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Abstract.  The role of spectral theory of linear operators in qualitative theory of ordinary differential 
equations in Banach space is well known [1].  There wasn’t the similar progress in theory of 
multidimensional differential equations bacause of abscence of satisfactory spectral theory, the linear 
mappings in the following form [8], [9]. 
 
 )(: FLEA →  (0.1) 
 
where E is real, F is complex Banach space and )(FL  is Banach space of linear continuous 
operators, acting in F, and the values of operators ,, EhAh ∈∀  commutate mutually.  The interest 
for the study of spectral theory of such mappings is also explained by the demands of physics 
(spectral theory of commutative sets of self-adjoint operators (see momography of Berezansky [2])). 
 On the investigation of mapping in form (0.1) and especially in the case when ,, EhAh ∈ are 
unbounded operators, naturally arises the necessity of creation of spectral theory of some more 
general form of mappings, which include mappings (0.1) as a particular (private) case.  While 
writing the spectral theory of such mappings we used Taylor’s spectral theory [3, 4] of mutually 
commutative set of operators. 
 Main attention was paid to the application of such spectal theory to the solution of some 
questions of theory of multidimensional equations.  Let’s mark here, that in the case of finite 
dimensional spaces E and F (particularly F) there is a big analogy with ordinary differential 
equations what cannot be said about infinite dimensional space F. 

 
 
1.    Introduction 
 
Let K be topological space and X be complex Banach space.  Let’s denote the set of 
strongly continuous mappings )(: XLK →ϕ  of topological space K to Banach algebra 

)(XL  of continuous linear operators of Banach space X  as  .))(;( XLKC  Let’s denote 
the set of commuting and continuous mappings )(: XLK →ϕ  of topological space K 
to  
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Banach algebra of )(XL  of continuous linear operators of Banach space X as 

.))(;( XLKCc   It is supposed that  
 

.))(;(,,,)()()()( XLKCKsttsst c∈∀∈∀= ϕϕϕϕϕ  
 

 By symbol );( YXL  we usually denote Banach space X of linear continuous 
operators from Banach space X  to Banach space Y, supposing );()( XXLXL =  for 

.YX =  
 Let’s consider particularly two cases when K is real Banach space or cone from 
some Banach space.  There are such interesting mappings ))(;( XLKCc∈ϕ  that 
 

),()()()( Kststst ∈∀=+ ϕϕϕ  
in the case of cone and 
 

,,,,),()()( KstCstst ∈∈∀+=+ βαβϕαϕβαϕ  
 
in the case of Banach space. 
 Symbols R,C,N,Z usually denote the field of real numbers, the field of complex 
numbers, the set of non-negative numbers and the set of integers. 
 Let’s mark the case when Λ  is a set of mutually commutative linear operators from 

).(XL   If there are no any algebraic and topological conditions for ,Λ  then this set 
Λ will be considered as a subject from )),(;( XLCc Λ  whereΛ is allocated with discrete 
topology. 
 Let’s describe another interesting case when Λ  is a set of unbounded closed 
operators acting in X and being producing operators of strongly continuous semigroups 
of mutually commutative operators from ).(XL   In this case instead of Λ  it is useful to 

consider the cone K, built by Banach space ∞
Λl , consisting of bounded real functions on 

.Λ   By definition 

⎭
⎬
⎫

⎩
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⎧

∈Λ∈≥= ∑
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∞
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k
kkkkk lttK

1
,,0,)( ϕλλϕ  

where 1)( =λϕ k  for kλλ =  and 0)( =λϕ k   for .kλλ ≠∀  
 Then the set Λ  can be studied  by the help of subset of mappings ))(;( XLKCc∈ϕ  
from ))(;( XLKCc   in the form: 
 

∑∑
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ n

k
kk

n

k
kk tTt

11
,)(λϕ  

 
where )(tTk   are subgroups built by operator .Λ∈kλ  
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 Certainly, in the case if operators from Λ are producing operators of group of 
operators, then K  can be considered as abel group.  At last, if, besides that, Λ  is finite 
set then K is real finite dimensional subspace.  In this case the problem can be reduced to 
the construction of spectral theory of representations of finite dimensional space.  The 
problem is somehow important because in this case many questions of theory of many 
variables are mentioned.  For example, for the case of group of shifts these are classic 
questions of theory of functions. 
 Now let’s pass to the different definitions of spectrum of mappings from 

))(;( XLKCc .  The variety of the definitions of the spectrum is usually explained by 
different types of tasks, and depending on it that or this definition of spectrum can be 
useful (see [3, 4]). 
 Let  ),,( 1 nTTT =  be a finite set of linear operators from algebra .)(XL                

Let ),( Xp σΛ  be a space of external forms with finite basis ),,( 1 nss=σ  and with 
coefficients in X. 
 By definition .),(),(0 XXX n =Λ=Λ σσ   Let’s consider the sequence  
 
 0),(),(),(0 21 10 ⎯→⎯Λ⎯→⎯⎯→⎯Λ⎯→⎯Λ→ −−−− znznzz XXX n αααα σσσ     (1.1) 
 
where operators ),(),(: 1 XXz ii

i σσα +Λ→Λ−  are defined by the formula 
 

∑
=

∧−=−
n

i
iii szTz

1
,)()( ϕϕα  

 

where ),( Xi σϕ Λ∈  and .nCz ∈  
 
Definition 1.1. Let’s correspond vector nCz ∈  to resolvent set )(Tρ  of                    
set T if sequence (1.1) is exact, i.e. cohomology groups 

)(/)ker(),( 1 zimzXzH pp
p −−=− −ααα  are zero.  Set )(\)( TCT n ρσ =  is called 

Taylor’s spectrum of commutative set 
 

.),,,( 21 nTTTT =  
 
 Let’s list the main properties of Taylor’s spectrum without proof.  These properties 
will be most often used. 

2. If  ,),,,( 111 ++ ∪==′ nnn TTTTTT  then ,))(()( TT ′= σπσ  where 
nn CC →+1:π  is projection on the first n coordinates.  If ))(( TF σ  is an 

algebra of analytic functions in the vicinity of ,)(Tσ  then there exists the 
homomorphism:  ,)())(( XLTF →σ  such that I→1  and ii Tz →  for any 

ni ,,2,1=  and, more   
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over, .))(())(( TfTf σσ =   If )(Tσ  is unification of two disjoint spectral parts 1σ  
and ,2σ  then there exist projectors iP  commuting with ,,,2,1, niTi =  such that 

 
,,,2,1,)( niTP ii == σσ  

where 
 

.),,( 1 inii PTPTTP =  
 
Let A be an arbitrary element of .))(;( XLKCc  
 
Definition 1.2. Let’s call the set of functionals CK →:λ  such that for any finite set 

Ktt n ⊂),,( 1   the point 
 

CCCtt n
n ××=∈))(,),(( 1 λλ  

 
belongs to Taylor’s spectrum of the set  
 

))(,),(()( 1 ntAtAtA =  
 

as a spectrum )(Aσ  of mapping A. 
 
 It is clear that the set )(Aσ  coincide with the compliment of the set )(Aρ  which is 
called resolvent set of the mapping A, consisting of the functionals CK →:λ  such that 
there exists a set Ktt n ⊂),,( 1  for which vector n

n Cttz ∈= ))(,),(( 10 λλ  belongs 
to the set .))(,),(( 1 ntAtA  
 Let’s give three more useful in this situation definitions of spectrum of the mappings 
from .))(;( XLKC  The first of them is most close to Definition 1.4. 
 For arbitrary complex functional CK →:λ  let’s denote as )(λD  the linear 
manifold 
 

})()(:);({)( fhAkkfkAhhXKLfD −=−∈= λλλ  
 
for any ., Kkh ∈   Here K is finite dimensional linear space. 
 For operator ))(;( XLKCA c∈  and functional CK →:λ  let’s define operator 

)(: λλ DXS →  by the formulae 
 

.,,)()( XyKhyAhhhyS ∈∈∀−= λλ  
 

 It is clear that .)(λλ DXS ⊂  
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Definition 1.3. Let K be a finite dimensional space.  Let’s call the functional 
CK →:λ  regular for ,))(;( XLKCA c∈  if λS  is linear homeomorphism X on .)(λD   

Let’s denote the set of all regular functionals as )(Aρ  (regular set).  The compliment to 
the set of regular functionals is called spectrum of mapping A and is denoted ).(1 Aσ  
 
 Let’s extend Definition 1.3 on the case, when K is arbitrary topological space. 
 
Definition 1.4. Let’s call as spectrum )(1 Aσ  of the mapping ))(;( XLKCA c∈  the set 
of functionals CK →:λ  such that for any finite set Ktt n ⊂),,( 1 the spectrum 

)(1 Aσ  of the operator ))(;( XLRCA n∈  defined by the formulae 
 

∑
=

∈==
n

i

n
nii RhhhtAhhA

1
1 ),,(),()(  

 
contains the functional 
 

∑
=

=
n

i
ii thh

1
.)()( λλ  

 
Definition 1.5. Let ,))(;( XLKCA c∈  where X is separable topological space.  Let’s 
denote as )(2 Aσ  the set of functionals ,: CK →λ  for which there exists a normed 
sequence ,)( Xxn ⊂  i.e. ,1,1 ≥∀= nxn  such that 
 

0))()(lim( =− nn xtxtA λ  
 

for any fixed .Kt ∈  
 
 It is clear that this definition serves as a generalization of the concept of boundary 
spectrum of bounded operator.  It is clear that the definition of separability is, in general, 
extra, but in the case of non-separable space X  it will be necessary to use generalized 
sequences of elements from X instead of sequences in Definition 1.5. 
 Let ))(;( XLKCA c∈  and U  be the minimal (closed) subalgebra from algebra 

),(XL  containing all the operators .),( KttA ∈   As }.{UM   Let’s denote the space of 
maximal ideals of this algebra. 
 
Definition 1.6. As )(3 Aσ  let’s denote the set of functionals CK →:λ  in the form 
 

,:))(()()( CKMtAtt M →== λλ  
 

where M runs the space }.{UM  
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2. Comparison of various definitions of spectrum of mappings of 
topological space into algebra of endomorphisms of Banach space 

 
As it was marked above, this or that definition of spectrum is usually used depending on 
the type of the considered task.  However, it is clear that all the  above formulated 
definitions of spectrum, being formally far from each other, are connected in definite 
way.  We can follow this connection in this paragraph. 
 
Theorem 2.1. For any mapping ))(;( XLKCA c∈  there have place the following 
inclusions 
 

.)()()()( 312 AAAA σσσσ ⊂⊂⊂  
 
 Besides that, the set )(1 Aσ  coincide with the compliment to the set of those 
functionals ,: CK →λ  for which there exists such finite set Ktt n ⊂),,( 1 that 
 

,}0{),(),( 10 =−=− XzHXzH αα  
 

 where ))(,),(( 1 nttz λλ=  and all the designations are taken from the definition of 
spectrum .)(1 Aσ  
 
Proof. At first let’s establish the validity of the last statement.  Let 
 

))(,),((,}0{),(),( 1
10

nttzXZHXZH λλαα ==−=−  
 

for some finite set .,,1 Ktt n ⊂  

 Let’s consider the functional  ,: CRn →λ  defined by the formulae 
 

∑
=

==
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i
nii hhhthh

1
1 .),,(,)()( λλ  

 
Then 
 

,,,})()(())()((:);({)( nn RkhfhkAkfkhAhXRLfD ∈∀−=−∈= λλλ  
 

where 
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 Evidently, the condition of equality of the group }0{),(0 =− XzH α  to zero means 

injectiveness of the mapping ,,)(),(: n
h

n RhAhADRA ∈∀=→− λλ  and the 

condition }0{),(1 =− XzH α  means surjectiveness of this mapping.  The opposite is 
also true.  Therefore, the last statement is proved. 
 
 Directly from the proved and Definition 1.2 and Item 1 it follows that 

).()(1 AA σσ ⊂  
 Let’s prove the inclusion ).()( 12 AA σσ ⊂  
 Directly from the definition of set )(2 Aσ  it follows that for )(2 Aσλ ∈∀  there 
exists a normal sequence Xxn ⊂)(  such that 
 

.0)()( KtxtxtA nn ∈∀→− λ  
 

 Then it is clear that in the case ,))(,,)((,}0{),( 1
1

nttzXzH λλα =≠−  

∑
=

=
n

i
ii StA

1
)(α  for any finite set .),,( 1 Ktt n ⊂   In the opposite case operator λ−A  

(see the proof of the last statement) was surjective.  But this can’t be by the virtue of the 
condition. 

 
.,0)()( KtxtxtA nn ∈∀→− λ  

 
 Let’s prove inclusion .)()( 3 AA σσ ⊂   If functional CK →:λ  doesn’t belong to 

)(3 Aσ  then λ  doesn’t belong to joint spectrum ))(,),(( 1 ntAtAσ  of the operators 
)(,),( 1 ntAtA  for some finite set .),,( 1 Ktt n ⊂   This means that there exists such a 

set of operators UBB n ⊂),,( 1  (algebra U was entered before Definition 1.6) that 
 

.1)()( 11 =++ nn BtABtA  
 
 

 So from Taylor’s results [3,4] it follows that in this case vector  
))(,),(( 1 nttz λλ=  doesn’t belong to spectrum ))(( tAσ  of Taylor’s set 

.))(,),(()( 1 ntAtAtA =   The latter means that .)(Aσλ ∈   The theorem is proved. 
  
 Let’s notice at once that inclusions in Theorem 1.1 can be strict. 
 
Example 2.1. Let ,)(XLA ∈  i.e. in fact K, consist of one element and spectrum of 
operator A coincide with .)(Aσ   Then .)()(2 AA σσ ≠   As an example of such operator 
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we can take operator A of unilateral shift in space 2l  of infinitely summable with square 
sequences ,),,,0( 21 xxAx =  if 
 

.;),,,,(
1

2
21 ∑

∞

=
==

i
in xxxxxx  

 
Example 2.2. Let K be two-pointed set ,:)(,),( 21 XXAtAtt ii →=  where ;X  is 
Banach space of analytical functions inside the cylinder max 1}||,||{ 21 ≤zz  of 
bounded functions with norm ,),(max 211||,|| 21

zzff zz ≤=  and operators 

2,1, =iAi  are defined by formulas 
 

,,),(),( 211211 XfzzfzzzfA ∈=  
 

.,),(),( 212212 XgzzgzzzgA ∈=  
 

Then, evidently, .}0{),(0 =XH α   If 
 

gAfA 21 =  
 

then 
,, 12 hAghAf ==  

 
where 
 

,),(1),(1),( 21
1

21
2

21 Xzzg
z

zzf
z

zzh ∈==  i.e.  .}0{),(1 =XH α  

 
 On the other hand, XXH ≠),(2 α   for function  1),( 21 ≡zzϕ   doesn’t belong to 
the set of values of both operators, so 
 

.)()(2 AA σσ ⊂  
 

 Let’s notice that the example of strict inclusion )()( 3 AA σσ ⊂  can be easily given 
if you use the corresponding Taylor’s example for the case K, consisting of finite number 
of elements (see [3,4]). 
 In conclusion, of this paragraph let’s give one criteria of coincidences of all the 
spectrums for one special subset of mappings from .))(;( XLKC   But at first let’s 
formulate lemma in which )(3 Aσ  is identified with the space }{UM  by the formulae 
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from Definition 1.6 and, therefore, )(3 Aσ  is allocated with topology of space }{UM  
(this identification will hold). 
 
Lemma 2.1. Let ))(;( XLKCA c∈  and spectrum ,)( 213 σσσ ∪=A  where 

.021 /=∩ σσ   Then there exist )(, 21 XLPP ∈  such that 
 
(1) UPPIPP ∈=+ 2121 ,,  

(2) ,2,1,)\(3 == iXA ii σσ  where XPX ii =  and iXA \  denote the mapping 
))(;( ici XLKCA ∈  defined by the formulae xtAxtAi )()( =  for .2,1, =∈ iXx i  

 
Proof. By Shilov’s theorem [6] about idempotents under the theorems conditions there 
exist projectors UPP ∈21,  such that IPP =+ 21  and }{,1)( UMMMP ii ⊂∈∀= σ  
(spectrum )(3 Aσ  is identified with the space of maximal ideals, i.e. 

.))(}{ 213 σσσ ∪== AUM  
 
 Statement (2) directly follows from the definition of spectrum )(3 Aσ  and the fact 
that algebras U, built by operators ,iA  coincide with algalgebras UPi  with joint to them 
units.  It is necessary to notice, that iiUPM σ=}{  by the same Shilov’s theorem.             
Lemma is proved. 
 For the case if K is finite dimensional real space (or K is finite set) then there takes 
place the following deep result. 
 
Lemma 2.2. If  ,)( 21 σσσ ∪=A  where )2,1(,021 =/=∩ iiσσσ  are closed sets, 
then there exist such closed spaces 1X  and 2X  that 
 
(1) 21 XXX ⊕=  
(2) 21   XandX  are invariant corresponding to each operator commutating with all the 

operators ;,)( KttA ∈  
(3) 11)|( σσ =XA   and  .)|( 22 σσ =XA  
 
 On the other hand this statement contains (on less suggestions than Lemma 2.1) less 
information about spaces 1X  and 2X  than Lemma 2.1. 
 
Theorem 2.2. Let the mapping ))(;( XLKCA c∈  has the property:  every ,,)( KttA ∈  
can be represented in the form ,)()( tBIt X +α  where )(, tBK ′∈α  is completely 
continuous operator, .Kt ∈∀   Then 
 

.3,2,1),()( == iAA iσσ  
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Proof. Let U be the least subalgebra from ,)(xL  containing all the operators 
KttA ∈,)(  and let }{UM  be the space of maximal ideals of this algebra.  Without 

restriction of a generality we can think that U contains a unit I (otherwise it is always 
possible to attach it to U).  From Theorem 2.1 it follows that )(,)( 1 AA σσ  and )(2 Aσ  
contain in ),(3 Aσ  which can be identified with the subset from }{UM  (in fact 

.}){)(3 UMA =σ   Let’s prove that }{UM  is quite non-connected compact topological 
space. 
 From this let’s suggest that there exists connected subset α  from ,}{UM  which 
contains more than one point.  But then there exists an element ,UB ∈  such that 
function CUMMBM →=Φ )(:)()(  is nonconstant on the set .α   But then as function 
Φ  is continuous, the set )(αΦ  is connected subset from C, containing in .)(Bσ  As 
algebra           U consists of operators, multiple to identical operator plus completely 
continuous one, then operator B is represented in the form ,0BI +β  where C∈β  and 

0B  is completely continuous operator.  It is clear that we came to contradiction because 
the spectrum of operator B having not more than one limit point (i.e. β  is a candidate for 
this limit point) doesn’t contain connected parts.  So }{UM  is completely disconnected 
space. 
 By virtue of the Theorem 2.1 it is clear that for the proof of this theorem it is enough 
to prove the equality .)()( 32 AA σσ =   Let’s assume the opposite, i.e. )()( 32 AA σσ ⊂  
and )()( 32 AA σσ ≠ .  Directly from the definition of set )(2 Aσ  it follows that )(2 Aσ  is 
closed subset from }{UM .  And from the results of Lubich [5] it follows that 

0)(2 /=Aσ  if and only 0≡A  (in the case of nonseparable space X this is Domar-
Lindal’s result [7] in this case generalized orientations are used in Definition 1.5).  By 
the virtue of disconnectedness of }{UM  there exists open-closed subset  Δ  from 

,)(3 Aσ  dis-adjoint with .)(2 Aσ  
 By Shilov’s theorem about idempotents there exists projector UP ∈  such that 

Δ⊂∀= MMP ,1)(  and .\)(,0)( 3 Δ∈∀= AMMP σ   Let’s consider the mapping 
.)(:)()( XLKPtAtAp →=  It is clear that ))(;( XLKCA cp ∈  (see proof of               

Lemma 2.1), because 
 

⎭
⎬
⎫

⎩
⎨
⎧

Δ⊂
Δ⊂

==
, if,0      
, if,))((

)())(())((
M
MMtA

MPMtAMtAp  

 
i.e. Δ=)(3 pAσ  and so .0≠pA   On the other hand directly from Definition 1.5 it 

follows that ,)(2 Δ⊂PAσ  because spectrum )|(2 YAσ  of restriction of the mapping A  
on any subspace XY ⊂  contains in .PXY =   But PA  can be considered as YA /  
where .PXY =   From Theorem 2.1 it follows that Δ⊂)(2 PAσ  and so ,0)(2 /=PAσ  
i.e. .0≡PA   We came to contradiction.  The theorem is proved. 



Spectral Theory of Nevanlinna’s Mapping  251 

 
 The author thanks Professor Nasir Ganikhodjaev for useful discussions and referee 
for his or her useful suggestions. 
 
 
References 
 
1. S.G. Krein, Linear Differential Equations in Banach Space, Moscow, Nauka, 1967. 
2. Yu.M. Berezansky, Selfajoint Operators in the Spaces of Functions of Infinite Numbers of 

Variables, Naukova Dumka, Kiev, 1978. 
3. J.L. Taylor, A joint spectrum for several commuting operators, J Funct. An 6 (1970), 

172−191. 
4. J.L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math 125 

(1970), 1−2. 
5. Yu.I. Lubich, On the spectrum of representation of topological abel group, DAN SSSR  200 (4) 

(1971), 777−779. 
6. G.Ye. Shilov, On decomposition of commutative normed ring into direct sum of ideals,             

Math art. 32:2 (1953), 353−364. 
7.  Y. Domar and L.A. Lindahl, Three Spectral Notions for Representations of Commutative 

Banach Algebr., Uppsala University, Department of Mathematics (1974). 
8. M.B. Ragimov, Multidimensional spectral analysis of linear operators, Doctor Dissertation 

(1997). 
9. F. und R. Nevanlinna, Absolute Analysis, Berlin, 1959. 
 
 
 


