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Abstract. The neutrix convolution of two locally summable functions or distributions f and g is
defined to be the limit of the sequence {f, * g}, where f,(x) = f(X)z,(x) and z,(X) is a certain

function with compact support and the sequence {z,} converges to the identity function on the real

X

line. The neutrix convolution of the functions x| Inx, and e is evaluated for r = 0,1,2, -

and all 2 =0 . Further neutrix convolutions are then deduced.

The exponential integral ei(Ax), see Sneddon [7], can be defined on the real line for
A #0 by

ei ([t e~ H@L- )] dt— HEL - 20 In|2x],

where H denotes Heaviside's function.
In particular, if 4 <0, it was shown in [4] that

i ()= ~In| 2| - [t (e ~1)dt ~Inx, 1)
for x > 0, where

y=-[ et —H@-] @

is Euler's constant.
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Before proving our results, we need the following two lemmas, easily proved by
induction:

Lemmal. If A #0,then

a (x2) = [ teMdt = -io Mr_!m g~ /ﬁl ®
for r=0,1,2,---.
Lemma2. If 4 #0,then
b, (X, A) = jox t" Int e At
- é Il;ﬁ [ai_l(x,/l) —x"In xe""] + % bo (X, 2) (4)

forr=0,1,2,---.

The classical definition for the convolution f * g of two locally summable functions
fand g is as follows:

Definition 1. Let f and g be locally summable functions. Then the convolution f * g
is defined by

(fxg)=[" f@®o(x-tydt

for all points x for which the integral exists.
It follows easily from the definition that if f * g exists, then g * f exists and
f+*g=g=f. Further,if (f *g)and f *g’' (or f' = g) exist, then
(f*g)'zf*g’ (or f'=g). (5)

Definition 1 can be extended to define the convolution f * g of two distributions
f and g in D', the space of distributions defined on D, the space of infinitely
differentiable functions with compact support, see Gel'fand and Shilov [6].
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Definition 2.

Let f and g be distributions in D’
defined by

. Then the convolution f *g is

((f*9)(0,0 () = (F(¥), (9(X), @ (x + y)))

for all ¢ in D, provided f and g satisfy either of the conditions

(a) either for g has bounded support,
(b) the supports of f and g are bounded on the same side, see Gel'fand and Shilov [6]

Note that if f and g are locally summable functions satisfying either of the above

conditions and the classical convolution f * g exists, then it is in agreement with
Definition 1.

The following results were proved in [5].

(xse“) * (xi In x+): i [SJ (D'(r+ i)![¢(r) —r- In|/1|] N
i—o (i

/1r+i+l

/1r+s I+j+1

forr,s=0,1,2,---,if A >0 and

(xe®) * (x" Inx )= i(] ™ ixlon) =y - i) (S

/IHH'l

i ( ]( ] DI P =T

ﬂ”s i+j+1

HM|

forr,s=0,1,2,---, if A <0, where

A1) = éi‘l L r>1,
0 , r=20.

The above definition of the convolution is rather restrictive and so the non
commutative neutrix convolution was introduced in [2]. In order to define the neutrix

convolution product we first of all let z be a function in D satisfying the following
properties:
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() () = 7(=x),
(i) 0<z(x) <1,

(i) 7(x) =1 for |x| < %

(iv) z(x) =0 for |x|>1.

The function z,, is now defined by

1 X[ <n,
r,(x) =4 z(n"x=n""1) | x>n,
r(""x+n"Y) | x<-n,

forn=1,2,---.

Definition 3. Let f and g be locally summable functions or distributions in D" and let
f, = fr, for n=1,2,---. Then the neutrix convolution f @ g is defined as the

neutrix limit of the sequence {f, * g}, provided that the limit h exists in the sense that

N —lim {f, *g,0) = (h,¢),
nN—oo
for all ¢ in D, where N is the neutrix, see van der Corput [1], having domain
N'={12,---,n,--} and range N" the real numbers, with negligible functions finite
linear sums of the functions

n“In"tn, N n (>0, r=1,2,-)
and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution f, * g is defined in Gelfand and
Shilov's sense, the distribution f,, having bounded support. Note also that because of the
lack of symmetry in the definition of f ® g, the neutrix convolution is in general

non-commutative.
The following two theorems were proved in [2], showing that the neutrix
convolution is a generalization of the convolution.

Theorem 1. Let f and g be distributions in D’ satisfying either condition (a) or
condition (b) of Gel'fand and Shilov's definition. Then the neutrix Convolution f ® g

exists and

f®g="~=g.
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Theorem 2.  Let f and g be distributions in D’ and suppose that f ® g exists, then
the neutrix convolution f ® g’ exists and

(f®g) =f®g". (6)

Note however that (f ®g)" is not necessarily equal to f' ®g. We do however
have the following lemma which was proved in [3].

Lemma3. Let f and g be distributions in D’ and suppose that f &g exists.
If N - lim ((fr;)* g, ¢) existsandequals (h, ¢) forall o in D', then the neutrix
n—oo

convolution f'® g exists and
(f®g) =f®g+h. @)

In order to define further neutrix convolution products, we increase our set of
negligible functions given in Definition 3 to also include finite linear sums of the
functions

n'Inne™, ei(in)  (i=012--; A<0).

The following results were proved in [5].

(xse’b‘)@ (xi In x+): > [S] CD'(r i)![¢(r) —7 = Inj4[] WS-ig
i \i

i=0 /1r+|+l

. s—1 Z ( j( j ( 1)5+I+J;rr+:_ IJJr)J'ff —i _1)| | ]e,q,x
i=0 j=0

s _\r+i+l . o -

(xe*)® (x"Inx )= @ (=) (r +1) '[¢(1r) y —In|] -y

i=0 \ A

~ s=1 i (s\(i (_1)r+s+i+j(r + PDI(s—i _1)| —
i=0 JZO(IJ(J] gr+s-itj+l e

(xse“)®(x’ln|x|):0
forA=0and r,s=0,1,2,---.

We now prove
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Theorem3. If 4 <0, then the neutrix convolution (x! Inx,) ® e® exists and

rfeg(r)—y—Inja
for r =0,1,2,---.
Proof. We put (x Inx,), = (x} Inx,)z,(x) for n=1,2,---. Since (x] Inx,), has
compact support, the classical convolution (x" Inx,), * e™ exists and
(x; Inx,), * ™ = [t Inteﬂ‘x‘”duj:m t" Intz, (t) e**0 dt
=1y + 1y ©)
It is easily seen that
lim1,=0 (10)
n—oo
Further,
I, = b.(n,2)e™
r i-1 r! i ro.
=-> ¥ —— nlet M Fnlinnettn
i1 jo ijtAT =
] |
+ rﬁf"{ e +%b0(n,z)eﬂx (11)
and
_ (" -t
bo (N, 2) _jo Inte™™ dt
==atInnEe -1+ 27t Ee M - Dt (12)

Further, we have from equation (1)
jO“ t (e —1)dt = —ei(4n) — Inn -y — In| 2|
and it follows from equation (12) that

N — lim by(n, 2) = ~27*(y + In|2]). (13)
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It now follows from equations (11) and (13) that

. rg(r)—y—-Ind
N - lim 1, = [ o 21] e (14)
Equation (8) now follows from equations (9), (10) and (14).

Corollary 3.1.  If A > 0,then the neutrix convolution (x" In x_) ® e™ exists and

ca Lo -7 =[]

(x[ In x_)@ e™ = (-1) s

(15)
forr=0,1,2,---.

Proof. Equation (15) follows on replacing 4 by —4 and X by —x in equation (8).
Corollary 3.2. If 1 # 0, then the neutrix convolution (x" In|x|) ® e exists and

(x"In|x|)® e =0 (16)
for r=0,1,2,.--

Proof. Equation (16) follows from (8) and (15) on noting that
x"In[x| = x{ Inx, + (-1)"x" Inx_.

Theorem4. If 1 =0, then the neutrix convolutions (x'Inx,) ® (x®e™) and

(x"Inx_) ® (x*e™) exist and

: T N G GO ] P O e )
(x+lnx+)®(xe )_Z[I]

/1r+|+1

Y1) D+ Pis—i -t e
(lj(JJ ﬂvl'+5 i+j+1 (17)

(x[ In xf)@ (xse“):zs“ [s] )™+ g -y~ Inja|] ST

/1r+|+l

= e R ) LRt e LIPS
__ Z (lJ(]] ﬂvr+s i+j+1 (18)

forr,s=0,1,2,--
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Proof. Equation (17) follows on differentiating equation (8) partially s times
with respect to 4 and equation (18) follows on replacing 4 by -4 and x by —x
in equation (17).

Corollary 4.1. If 4 = 0, then the neutrix convolution (x" In|x|) ® (x°e™) exists and
(xr In|x|)® (xse’lx) 0 (19)
forr,s=0,1,2,

Proof. Equation (19) follows from equations (17) and (18) on noting that

(xr In|x|)® (xseﬂx) (x In x )@( s ﬂx)+( " (x[ In x,)@ (xse“).

In the following, the distributions x;" and x_" are defined by

r-1 r r
x;r:id Inx, = S LN
(r=Dldx" (r=D! dx’

for r =1,2,--- and not as in Gel'fand and Shilov [6].

The following results were also proved in [5].

(Xselx) i ( }( 1) (7+In|}”|)/1r ! Xs—ielx

~ (r—i-1!
ZZ( J e
R e
el e

forA=#0,r=1,2,---and s=0,1,2,--

We now prove
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Theorem5. If 4 # 0, then the neutrix convolutions x;" ® e™ and x™" ® e™
exist and

In|A|)(=2)"*
X;r ® elx _ _ (7+ | |)(| ) eix’ (20)
(r-1n!
+1In|a])a
XII’ @ e/lX _ _(7 | |) e/lX (21)
(r-1!
for r=1,2,---.
Proof. We have
[Inx, 7, (x)] * e = jn”*”’ Inte*CVdz, (1)
= —Innetx=M _ g 'f:mi tle ™ 7, (t) dt
2™ n"+”7 Inte ™ 7, (t) dt
and it follows easily that
N —nli_r)r;[ln x,oh(x)] = e® =0 (22)

Equation (20) for the case r =1 now follows on differentiating equation (8) with
r = 0, using Lemma 3 and equation (22).

Now assume that equation (20) holds for some r. We have

[T et g ()

[ e * e = !

_ n—l’ eﬁ(X—n) + reﬂX I:'Hr tl’+le—ﬂ,t 7, (t) dt
+ e j:*”f " e Mz (t) dt

and it follows easily that

N - lim [x"zh(x)] * e* =0 (23)

n—oo

Equation (20) for the case r +1 now follows on differentiating equation (20), using
Lemma 3 and equation (23), proving equation (20) by induction.

Equation (21) follows on replacing 4 by —4 and x by —x in equation (20).
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Corollary 5.1.  If A = 0, then the neutrix convolution x™" ® e™ exists and
xT ®e™ =0
forr=1,2,---.
Proof. Equation (24) follows from equations (20) and (21) on noting that
X=X+ (=D " x".

Theorem6. If A =0, then the neutrix convolutions x;" ® (x%e™)
X" ® (x%™) exist and

K@ (xer)= 3 [SJ S VAT

i—o \i (r—i-1

_: ,Zo mm (—1)'+S-i((sr—_ ij—_l)l!)!zf-““"‘l ci-igh
S

BN

forr, s =1,2,--- where [(r —i)!]™ isinterpreted as being zerowhen r <.

(24)

and

(25)

(26)

Proof. Equation (25) follows on differentiating equation (20) s times partially with
respect to 4 and equation (26) follows on replacing 4 by —4 and x by —x in equation

(25).
Corollary 6.1.  If A = 0, then the neutrix convolution x" ® (x%™) exists and
X—r ® (Xse/lx): 0

forr,s=12,---.

(27)
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Proof. Equation (27) follows from equations (25) and (26) on noting that

X" ® (xseﬂ"x): X" ® (xseﬂ"") + (D' x"® (xseﬂ"x)
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