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Abstract.  On the geometrical model determined by the second order prolongation of a Riemannian 
space, we introduce for the first time the homogeneous Sasaki lift notion.  We define almost π−2  
homogeneous structures on the fibred of second order acceleration and study the normal conditions 
of the mentioned structures.  Finally we determine a class of distinguished connections compatible 

with 2 – π metrical homogeneous structure  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ )0()0(
, FG . 

 
 
Introduction 
 
The term homogeneity has recently been discussed in Radu Miron's papers                        
(see [10] – [11]).  He introduces new geometrical models on Riemannian spaces and 
Finsler ones, respectively. 
 This paper discusses the second order prolongation of a Riemannian space.                  
The basic concepts were introduced by Radu Miron in his monography [8].  On the 
mentioned geometrical models, the former author of this paper (see [15]) introduced and 
studied the notion )(αβγ  – lift Sasaki of a Riemannian ),( γM  space to MT 2 and then 
determined )(αβγ – the corresponding metrical linear connection; for the canonical 
metrical connection he determined the local components of the tensor fields of curvature 
and torsion.  He has also introduced and studied the notion of μ  – almost π−2  structure 

on MT 2  and dealt with the linear connection compatible with such a structure, as well 
as with the conditions necessary normality.  More, it has been considered also the                 
d – gauge linear connections on ,2 MT  preparing the basis for the determination of the 
second order generalized EYM equations, and the gravitational field equations as well. 
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1. Homogeneous Sasaki lift of a ),( γM  Riemannian space to 
MT 2 manifold 

 
We will consider ),( γMR n =  a Riemannian space generated by a real, differentiable,             
n-dimensional manifold M and by a Riemannian metric γ  on M, given by the local 

components .,))(( MUxxij ⊂∈γ  We will extend γ  to ,)( 21 MTEU =⊂−π  
defining: 

 
 ( ) xuUuxu ijij =∈= − )(,)(,)()( 1 ππγπγ  (1) 

 
 In this case πγ ij  are the local components of a tensor field on E.  Usually, we will 

write these local components with ijγ  as well, and with )(xi
jkγ  we will note the 

Christoffel symbols of the second species of  γ  metric.  As we well know (see [8]),            
on E we can introduce a nonlinear connection determined only by γ  metric.  More,          

the coefficients of connection 
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,  are determined by the following relations (see   
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where ''0'' means the contraction by )( )1(y  and  '' 0 ''  means the contraction by .)( )2(y  
 In the following section, we will partially avoid this particular nonlinear connection 
and we use one, more general, determined in: 
 

Theorem 1.1. If 
i

j

i

j

NN
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)0(

)1(
, are the local components of the nonlinear connection 

determined only by Riemannian metric γ , and i
j

i
j YX ,  are the local components of any 

d- tensor field of (1,1) type on E, then the functions: 
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are the local components of a nonlinear connection N on E. 
 

 The nonlinear connection N assures the existence of basis ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛   )2(     )1(
,, kkk δδδ  adapted to 

the tangent space .ETu   The vector fields of the adapted basis are defined with the help 
of the following relations: 
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 For further developments, we need the following result: 
 

Theorem 1.2. Lie brackets of the vector fields of the adapted basis ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛   )2(     )1(
,, kkk δδδ  are 

given by: 
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where: 
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with the following notations: 
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Theorem 1.3.   ([8])  The pair ( )GMTR n ,~Prol 2)()2( =  where: 
 
 ji
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ij yyxyyxdxdxxG )2()2()1()1( )()()( δδγδδγγ ⊗⋅+⊗⋅+⊗⋅=  (18) 
 

is a Riemannian space of 3n dimension, with G metric structure depending only on )(xγ  

Riemannian structure, apriori on Riemannian space .),()( γMR n =   
 
 We will say that G is Sasaki lift of γ  Riemannian structure.  We define the homotety 

∗∈→ Rtyttyxyyxht ,),,(),,(: )2(2)1()2()1( on the fibres of .2 MT   We also mention 
that G is transformed in accordance with: 
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+⊗⋅= ji
ijt dxdxxyyxhG )(),,( )2()1( γ  
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ij yyxtyyxt )2()2(4)1()1(2 )()( δδγδδγ ⊗⋅⋅+⊗⋅⋅  (19) 

 
 The above remark makes us affirm that the Sasaki lift G is nonhomogeneous on the 
fibres of  .2 MT  
 In the following part we concentrate upon a new lift of Sasaki type, called 

homogeneous Sasaki lift and noted as :
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where .)( )1()1(2 ji

ij yyxF ⋅⋅= λ  
 
Theorem 1.4.   The following properties holds: 
 

(a) The pair ⎟⎟
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2 ,~ GMTT   is a Riemannian space; 

(b) 
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G  depend only by the )(xγ  Riemannian metric; 

(c) The distributions N, ,1V 2V   are ortogonal with respect to .
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G  
 
Definition 1.1.   A D linear connection on MT 2~  is call (0) - metrical connection with 

respect to 
)0(

G  if  0
)0(
=GD  and D  preserves by parallelism the N horizontal distribution. 
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 The set consisting of the functions 
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,,  represents the set of the 
coefficients of D linear connection.  In what regards the notion of (0) - metrical 
connection, there can be proved the following result: 
 
Theorem 1.5.   There exist D (0) - metrical connections on ,~ 2 MT  which depend only 
on the γ Riemannian tensor field. One of these has its coefficients given by: 
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with the following notations: 
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Theorem 1.6.  The set of all (0)-metrical connections is given by the coefficients 
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2.  2–π structures on the fibred of second order acceleration 
  

We consider  −)(EF linear operator )()(:
)0(

EXEXF →  defined on the adapted basis 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
kkk

)2()1(
,, δδδ  through: 

 

 iiiii F
FFFF δλδδδλδ ⋅−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅= 2

)2()0()1()0()2(
2

)0(
,0,)(  (42) 

 
where λ  is an arbitrary nonzero complex number. 
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Theorem 2.1.  
)0(

F  operator has the following characteristies: 
 
(a) It is global defined on ;~E   

(b) It is a tensor field of (1,1) type on E~   and depends on γ  Riemannian structure; 
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Definition 2.1.  
 
(a) The tensor fields defined above is called π−2  homogeneous structure of second 

order on the fibred of second order acceleration. 
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Definition 2.2.   A  D linear connection is compatible with π−2 homogeneous structure 
of second order, if the following condition is achieved: 
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There can be proved the following result: 
  
Theorem 2.2.    An arbitrary D linear connection is compatible with π−2   
homogeneous structure of second order if, and only if the connection coefficients satisfy 
the following relations: 
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Using the result obtained above, there can proved that: 
 

Theorem 2.3.   A d-linear connection on E is compatible with 
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there are achieved the following relations: 
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 In what follows we deal with the problem of normality of 
)0(

F  structure.   In [16] 
there was proved the following: 
 

Theorem 2.4.  −μ
μ )(
F almost π−2  structure is normal if and only if d-tensor fields 
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the following system of equations with partial derivatives: 
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 Using this theorem, so that 
)0(

F  structure should be normal considering Definition 
2.1., we conclude that a necessary condition, is that Finsler function associated to the 
initial Riemannian space should be constant. 
 
 
3.  x−2  homogeneous metrical structures on MT 2   
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Theorem 3.1.  The set of the distinguished linear connections compatible with 
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,,,,,  are arbitrary d-tensor fields, and  
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,   are the solutions of the systems of equations (61) and (62). 
 
 
Open Problems and Comments 
 

A.  There is still open the problem of normality of 
)0(

F  structure, in the meaning of the 
determination of the basic Riemannian space and of the distinguished fields which 
enter the composition of nonlinear connection of the prolongation of second order of 
the mentioned Riemannian space. 

 
B. The local components of the curvature and torsion fields of −)0(D metrical 

connection from Theorem 1.6. can be used for the developement of same theories of 
field on the geometrical model offered by the prolongation of second order of 

Riemannian space provided for π−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2,

)0()0(
FG  homogeneous metrical structure 

introduced in the last section.  The same idea can be applied to the previous 
geometrical model provided for the distinguished connection determined through 
Theorem 3.1. 
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C. As task there should be studied the conditions in which the systems (61) and (62) are 
compatible. 

 

D. There is also to be studied an analogy between the connections determined in this 
paper and those which can be obtained considering the idea in [6]. 
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