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Abstract. The choice of optimal control policy for sequentially observed data studied in a Bayesian 
context is usually a dynamic programming problem that involves a backward iterative solution.           
In general, as in most sequential Bayes problems, optimal solutions are difficult to derive 
analytically in simple forms.  The system of linear models examined here is, however, amongst the 
few cases with known explicit optimal solutions.  This would allow analytical comparisons with the 
performance of sub-optimal control procedures.  Certain sequence of myopic rules are introduced 
and applied to the control system.  These rules, in general, will provide the user with good near-
optimal control policies whenever optimal solutions are analytically difficult to determine.  As the 
myopic rules do not involve backward iteration procedures, they are often convenient to apply,      
and in addition, the user has the option of improving the accuracy of any particular approximating 
solution by taking additional future costs into consideration.  This approximation is, naturally, at its 
best when the complete future cost is considered and, for the Aoki (1967) linear control system, 
solutions are then proved to be optimal. 
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1. Introduction 
 
Consider a process that is changing in time and can be observed at equidistant integer 
time points over a known time period ( )N,0 .  Our principal objective is to control the 
stochastic parameter of the process at time point t, denoted by .0; Ntt ≤≤θ   In general, 

tθ  is not observed and a value tx  (which is conditionally distributed about tθ ) is 
generated by the observation equation, 

 
   , tttx ηθ +=    (1) 
 
and tη 's are independent and identically distributed with zero mean and known variance 

2ρ .  The decision space at time t is composed of all possible set of values of a control 
variable, .tu   It is assumed that the control tu  depends only on the current and past 
observations; that is 
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   , ),,,(    ; )( 10 t
tt

t xxxxxu == φ    (2) 
 

and the past control sequence ),,,,( 1210 −tuuuu  is assumed to be known {closed-loop 
control}.  The control model we consider here is a special case of the Kalman model [6]  
and is the control version of the linear Markov process with superimposed error; namely, 

 
 ( ) ( )  ),0(~    ;  , 2, 1,=   ; 2

 11 σεεθθ NNtua ttttt +−= −−   (3) 
 
and 2σ  is known constant.  The Bayesian approach to the optimal control problems 
requires the assumption of a "priori distribution" for the parameter which can be updated 
by the Bayes rule (using controls and observation vector measurements) up to the current 
time point.  The initial value, ,0θ  is assumed to have a normal prior distribution with 
zero mean and known constant variance 2

0σ .  The following model developed here can 
be viewed as "normal"; in the sense that, all the random variables involved are assumed 
to be normally distributed. 
 The problem here is to adjust the system output in such a way that it follows a 
specific target as closely as possible.  For this we need to introduce an appropriate 
performance index or a defined loss structure W.  We assume, naturally, that W depends 
on the stochastic parameter tθ  that we intend to adjust, and also on the control variable 

.tu   In addition we assume W to be additive over time.  That is, 
 

 ( ){ } ( )  . 0     ,
 

1 ≥= ∑
≤

− t
Nt

ttt WuWW θ   (4) 

 
Now that the structure of the system is described, we are in a position to outline a general 
procedure for deriving optimal solution to the problem. 
 
 
2.  Bayes' optimal solution to the control system 
 
At time t, having observed ,tx  the posterior density of tθ  is proportional to (written as, 

,)
tθ
∝ .)| (  ) | ( 1 

 
−⋅ t

ttt xfxf θθ   From the Markov property and Bayes' theorem, we have 

(for  0>t ), 
 

 ∫ −
−

−−−∝  ,  )|( ), | ( )|(    )| ( 1
1 

11 1 
 

t
t

tttttt
t

t dxfufxfxf
t

θθθθθθ
θ

   (5) 

  
which gives a recurrence relation between )| (  t

t xf θ  and , )| ( 1 
1

−
−

t
t xf θ  so that in 

general we can take )| (  t
t xf θ  to be known for all  t.  
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 To derive an optimal solution to the problem, we apply a backward iterative 
procedure and start at the last permissible control point in the process; namely, at .1−N  
Assuming 1−Nx  have been observed, and the previous controls have all been determined, 
we are then to find the last control .1−Nu   As this control appears only in ,NW  hence 

1−Nu  is chosen to minimise the future expected loss  , } | ),({ 1
1

−
−

N
NNN xuWE θ  which is 

 
( ) ( ) ( )∫∫

Θ
−

−
−−−− .        ,    , 1

1
1111 NN

N
NNNNNNN ddxfufuW θθθθθθ  

 
Since all the involved functions are known here, we can in principle minimise the above 
expected loss and determine the optimal control .1

∗
−Nu   Denoting the minimised expected 

loss at 1−N  by ,)( 1
1

−∗
−

N
N xV  we then at the "two stages-to-go" choose 2−Nu  to 

minimise  
 

. } | ) , (   ) ( { 2
221

1
1

−
−−−

−∗
− + N

NNN
N

N xuWxVE θ  
 

This expectation, using equation (1), is with respect to  ) | ()( 2
11

−
−−

N
NN xff θη , which 

can be written in terms of the known function  ) | ( 2
2

−
−

N
N xf θ , so that there will be no 

difficulty in evaluating the optimal control ∗
−2Nu  at stage .2−N   This argument can be 

extended to the remaining stages of the process and, by application of the Bellman 
principle of recursive optimality [3], at the tht -  stage we choose the optimal control ∗

tu  
to minimise the future expected costs.  We then apply ∗

tu  and sample ,1+tx  and repeat 
the procedure to derive ∗

+1tu  and continue this procedure to the point when controls are 
determined at all stages of the process. 
 
 
3.  Optimal solution to the linear control system 
 
We now proceed by considering a linear model with linear cost structure.  This system 
has the advantage that the complete optimal solution can be derived explicitly, and 
subsequently it can be used as a measure of assessing the relative performance of             
sub-optimal rules introduced later in §4. 
 
Theorem 1. For the linear control system (1) to (3) with the additive linear cost 
structure )4(W  such that  

 
  , 2

1
2

−+= ttt uW ωθ    (6) 
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where ω  is known constant, optimal control ∗
tu  at time t is deterministic and time 

variant only 
 

  . )1 ,,2 ,1(       ; 
)1(2

)1(
2 −=

−
−

=
−

∗ Nt
a
aau

tN

t ω
   (7) 

 
In addition, the minimised future expected loss measured at time t, {denoted by ∗

tV } is a 
linear function of the observations tx  and is determined by 

 
    , ttttV βμα +=∗  (8)  
where  
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and 
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Proof.  Denoting the future expected loss at time t  by ,tV  we have 
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Using the generating equation for tθ , we can write 
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Minimising the above with respect to tu  gives the optimal control ∗

tu  at time t, 
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Substitution into tV  gives the minimised future expected cost at  t, so that we have,  
  

( ) ( )∑
−−

=

−−
−

∗ −
⎭
⎬
⎫

⎩
⎨
⎧

−
−

−
−

=
1

0

2
2

1 
)1(2

  
1

1 tN

j

jtN
t

tN

t a
a

a
a

aaV
ω

μ , 

 

and by noting that the last summation is in fact equal to  ,)1( 2
1

−∑
−

=

j
tN

j
a  the proof of the 

theorem is thus established and the complete optimal solution is therefore available for 
future assessments with other procedures.  We now introduce and define a sequence of 
near-optimal "myopic" rules, and proceed to evaluate their performance by examining 
their application to the linear system.  This enables us to make comparative assessments 
in the light of the optimal solution derived in Theorem 1. 
 
 
4.  Near-optimal myopic procedures 
 
General outline of the rules 
 
At time point t, having observed  { }),,,( 10 t

t xxxx =  the Bayes' optimal control ∗
tu  is 

determined by applying a backward iterative procedure that starts at ,1−N  the last 
permissible control point of the process.  Because of complications involved in this 
approach, in most cases ∗

tu  cannot be derived analytically and is determined by 
computation.  To find a method that provides us with near-optimal analytical solution to 
the problem, we would need to investigate alternative approach to the backward iterative 
procedure.   By applying the following myopic rules at time t, we can derive a sequence 
of approximating solutions by minimising certain future expected costs that are measured 
at time t and are conditioned on the available information, .tx  
 As these myopic procedures do not involve backward iteration, they are often 
convenient to apply.  In addition, the user has the option of increasing the accuracy of 
any particular approximating solution by taking further future costs into account than 
those currently considered, and, by applying a myopic rule of some higher "order" than 
that being used at the time.  (The "order" of the myopic rule refers to the number of 
stages ahead of the present stage t that we wish to consider.)  This means that, by 
applying the myopic rule of the r-th order (for r a positive integer; ,),,2,1 tNr −=  

we can determine the current policy at time t {denoted by )(r
tu } and the future 

provisional controls {denoted by }1,,2,1;)(
; −=+ rju r

jtt  estimated at time t.  These 
controls are determined by minimising the future expected costs at t, and for the myopic 
rule of the            r-th order future cost is composed of costs at .),,2,1( rttt +++  
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Myopic rule of the "r-th order"– definition 
 
Having observed tx  at time t, current control )(r

tu  and the future provisional controls 

,}1,,2,1{,)(
; −=+ rju r

jtt  are determined respectively by minimising the future 
expected cost  
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with respect to itu +  for  ,10,1,,2,1,0 −≤≤−= Ntri  and integer r,  

.1 tNr −≤≤   
 As the myopic rules provide us with a sequence of approximating solutions at time t, 
we can compare and "rank" them according to their merits of closeness to the current 
Bayes' optimal solution ∗

tu .  We now proceed to examine the performance of these rules 
in the context of the linear control system used in Theorem 1, when optimal control was 
also found to be analytically obtainable. 
 
 
5.  Application of myopic rules to the linear control system 
 
Theorem 2. At time t, by applying the myopic rule of the r-th order 

},,2,1{ tNr −=  to the linear control system (1)  to (3) with the additive linear cost 
structure (4) and (6), we obtain a sequence of sub-optimal controls  

} ,,  ,{ )()2()1( tN
ttt uuu − .  When these are compared with the optimal control ∗

tu   derived 
in Theorem 1, it follows that,  

 
 ( ). ,,2,1         )( tNruu rN

r
rN −== ∗

−−   (11) 
 
In addition, these controls can be ranked with respect to the optimal control ∗

tu  and,            
we have 
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Proof. With reference to the definition of the myopic rule of the r-th order we can write 
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Control at time  t  is hence determined by 
 

.  
)1(2

)1(
2

)( ∗<
−
−

= t

r
r

t u
a
aau

ω
 

 
so that, we can intuitively expect myopic rules of the higher orders to provide us with 
closer approximations to the optimal control solution.  That is 
 

( ).           )()1( tNruu r
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r
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Furthermore, the sequence of future provisional controls estimated at time t  is derived as  
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and when at future stages more information becomes available, these policies will be 
then revised accordingly. 
 Clearly for the myopic rule of the r-th order, the minimised future expected loss at  t, 
namely 

 

 ( )       ,, , ,  
1

)(
1;

)(
1;

)()( tNruuuxWEW
r

j

r
rtt

r
tt

r
t

t
jt

r
t −≠

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
=

−+++   (15) 

 
exceeds the optimum Bayes loss ∗

tV  [8] as required. 
 As an implication of Theorem 2, it is interesting to note that when applying the 
myopic rule of the "full order" {i.e. when tNr −= } to the linear control system, 
current and future control policies are optimal and we have, 
 

 ( ) ( ) ( ). 1,,2 ,1,0        
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 The reason for the optimality of these solutions is twofold.  Firstly, since solutions 
are found by using the full order myopic rule, we naturally expect to obtain the closest 
possible approximation to the optimal policies.  Secondly, because of the deterministic 
structure of the optimal control policies in the present linear control system, both                
the Bayes optimal rule and the myopic rule of the full order are seen to be identical.               
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In a non-deterministic system, such as that with a non-linear cost structure, however,            
the two rules can be demonstrated to be completely different. 
 
 
6.  Conclusion 
 
In general, the Bayes' optimal control policy for the normal Markov process involves a 
backward iterative procedure and in most cases optimal solutions are difficult to derive 
analytically.  The Aoki linear control system studied here is, however, amongst the few 
cases with known explicit optimal solution.  This allows assessment of the performance 
of certain sequence of introduced myopic procedures in relation to the Bayes optimal 
control solution to the system.  These procedures are designed in such a way that by 
taking more future costs into account, we are able to obtain better approximations to 
optimal solution.  The approximation is at its best when the complete future cost is 
considered.  As these myopic rules do not involve a dynamic programming approach, 
they often have the advantage of being easier to apply in practice.  In addition to the 
determination of current policy, by applying these rules we can also estimate the future 
provisional control policies conditioned to the current information.  These provisional 
policies can be updated during the process as more information becomes available to the 
control system.  Myopic rules, in certain cases provide the user with optimal solutions to 
the problem.  Such a case is demonstrated in a deterministic system where solutions are 
independent of the current available information and are time-variant only. 
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