )()( vfcuf <<  there exists a  ),( εxSw ∈ such that .)( cwf =  
 
Theorem 4.   The function  f  has the Darboux's property. 
 
Proof.   By Theorem 1, for each Xx∈  and any 0>ε  we have .)1,1()),(( −=εxSf  
Hence the result. 
 
Note.  The function  f  is open in the sense that it maps each open set into an open set. 
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