BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

On Semi θ -Perfect Functions

¹Moiz-ud-din Khan, ²Bashir Ahmad and ³Takashi Noiri

¹Department of Mathematics, Islamia University, Bahawalpur, Pakistan
²Department of Mathematics, COMSATS Institute of Information Technology, H–8/1 Islamabad, Pakistan
³Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, Kumamoto, 866-8501 Japan
e-mail: noiri@as.yatsushiro-nct.ac.jp

Abstract. In this paper, we define and investigate a new class of functions called semi θ -perfect functions and also obtain the characterizations of locally s-closed spaces in weakly Hausdorff spaces.

1. Introduction

In [2], the present authors have defined and investigated locally s-closed spaces. In this paper, we define a new class of functions called semi θ -perfect functions and obtain some properties of semi θ -perfect functions. Also, we obtain further characterizations of locally s-closed spaces in weakly Hausdorff spaces.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A with respect to X are denoted by $Cl_X(A)$ and $Int_X(A)$ (simply Cl(A) and Int(A)), respectively. A subset A of X is said to be semi-open [4] if there exists an open set U of X such that $U \subset A \subset Cl(U)$. The complement of a semi-open set is said to be semi-closed. The semi-closure of A, denoted by sCl(A), is defined by the intersection of all semi-closed sets containing A. A subset A is said to be semi-regular [1] if it is semi-open and semi-closed. The family of all semi-regular sets of X is denoted by SR(X). By SR(X,x), we denote the family of all semi-regular sets of X containing a point $X \in X$. A point $X \in X$ is called a semi θ -adherent point of $X \in X$ is denoted by $sCl_{\theta}(X)$. The set of all semi θ -adherent points of $X \in X$ is denoted by $sCl_{\theta}(X)$. If $X \in SCl_{\theta}(X)$, then $X \in X$ is said to be $x \in X$ subset $X \in X$ is said to be $x \in X$ subset $X \in X$ is a said to be $x \in X$ subset $X \in X$ is defined by the set of $X \in X$ such that $X \cap X \neq X$ for any regular $X \in X$ such that $X \cap X \neq X$ for any regular $X \in X$ such that $X \cap X \neq X$ for any regular

176 M. Khan et al.

open set U of X containing x. If A contains the δ -closure of A, then A is said to be δ -closed [9].

Definition 2.1. A subset A of a topological space X is said to be s-closed relative to X [1] if for every cover $\{V_{\alpha} : \alpha \in \nabla\}$ of A by semi-open sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{sCl_X(V_{\alpha}) : \alpha \in \nabla_0\}$. If A = X, then the space X is said to be s-closed [1].

Definition 2.2. A topological space X is said to be locally s-closed [2] if each point of X has an open neighborhood which is an s-closed subspace.

3. Locally *s*-closed spaces

In this section, we obtain characterizations of locally s-closed spaces in a weakly Hausdorff space. A topological space X is said to be weakly Hausdorff [8] if every point of X is the intersection of regular closed sets of X.

Lemma 3.1. If X is a weakly Hausdorff space and A is s-closed relative to X, then A is δ -closed in X.

Proof. Let $x \in X - A$. For each $a \in A$, there exists a regular closed set F_a such that $a \in F_a$ and $x \notin F_a$. Since $F_a \in SR(X)$ and $A \subset \bigcup \{F_a : a \in A\}$, there exists a finite subset A_0 of A such that $A \subset \bigcup \{F_a : a \in A_0\}$. Now, put $V = X - \bigcup \{F_a : a \in A_0\}$. Then V is a regular open set containing X and $X \cap A = \emptyset$. Therefore, $X \notin Cl_{\delta}(A)$ and hence X is X-closed in X.

Lemma 3.2. Let X be a topological space, B s-closed relative to X and $A \in SR(X)$, then $A \cap B$ is s-closed relative to X.

Proof. Let $U = \{U_{\alpha} : \alpha \in \nabla\}$ be a cover of $A \cap B$ by semi-regular sets of X. Then $U \cup \{X - A\}$ is a cover of B by semi-regular sets of X. Since B is s-closed relative to X, there exists a finite subset ∇_0 of ∇ such that $B \subset (X - A) \cup \{U_{\alpha} : \alpha \in \nabla_0\}$. This implies that $A \cap B \subset \cup \{U_{\alpha} : \alpha \in \nabla_0\}$. This completes the proof.

A subset A of a topological space X is said to be S-closed relative to X [6] if for every cover $\{V_{\alpha}: \alpha \in \nabla\}$ of A by semi-open sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subset \bigcup \{Cl_X(V_{\alpha}): \alpha \in \nabla_0\}$. A topological space X is said to be *locally S-closed* [6] if each point of X has an open neighborhood which is an S-closed subspace. A topological space X is said to be *extremally disconnected* if the closure of each open set of X is open in X. The following lemma is an immediate consequence of Theorem 3.2 in [7] since every locally S-closed space is locally S-closed.

Lemma 3.3. A locally s-closed weakly Hausdorff space is extremally disconnected.

Theorem 3.1. The following properties are equivalent for a weakly Hausdorff space X:

- (1) X is locally s-closed;
- (2) for each $x \in X$ and each neighborhood U of x, there exists an open set V in X such that Cl(V) is s-closed relative to X and $x \in V \subset Cl(V) \subset sCl(U)$;
- (3) for each $x \in X$ and each regular open neighborhood U of x, there exists an open set V in X such that Cl(V) is s-closed relative to X and $x \in V \subset Cl(V) \subset U$;
- (4) for each set C s-closed relative to X and each regular open set U containing C, there exists an open set V in X such that V is s-closed relative to X and $C \subset V \subset sCl(V) \subset U$.

Proof. (1) \Rightarrow (2): Let X be locally s-closed, $x \in X$ and U a neighborhood of x. There exists an open set G of X such that $x \in G \subset U$. Since X is locally s-closed, by Theorem 3.1 of [2] there exists an open set W containing x which is s-closed relative to X. Put $V = W \cap G$, then V is an open set containing x and $Cl(V) \subset Cl(W) = W$ because W is δ -closed and hence closed, by Lemma 3.1. Since Cl(V) is semi-regular, by Lemma 3.2 Cl(V) is s-closed relative to X. Moreover, by Lemma 3.3 X is extremally disconnected and hence $Cl(V) \subset Cl(G) = Int(Cl(G)) = sCl(G) \subset sCl(U)$ [1, Lemma 2.1].

- $(2) \Rightarrow (3)$: This is obvious.
- $(3)\Rightarrow (4)$: For each $c\in C$, there exists an open set V_c such that $Cl(V_c)$ is s-closed relative to X and $c\in V_c\subset sCl(V_c)\subset Cl(V_c)\subset U$. Since $sCl(V_c)$ is semi-regular, by Lemma 3.2 $sCl(V_c)$ is s-closed relative to X. Since C is s-closed relative to X, there exists a finite subset C_0 of C such that $C\subset \cup\{sCl(V_c):c\in C_0\}$. Now, put $V=\cup\{sCl(V_c):c\in C_0\}$, then V is open in X, s-closed relative to X and $C\subset V\subset sCl(V)\subset U$.
- (4) \Rightarrow (1): A point is certainly s-closed relative to X. Let x be any point of X. Since X is regular open, there exists an open set V containing x such that V is s-closed relative to X. Therefore, by Theorem 3.1 of [2], X is locally s-closed.

4. Semi θ -perfect functions

Definition 4.1. A function $f: X \to Y$ is said to be semi θ -closed [1] if f(A) is semi θ -closed in Y for every semi θ -closed set A of X.

Theorem 4.1. A function $f: X \to Y$ is semi θ -closed if and only if for every subset A of X $sCl_{\theta}(f(A)) \subset f(sCl_{\theta}(A))$.

Proof. The proof is straightforward and is thus omitted.

178 M. Khan et al.

A filterbase F on a topological space X is said to be SR-convergent to $x \in X$ [1] if for each $V \in SR(X,x)$, there exists $F \in F$ such that $F \subset V$. A point $x \in X$ is called a *semi* θ -adherent point of a filterbase F on X if $x \in [sad]_{\theta}F = \bigcap \{sCl_{\theta}(F) : F \in F\}$. A filterbase F is said to be semi θ -directed toward $S \subset X$ if every filterbase subordinate to F has a semi θ -adherent point in S.

Definition 4.2. A function $f: X \to Y$ is said to be semi θ -perfect if for every filterbase F in f(X) SR-converging to $y \in Y$, $f^{-1}(F)$ is semi θ -directed toward $f^{-1}(y)$.

Theorem 4.2. For a function $f: X \to Y$, the following properties are equivalent:

- (1) f is semi θ -closed and $f^{-1}(y)$ is s-closed relative to X for every $y \in Y$;
- (2) $[\operatorname{sad}]_{\theta} f(\mathsf{F}) \subset f([\operatorname{sad}]_{\theta} \mathsf{F})$ for every filterbase F on X.

Proof. (1) \Rightarrow (2): Let F be any filterbase on X and suppose that $y \notin f([\operatorname{sad}]_{\theta} \mathsf{F})$. Then for each $x \in f^{-1}(y)$, there exist $S_x \in SR(X,x)$ and $F_x \in \mathsf{F}$ such that $F_x \cap S_x = \phi$. The family $\{S_x : x \in f^{-1}(y)\}$ is a cover of $f^{-1}(y)$ by semi-regular sets of X. Since $f^{-1}(y)$ is s-closed relative to X, there exist points x_1, x_2, \dots, x_n such that $f^{-1}(y) \subset \bigcup \{S_{x_i} : 1 \le i \le n\}$. There exists $F \in \mathsf{F}$ such that $F \subset \bigcap \{F_{x_i} : 1 \le i \le n\}$. Therefore, we have $F \cap [\bigcup \{S_{x_i} : 1 \le i \le n\}] = \phi$ and hence $f^{-1}(y) \cap sCl_{\theta}(F) = \phi$. Thus we obtain $y \notin f(sCl_{\theta}(F))$. Since f is semi θ -closed, by Theorem 4.1 we have $y \notin sCl_{\theta}(f(F))$ and hence $y \notin [\operatorname{sad}]_{\theta} f(\mathsf{F})$.

(2) \Rightarrow (1): First, we show that $f^{-1}(y)$ is s-closed relative to X for each $y \in Y$. Let F be any filterbase on X which meets $f^{-1}(y)$. Then $y \in f(F)$ for each $F \in F$. Therefore, we have $y \in [\operatorname{sad}]_{\theta} f(F) \subset f([\operatorname{sad}]_{\theta} F)$ and hence $[\operatorname{sad}]_{\theta} F \cap f^{-1}(y) \neq \emptyset$. It follows from Proposition 4.1 of [1] that $f^{-1}(y)$ is s-closed relative to X. Next, we show that f is semi θ -closed. Let A be any nonempty subset of X and Y a filterbase on Y consisted of only Y. Then, we have $SCl_{\theta}(f(A)) \subset f(SCl_{\theta}(A))$. By Theorem 4.1, f is semi- θ -closed.

Theorem 4.3. A function $f: X \to Y$ is semi θ -perfect if $[\operatorname{sad}]_{\theta} f(\mathsf{F}) \subset f([\operatorname{sad}]_{\theta}\mathsf{F})$ for every filterbase F on X.

Proof. Suppose that $[\operatorname{sad}]_{\theta} f(\mathsf{F}) \subset f([\operatorname{sad}]_{\theta} \mathsf{F})$ for every filterbase F on X. Assume that f is not semi θ -perfect. Then, there exists a filterbase F in f(X) such that F SR-converges to a point $y \in Y$ but $f^{-1}(\mathsf{F})$ is not semi θ -directed toward $f^{-1}(y)$. Thus there exists a filterbase G on X which is subordinate to $f^{-1}(\mathsf{F})$ and $f^{-1}(y) \cap [\operatorname{sad}]_{\theta} \mathsf{G} = \phi$. Therefore, we have $y \notin f([\operatorname{sad}]_{\theta} \mathsf{G})$ and hence $y \notin [\operatorname{sad}]_{\theta} f(\mathsf{G})$. Thus $y \notin sCl_{\theta}(f(G_1))$ for some $G_1 \in \mathsf{G}$. Then, there exists $V \in SR(Y,y)$ such that $V \cap f(G_1) = \phi$. Since F SR-converges to y and G is subordinate to $f^{-1}(\mathsf{F})$, there exists $G_2 \in \mathsf{G}$ such that $f(G_2) \subset V$. Consequently, we obtain $G_1 \cap G_2 = \phi$. This contradicts that G is a filterbase. This proves that f is semi θ -perfect.

Corollary 4.1. If $f: X \to Y$ is a semi θ -closed function such that $f^{-1}(y)$ is s-closed relative to X for each $y \in Y$, than f is semi θ -perfect.

Theorem 4.4. If $f: X \to Y$ is a semi θ -perfect function and Y is extremally disconnected, then $[\operatorname{sad}]_{\theta} f(\mathsf{F}) \subset f([\operatorname{sad}]_{\theta} \mathsf{F})$ for every filterbase F on X.

Proof. Suppose that $f: X \to Y$ is a semi θ -perfect function and Y is extremally disconnected. Let F be a filterbase on X and $y \in [\operatorname{sad}]_{\theta} f(F)$. Now, put $G = \{V \cap f(F) : V \in SR(Y, y), F \in F\}$. Then, since Y is extremally disconnected, G is a filterbase in f(X) which is subordinate to f(F) and G subordinate to G is a filterbase on G. Then G is a filterbase on G subordinate to G is semi G-perfect, G is semi G-directed toward G is semi G-perfect, we have G and hence G and hence G and hence G is shows that G is algebra. This shows that G is algebra.

Corollary 4.2. Let Y be an extremally disconnected space. Then, the following properties are equivalent for a function $f: X \to Y$:

- (1) $f: X \to Y \text{ is semi } \theta\text{-perfect};$
- (2) $[\operatorname{sad}]_{\theta} f(\mathsf{F}) \subset f([\operatorname{sad}]_{\theta} \mathsf{F})$ for every filterbase F on X;
- (3) f is a semi θ -closed function such that $f^{-1}(y)$ is s-closed relative to X for each $y \in Y$.

Proof. This is an immediate consequence of Theorems 4.2, 4.3 and 4.4.

180 M. Khan et al.

A function $f: X \to Y$ is said to be *weakly continuous* [3] if for each point $x \in X$ and each open set V of Y containing f(x) there exists an open set U containing x such that $f(U) \subset Cl(V)$.

Theorem 4.5. If a function $f: X \to Y$ is weakly continuous and semi θ -perfect and Y is a locally s-closed weakly Hausdorff space, then X is locally s-closed.

Proof. Let x be any point of X. Since Y is regular open, by Theorem 3.1 there exists an open set V of Y such that Cl(V) is s-closed relative to Y and $f(x) \in V \subset Cl(V)$. Since f is weakly continuous, by Theorem 1 of [3] we have $f^{-1}(V) \subset Int(f^{-1}(Cl(V)))$. Since Y is locally s-closed weakly Hausdorff, by Lemma 3.3 Y is extremally disconnected and hence Cl(V) is open in Y. Therefore, by Theorem 4 of [5] we obtain $Cl(f^{-1}(Cl(V))) \subset f^{-1}(Cl(V))$ and hence $x \in f^{-1}(V) \subset Int(Cl(f^{-1}(Cl(V))))$ $\subset f^{-1}(Cl(V))$. Since f is semi θ -perfect, it follows from Theorem 4.7 of [2] and Corollary 4.2 that $f^{-1}(Cl(V))$ is s-closed relative to X. Now, put $U = Int(Cl(f^{-1}(Cl(V))))$. Then, since U is semi-regular, by Lemma 3.2 U is s-closed relative to X and an open set containing x. Therefore, by Theorem 3.1 of [2] X is locally s-closed.

References

- 1. G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987), 226–233.
- M. Khan, T. Noiri and B. Ahmad, On locally s-closed spaces, *Indian J. Pure Appl. Math.* 27 (1996), 1087–1092.
- 3. N. Levine, A decomposition of continuity in topological spaces, *Amer. Math. Monthly* **68** (1961), 44–46.
- 4. N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly* **70** (1963), 36–41.
- 5. T. Noiri, On weakly continuous mappings, Proc. Amer. Math. Soc. 46 (1974), 120–124.
- T. Noiri, On S-closed subspaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 64 (1978), 157–162.
- 7. T. Noiri, A note on extremally disconnected spaces, *Proc. Amer. Math. Soc.* **79** (1980), 327–330
- 8. T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relations to Modern Analysis and algebra III, *Proc. Conf. Kampur* (1968), Academia, Prague (1971), 301–306.
- 9. N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118.

Keywords and phrases: semi θ -closed sets, locally s-closed spaces, semi θ -perfect functions.

2000 AMS Mathematics Subject Classification: 54C10, 54D20