BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

Some Properties of a Function Connected to a Double Series

D.K. GANGULY AND CHANDANA DUTTA

Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road, Calcutta-700 019, India

Abstract. In this paper, we investigate some fundamental properties of the function associated with double series in a metric space.

1. Introduction

Let X denote the set of all permutations of the set of positive integers endowed with Frechet metric

$$\rho(x, y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

where $x = \{x_k\}_{k=1}^{\infty}$ and $y = \{y_k\}_{k=1}^{\infty}$ are points of X.

Agnew [1] proved that the set of all sequences of positive integers endowed with the Frechet metric is a metric space of second category. But it is not complete.

H.M. Sengupta [4] studied some properties of a function defined on some subset of the above mentioned space X relating with a conditionally convergent series of real terms. His result leads us to define a function which maps the space X into an interval related to a double series.

Before the definition of the function, we need the following preliminaries. Let $\sum_{m,n} a_{mn}$ be a double series of real terms. We determine the position of a term a_{mn} in

the series $\sum_{m,n} a_{mn}$ according to the following plan. Let the double series $\sum_{m,n} a_{mn}$ be

written in full length like a single series as

$$a_{11} + (a_{21} + a_{22} + a_{12}) + (a_{31} + a_{32} + a_{33} + a_{23} + a_{13}) + \dots + (a_{n1} + a_{n2} + \dots + a_{nn} + a_{(n-1)n} + \dots + a_{2n} + a_{1n}) + \dots$$
(1)

If a_{mn} occupies the *r*th position in this single series then the position of the term in the double series also be counted as *r*th position.

Now to each $x = \{x_k\}_{k=1}^{\infty} \in X$ there corresponds a subseries $\sum_{m,n} a_{mn}(x)$ which is obtained as follows:

We take those terms of the double series $\sum_{m,n} a_{mn}$ if the integers corresponding to the position of the terms of the double series are present in the sequence of integers $x = \{x_n\}_{n=1}^{\infty}$; otherwise we discard the term. Thus to each point $x = \{x_n\}_{n=1}^{\infty} \in X$ there corresponds a series $\sum_{m,n} \varepsilon_{mn}(x) a_{mn}$ where $\varepsilon_{mn}(x)$ takes the value 0 or 1 according to the integers corresponding to the position of terms are absent or present in the sequence of positive integers $\{x_n\}$. Also for each subseries of $\sum_{m,n} a_{mn}$ there exists a point of X which corresponds to it

which corresponds to it.

Let $\sum_{m,n} a_{mn}$ be a non-absolutely convergent double series with $a_{mn} \to 0$ as

 $m, n \to \infty$ in Pringshein sense. We define a function $f \equiv f\left(\sum_{m,n} a_{mn}\right)$ on X depending on the double series $\sum_{m,n} a_{mn}$ below:

$$f(x) = \begin{cases} \frac{\sum \varepsilon_{mn}(x) a_{mn}}{1 + \left| \sum_{m,n} \varepsilon_{mn}(x) a_{mn} \right|}, & \text{if } \sum_{m,n} \varepsilon_{mn}(x) a_{mn} & \text{converges}, \\ 0, & \text{otherwise} \end{cases}$$

We now investigate some interesting properties of the function $f: X \rightarrow (-1, 1)$.

Theorem 1. If α is any real number in (-1, 1) then the set $\{x | x \in X, f(x) = \alpha\}$ is dense in *X*.

Proof. Let α be any real number in (-1, 1). Then there exists a series which converges to $\frac{\alpha}{1-\alpha}$ or $\frac{\alpha}{1+\alpha}$ according as $\alpha > 0$ or $\alpha \le 0$, of the series $\sum_{m,n} a_{mn}$ and hence there exists an $x = \{x_n\}_{n=1}^{\infty} \in X$ which corresponds to this series. Therefore to each $\alpha \in (-1, 1)$ there exists an $x = \{x_n\}_{n=1}^{\infty} \in X$ such that $f(x) = \alpha$. Thus we obtain a subseries $\sum_{m,n} \varepsilon_{mn}(x) a_{mn}$ corresponding to this point $x \in X$ where $\varepsilon_{mn}(x) = 0$ or 1.

Denote by A(x), the set of all $y = \{y_n\}_{n=1}^{\infty} \in X$ for which there exists a positive integer $\mu = \mu(y)$ such that for $m, n \ge \mu$, we have $\varepsilon_{mn}(x) = \varepsilon_{mn}(y)$. We will now prove that A(x) is dense in X. Let $z = \{z_i\} \in A(x)$ and $\varepsilon > 0$. It is sufficient to show that $A(x) \cap S(z,\varepsilon) \ne \phi$ where $S(z,\varepsilon)$ is the ε -sphere centered at z. Let l be the smallest positive integer for which $\sum_{i=l+1}^{\infty} 2^{-i} < \varepsilon$. We define the sequence $y = \{y_i\}_{i=1}^{\infty}$ in the set A(x) as follows:

A(x) as follows:

 $y_t = z_t$, $t = 1, 2, \dots, l$. If $z_l \le x_{l+1}$ then $y_t = x_t$; t = l+1, l+2, \dots and if $z_l > x_{l+1}$ then $y_t = x_l$ for t = l+1, l+2, $\dots, m-1$ where *m* is the smallest positive integer with the property $z_m \le x_{m+1}$ and $y_t = x_t$ for $t = m, m+1, m+2, \dots$.

Obviously, $\rho(y, z) < \varepsilon$ holds for the sequence $y = \{y_i\}_{i=1}^{\infty}$ and there is a positive integer t_0 such that $y_t = x_t$, $t = t_0$, $t_0 + 1$, $t_0 + 2$,.... Therefore $\sum_{m,n} \varepsilon_{mn}(y) a_{mn} = \sum_{m,n} \varepsilon_{mn}(x) a_{mn}$ for $m, n > t_0$. Hence $y = \{y_i\}_{i=1}^{\infty} \in A(x)$ and $y \in S(z, \varepsilon)$ i.e., $A(x) \cap S(z, \varepsilon) \neq \phi$. Hence A(x) is dense in X. Also the subseries $\sum_{m,n} \varepsilon_{mn}(y) a_{mn}$ converges if and only if the subseries $\sum_{m,n} \varepsilon_{mn}(x) a_{mn}$ converges. Hence $f(y) = f(x) = \alpha$ for each $y \in A(x)$. Hence the theorem follows.

Theorem 2. The function f is discontinuous everywhere.

Proof. Let $x_0 \in X$ and $f(x_0) = \alpha_0$, by the consequence of the above theorem, it can be shown that for $\delta > 0$ the sphere $S(x_0, \delta)$ contains a point $x \in X$ for which $f(x) = \alpha_0 + 1$. Hence the result follows.

Corollary. The function does not belong to the first Baire class.

Proof. It follows from the fact that the set of points of discontinuity of a function belonging to the first Baire class is set of first category [3].

Theorem 3. The function f belongs exactly to the third Borel class.

Proof. Since *f* is discontinuous everywhere, it cannot belong to the first Baire class. Therefore it suffices to show that for each real number *a*, each of the sets $A^a = \{x \in X : f(x) < a\}$ and $A_a = \{x \in X : f(x) > a\}$ belong to the third additive Borel class.

We first investigate for the set A^a . If $a \ge 1$ or $a \le -1$ then $A^a = X$ or ϕ and therefore the above assertion is obvious.

Let 0 < a < 1. Then we have $A^a = \{x \in X_1 : f(x) < a\} \cup \{x \in X_2 : f(x) > a\}$. Where $X_1 = \{x \in X : \sum_{m,n} \varepsilon_{mn}(x) a_{mn} < +\infty\}$ and $X_2 = X - X_1$. For each point $x \in X_1$,

we have

 $f(x) = \underset{m,n\to\infty}{Lt} S_{mn}(x) ,$

m n

where

$$(x) = \frac{\sum_{p=1}^{n} \sum_{q=1}^{n} \varepsilon_{pq}(x) a_{pq}}{1 + \left| \sum_{p=1}^{m} \sum_{q=1}^{n} \varepsilon_{pq}(x) a_{pq} \right|}$$

Then

$$\left\{x \in X_1 : f(x) < a\right\} = \bigcup_{k=1}^{\infty} \bigcup_{r=1}^{\infty} \bigcap_{n=r}^{\infty} \bigcap_{m=r}^{\infty} M(k, m, n)$$

 S_{mn}

where

$$M(k,m,n) = \left\{ x \in X_1 : S_{mn}(x) < a - \frac{1}{k} \right\}.$$

It is evident that for fixed k, m, n, M(k, m, n) is closed in X and consequently the set $\{x \in X_1 : f(x) < a\}$ is an F_{σ} set in X_1 . By Cauchy's criterion of convergence of a double series we have

$$\begin{aligned} X_1 &= \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q=1}^{\infty} \bigcap_{p=1}^{\infty} \left\{ x \in X : \left| \sum_{i=m+1}^{m+p} \sum_{j=n+1}^{n+q} \varepsilon_{ij}(x) a_{ij} \right| \le \frac{1}{k} \right\} \\ &= \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{q=1}^{\infty} \bigcap_{p=1}^{\infty} H(m,n,p,q,k) \\ &H(m,n,p,q,k) = \left\{ x \in X_1 : \left| \sum_{i=m+1}^{m+p} \sum_{j=n+1}^{n+q} \varepsilon_{ij}(x) a_{ij} \right| \le \frac{1}{k} \right\}. \end{aligned}$$

where

It is evident that for fixed m, n, p, q, k, the set H(m, n, p, q, k) is closed in X. Hence X_1 is $F_{\sigma\delta}$ in X and also the set $\{x \in X_1 : f(x) < a\}$ is F_{σ} in X_1 . Therefore X_2 is $G_{\delta\sigma}$ in X. Hence X_2 is $F_{\sigma\delta\sigma}$ in X [2]. Hence the set A^a is an $F_{\sigma\delta\sigma}$ set in X.

If $-1 < a \le 0$, then we have $A^a = \{x \in X : f(x) < a\}$ and A^a can be shown to be an $F_{\sigma\delta\sigma}$ set in X in a similar manner. Using analogous considerations, it can be shown that $A_a = \{x \in X : f(x) > a\}$ is $F_{\sigma\delta\sigma}$ in X. The theorem follows.

180

We now define Darboux's property of a function.

Definition. Let f be a real valued function defined on a metric space X. Then f is said to have **Darboux's property** if for each $\varepsilon > 0$, any real number c and every $u, v \in S(x, \varepsilon)$ with f(u) < c < f(v) there exists a $w \in S(x, \varepsilon)$ such that f(w) = c.

Theorem 4. *The function f has the Darboux's property.*

Proof. By Theorem 1, for each $x \in X$ and any $\varepsilon > 0$ we have $f(S(x, \varepsilon)) = (-1, 1)$. Hence the result.

Note. The function f is open in the sense that it maps each open set into an open set.

References

- 1. R.P. Agnew, On rearrangement of series, Bull. Amer. Math. Soc. 46 (1940),797-799.
- 2. C. Goffman, *Real Function*, Rinchart & Co., N. Y., 1953.
- 3. K. Kuratowski, Topology, Vol. 1, Academic Press, N. Y., 1964.
- 4. H.M. Sengupta, Rearrangement of series, Proc. Amer. Math. Soc. 7 (1956), 347-350.

Keywords: rearrangement, Baire class, Darboux's property, Borel Class.

1991 AMS Mathematics Subject Classification: 26A05