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examples of functions having the required properties and it is shown that these functions are 
invariant under particular integral operators.  We also determine the radii of uniformally convexity 
and starlikeness for certain functions.  Such type of work was carried out by [1] and we are 
motivated by this work.  

 
 
1.  Introduction 
  
Let A  denote the class of all functions )(zf  which are analytic in the open unit disc 

{ }1: <= zzU  and 01)0()0( =−′= ff  and let S denote the subclass of A consisting 
of functions which are also univalent in U.  A great deal of attention has been given in 
recent years to the uniformally starlike and convex functions introduced by Goodman [4]. 
He introduced the class UCV of uniformally convex functions which have the additional 
property that for every circular arc γ  contained in U  with center also in U  the image arc 

)(γf  is convex.  
 Ma and Minda [7] and Ronning [9] independently proved that UCVf ∈  if and     
only if  
 

 .)(
)(
)(1

)(
)(Re Uz

zf
zfz

zf
zfz

∈
′
′′

>+
′
′′

 (1.1) 

 
     Furthermore Ronning [9] defined the class pS  of functions Af ∈  for which  
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     In [1] the class pS  was generalized by introducing a parameter .ρ  For ,10 <≤ ρ  

let pΩ  be the region  
 
 { } { }wwwuvivu Re211:))(1(4: 2 +−≤−=−−≤+=Ω ρρρρ  (1.3) 

 
 and suppose )(ρpS  be the subclass of A consisting of functions  f  such that  
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and also let )(ρpK be the subclass of A consisting of functions f such that ).(ρpSfz ∈′  

It is easily seen that pp SS =)2/1(  and )(ρpS  is a subset of starlike functions.  

 A function f  belonging to )(ρpS  and )(ρpK  is called parabolic starlike and 
convex of order ,ρ respectively.  
 In [1] Ali and Singh, obtained sharp upper bounds for n-th coefficient of functions in 

)(ρpS  and for the inverse function ++=− 2
2

1 )( wdwwf  when ,3,2=n and 4. 

Also they obtained a general Littlewood type of bound on .na  
 Motivated by the work of Ali and Singh [1] we study the radius problem for certain 
functions and we introduce some examples for the classes )(ρpS and ).(ρpK  
 It is also shown that these classes are invariant under particular integral operators. 
Further results obtained in [10] will be special cases of our results.  
 
 
2.  Integral operators 
  
The function which maps U onto the parabolic region ρΩ  is given by  
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(The branch of z  is chosen such that ).0Im ≥z  

 It is clear then that )(ρpSf ∈  and ,)(ρpK  respectively, if and only if, )(
)(
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)(1 zf
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′′+  are subordinate to  ,)(zqρ  (see [1]), which we denote by  

 
  



Certain Properties of Parabolic Starlike and Convex Functions of Order ρ  155 

.)(
)(
)(1,)(

)(
)( zq

zf
zfzzq

zf
zfz

ρρ ≺≺
′
′′

+
′

 

 
The convolution of two power series  
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is defined as the power series  
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In our next investigation we need the following Lemma of Ruscheweyh [12].  
 
Lemma 1 ([12]).  Let  ϕ  be convex and g be starlike.  Then for each function F, analytic 

in U, the image of  U  under g
Fg

*
*
ϕ
ϕ  is a subset of the convex hull of ).(UF   

 
Theorem 1.  If )(ρpSf ∈ (or ))(ρpK  then so is ϕ*f  for any function += zz)(ϕ  
analytic and convex in U.  
 
Proof.   We know )(ρpSf ∈  if and only if, for  ,Uz ∈  
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But )(zqρ  is convex and  f  is starlike of order .ρ   So an application of Lemma 1 yields  
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Hence it follows that .)(* ρϕ pSf ∈  The result for )(ρpK  now follows from the 

relationship )(ρpKf ∈  if and only if  .)(ρpSfz ∈′  
 
Corollary 1.  If  ,)(,)( ρρ pp KSf ∈  then so is  
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Proof.     Since  
 

.1*)(1
0

1

1 nz

n

r
r z

rn
rfdttft

z
r
∫ ∑

∞

=

−

+
+

=
+  

 
The result follows from Theorem 1 and noting that n
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1 is convex in U.                  

See [11].  
 
Corollary 2.   If  ,)(,)( ρρ pp KSf ∈  then so is  
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Proof.   We may write  
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Since h is convex the result follows from Theorem 1.  
 
Corollary 3.   Let 0≥μ  and  
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Proof.  Since the function Az
zzf −= 1)(  belongs to )(ρpK  with condition mentioned 

above for A  and function  μμθ )1(0)(
n

z
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follows from Theorem 1.  
 
Theorem 2.  Let )(ρpi Kf ∈  and let iα  be real numbers such that 0≥iα  and 
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Proof.   Since )(ρpi Kf ∈  we have  
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 which implies that .)(ρpKg ∈   
 
Remark 1.  The special case of Theorem 2 for 1,2/1 == βρ  was proved by 
Shanmugam and Ravichandran [10].  
 
Theorem 3. Suppose Af ∈  is such that ,1 1
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Remark 2.  The special case of Theorem 3 for 2,2
1 == tρ  was proved by Shanmugan 

and Ravichandran [10].  
 
We will need the following lemma in the next theorem.  
 
Lemma 2 ([2]).   Let ., C∈γβ  Let ++= zhczh 1)(  be a convex (univalent) 
function in U, with .,0))((Re Uzzh ∈>+ γβ   If ++= zpczp 1)(  is analytic in 
U,  then  
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Proof.   Differentiation of (2.1) w.r.t. to z,  leads to  
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Since ,)(ρpSf ∈  it follows by (2.3)  
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Lemma 2 it follows  
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Finally in this section we investigate sections of elements .)(ρpK   
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3.  Radius problem 
  
Let )(βM  denote the class of all analytic functions )(zp  defined on U, with 1)0( =p  

satisfying ,)(,)(arg 2 Uzzp ∈< πβ  where .0>β   
 
Definition 1.  A function )(zf  in the class A is said to be a member of the class 
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Lemma 3.  Let .Af ∈  If for any a with  ρρ 452
1 −<<+ a   
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To prove the next theorems we need the following results.  
 
Lemma 4.  Suppose  ++= n
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and the proof is complete.  
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Theorem 6.   The )(ρpK  radius of  S is  
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Equality occurs for .)( 2)1( z
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completely inside the parabolic region ,ρΩ  by Lemma 3.  Hence the proof is complete. 
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Remark 3.  The special case of Theorem 7 for 2
1=ρ  and 1=β  was proved by 

Shanmugam and Ravichandran [10].  
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