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Abstract. In this paper, we study the value distribution of meromorphic func-
tions concerning differential polynomial. Moreover, some criteria for normality

of families of meromorphic functions are obtained, which extend results respec-

tively established by Chen and Fang, Pang and Zalcman.
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1. Introduction

Let f be a nonconstant meromorphic function. In this paper, we use the following
standard notation of value distribution theory,

T (r, f), m(r, f), N(r, f), N(r, f), N

(
r,

1
f

)
, · · ·

(see Schiff [6], Yang [9]). We denote by S(r, f) any function satisfying

S(r, f) = o{T (r, f)},

as r →∞, possibly outside of a set with finite measure.
Let k be a positive integer. We denote by Nk)(r, 1/f) the counting function of

those zeros of f whose multiplicity are less than or equal to k; by N(k+1(r, 1/f) the
counting function of those zeros of f whose multiplicity are greater than k. Moreover,
we call a meromorphic function ϕ(z)(6≡ 0,∞) a small function with respect to f
provided that T (r, ϕ) = S(r, f).

Let D be a domain in C, and F be a family of meromorphic functions defined
on D. F is said to be normal on D, in the sence of Montel, if for every sequence fn

there exists a subsequence fnj , such that fnj spherically converges, locally uniformly
in D, to a meromorphic function or ∞. (See [6].)

In [3], Hayman posed the following conjecture.
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Conjecture 1.1 (Hayman conjecture). Let F be a family of meromorphic functions
on D, let n be a positive integer and a be a nonzero complex number, if fnf ′ 6= a
for each f ∈ F , then F is a normal family.

A number of researchers have worked on this problem. In 1995, Chen Huaihui
and Fang Mingliang [2] confirmed the conjecture by proving

Theorem 1.1. Let F be a family of meromorphic functions on D, let n be a positive
integer and a be a nonzero complex number, if fnf ′ 6= a for each f ∈ F , then F is
a normal family.

In [5], Pang Xue Cheng and Lawrence Zalcman obtain a criteria for normality of
families of holomorphic functions, they proved that

Theorem 1.2. Let F be a family of holomorphic functions on D, all of whose zeros
have multiplicity at least k, and there exists n ≥ 1 and a ∈ C, a 6= 0, such that
fnf (k) 6= a for each f ∈ F , then F is a normal family.

In this paper, we shall generalize and improve above results and prove

Theorem 1.3. Let F be a family of meromorphic functions on D, all of whose zeros
have multiplicity at least k, let n(≥ 2), k be positive integers, h(z) 6= 0 for z ∈ D,
h(z), a1, a2 · · · , ak be holomorphic functions on D. We define

E(f) =

{
z : fn{f (k)(z) +

k∑
i=1

ai(z)f (k−i)(z)} = h(z), z ∈ D

}
.

If there exists a constant M > 0 such that for any f ∈ F and z ∈ E(f), we have

|f (k)(z)| ≤ M,

then F is normal on D.

Remark 1.1. The condition that the zeros of f in F have multiplicity at least k is
necessary, as is shown by the following example.

Let F={mzk−1 : m = 1, 2, · · · }. Let D = ∆, the unit disk. Let k ≥ 2, n be
positive integers. Then for any f ∈ F , fnf (k) 6= 1. Hence f satisfies |f (k)(z)| ≤ M
whenever fnf (k) = 1, where M > 0. But F is not normal at a point 0 on ∆.

As an immediate consequence of Theorem 1.3, we have the

Corollary 1.1. Let F be a family of meromorphic functions on D, let n(≥ 2), k be
positive integers, h(z) 6= 0 for z ∈ D, h(z), a1, a2, · · · , ak be holomorphic functions
on D. We define

E(f) =

{
z : fn{f (k)(z) +

k∑
i=1

ai(z)f (k−i)(z)} = h(z), z ∈ D

}
.

If there exists a constant M > 0 such that for any f ∈ F , f 6= 0 and z ∈ E(f), we
have

|f (k)(z)| ≤ M,

then F is normal on D.
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Corollary 1.2. Let F be a family of meromorphic functions on D, all of whose
zeros have multiplicity at least k, let n(≥ 2), k be positive integers, let h(z)(6=
0), a1, a2, · · · , ak be holomorphic functions on D. If for any f ∈ F ,

fn{f (k)(z) +
k∑

i=1

ai(z)f (k−i)(z)} 6= h(z), z ∈ D,

then F is normal on D.

Corollary 1.3. Let F be a family of meromorphic functions on D, let n(≥ 2), k be
positive integers, let h(z)(6= 0), a1, a2, · · · , ak be holomorphic functions on D. If for
any f ∈ F , f 6= 0,

fn{f (k)(z) +
k∑

i=1

ai(z)f (k−i)(z)} 6= h(z), z ∈ D,

then F is normal on D.

Corollary 1.4. Let F be a family of meromorphic functions on D, all of whose
zeros have multiplicity at least k, let k and n(≥ 2) be positive integers, let h(z)(6= 0)
be a holomorphic function on D. If for any f ∈ F ,fnf (k) 6= h(z) on D, then F is
normal on D.

Requiring that f have pole points with multiplicity at least 3, we have

Theorem 1.4. Let F be a family of meromorphic functions on D, all of poles are of
multiplicity at least 3 and whose zeros are of multiplicity at least k, let n,k be positive
integers and h(z) 6= 0 for z ∈ D, h(z), a1, a2, · · · , ak be holomorphic functions on
D. We define

E(f) =

{
z : fn{f (k)(z) +

k∑
i=1

ai(z)f (k−i)(z)} = h(z), z ∈ D

}
.

If there exists a constant M > 0 such that for any f ∈ F and z ∈ E(f), we have

|f (k)(z)| ≤ M

then F is normal on D.

From Theorem 1.4, we immediately have the following result:

Theorem 1.5. Let F be a family of holomorphic functions on D, all of zeros are
of multiplicity at least k, let n,k be positive integers and h(z) 6= 0 for z ∈ D,
h(z), a1, a2, · · · , ak be holomorphic functions on D. We define

E(f) =

{
z : fn{f (k)(z) +

k∑
i=1

ai(z)f (k−i)(z)} = h(z), z ∈ D

}
.

If there exists a constant M > 0 such that for any f ∈ F and z ∈ E(f), we have

|f (k)(z)| ≤ M,

then F is normal on D.

Remark 1.2. It is easily seen that Theorem 1.2 is a consequence of Theorem 1.5.
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2. Some lemmas

For the proof of our results, we need the following lemmas.

Lemma 2.1. [1, 8] Let F be a family of meromorphic functions on the unit disc ∆
all of whose zeros have multiplicity at least k, let k be a positive integer and let α be
a real number satisfying 0 ≤ α < k. Then F is not normal on ∆ if and only if there
exists

(a) a number r, 0 < r < 1;
(b) points zj, |zj | < r;
(c) functions fj ∈ F ;
(d) positive numbers ρj → 0;

such that
fj(zj + ρjξ)

ρα
j

→ g(ξ)

locally uniformly with respect to the spherical metric, where g is a nonconstant mero-
morphic function on C such that g](ξ) ≤ g](0) = 1.

Lemma 2.2. [4] Let f be a transcendental meromorphic function on C, let F =
fnf (k) − c, c 6= 0,∞ be a complex number, then for any positive integer n(≥ 2),
there exists M > 0 such that

T (r, f) < MN(r,
1
F

) + S(r, f).

Lemma 2.3. Let f be a meromorphic function in C. Let n be a positive integer, let
a be a nonzero finite complex number, if fnf ′ 6= a, then f is a constant.

Proof. Suppose that f is not a constant. Then we can find z0 ∈ C such that
f ](z0) 6= 0. Let fj(z) = j−

1
n+1 f(z0 + jz) for z ∈ ∆. Clearly, f ′j(z)fn

j (z) 6= a on ∆,
so the functions fj belong to the family of Theorem 1.1. By Marty’s theorem, there
exists M such that f ]

j (0) ≤ M for all j. But f ]
j (0) ≥ j

n
1+n f ](z0), which tends to ∞

with j, a contradiction. Thus Lemma 2.3 is proved. �

Lemma 2.4. [7] Let f be a transcendental meromorphic function and n, k be positive
integers, and let c(z)(6≡ 0) be a small function with respect to f . Suppose that all
poles of f have multiplicity at least s = 2 + [1/n] and that uN1)(r, 1/f) ≤ λT (r, f),
then fn(z)f (k)(z)− c(z) has infinitely many zeros, where u, λ(< 1/3) are constants,
and u = 0 if n ≥ 2, u = 1 otherwise.

Remark 2.1. From Lemma 2.4, we can see that the following results is obviously
true: Let f be a transcendental meromorphic function and k(≥ 2) be a positive
integer, let a be a nonzero complex number. Suppose that all poles of f have
multiplicity at least 3, and all zeros of f have multiplicity at least k, then ff (k) − a
has infinitely many zeros.

Lemma 2.5. Let f be a rational function on C, let n, k be positive integers, and
the zeros of f be of multiplicity at least k. If fnf (k) 6= a, where a(6= 0) is a complex
number, then f is a constant.
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Proof. Suppose f is a nonconstant rational function, we assume f(z) = Q(z)/P (z),
where Q(z) and P (z) are two coprime polynomials. Set p = deg(P ), q = deg(Q).
Since fnf (k) 6= a, we can deduce that there exists polynomial h(z) such that

(2.1) fnf (k) = a +
1

h(z)
=

ah(z) + 1
h(z)

.

So we have
deg(ah(z) + 1)− deg h(z) = (n + 1)(q − p)− k.

From (2.1), we have k = (n + 1)(q − p), and q − p ≥ 1.
Set m = q − p, then

f(z) = a0z
m + · · ·+ am +

R(z)
P (z)

,

where R(z) and P (z) be two coprime polynomials and

deg(P )− deg(R) > 0.

Obviously,

f (k)(z) =
(

R(z)
P (z)

)(k)

,

then from (2.1), we can obtain that

deg(P )− deg(R) = −m,

which contradicts that deg(P ) − deg(R) > 0. Thus the proof of this lemma is
completed. �

3. Proof of the theorems

Proof of Theorem 1.3. Without loss of generality, we may assume that D = ∆.
Suppose that F is not normal at a point z0 ∈ ∆, then by Lemma 2.1, there exists
{fj} ∈ F ,zj → z0 and ρj → 0+ such that

gj(ξ) =
fj(zj + ρjξ)

ρ
k

n+1
j

→ g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-constant
meromorphic function satisfying g](ξ) ≤ g](0) = 1. Since gj(ξ) has only zeros of
multiplicity at least k, by Hurwitz’s theorem, the zeros of g(ξ) are of multiplicity at
least k. Obviously, h(z0) 6= 0,∞.

Next we claim gng(k) − h(z0) = 0 has a solution in C.
If g is a rational function and gng(k) 6= h(z0), by Lemma 2.5 g is a constant, which

is a contradiction. If g is a transcendental meromorphic function, then by Lemma 2.2,
there exists ξ0 such that gn(ξ0)g(k)(ξ0) = h(z0). For otherwise T (r, g) < S(r, g),
which contradicts that g is a nonconstant transcendental meromorphic function.
Thus gng(k) − h(z0) = 0 has a solution in C. Without loss of generality, we may
assume there exists a solution ξ0 such that gn(ξ0)g(k)(ξ0) = h(z0).

Since g(ξ0) 6= ∞, hence there exists δ > 0 such that g(ξ) is analytic on D2δ(ξ :
|ξ− ξ0| < 2δ). Thus g

(i)
j (ξ) are analytic on Dδ(ξ : |ξ− ξ0| < δ) for sufficiently large j
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and g
(i)
j (ξ) converges uniformly to g(i)(ξ) on Dδ(ξ : |ξ − ξ0| < δ)(i = 0, 1, 2, · · · , k).

As

gn
j (ξ)g(k)

j (ξ)− h(zj + ρjξ)

= fn
j (zj + ρjξ){f (k)

j (zj + ρjξ) + a1(zj + ρjξ)f
(k−1)
j (zj + ρjξ)

+ · · ·+ ak(zj + ρjξ)fj(zj + ρjξ)} − h(zj + ρjξ)

− fn
j (zj + ρjξ){a1(zj + ρjξ)f

(k−1)
j (zj + ρjξ) + · · ·+ ak(zj + ρjξ)fj(zj + ρjξ)}

= fn
j (zj + ρjξ){f (k)

j (zj + ρjξ) + a1(zj + ρjξ)f
(k−1)
j (zj + ρjξ)

+ · · ·+ ak(zj + ρjξ)fj(zj + ρjξ)} − h(zj + ρjξ)

−
k−1∑
m=0

ak−m(zj + ρjξ)ρk−m
j gn

j (ξ)g(m)
j (ξ).

Considering ak−m(z) (m = 0, 1, · · · k − 1) are analytic on ∆, zj → z0 and ρj → 0+,
g
(i)
j (ξ) are analytic on Dδ(ξ : |ξ − ξ0| < δ) for sufficiently large j, we have

|ak−m(zj + ρjξ)| ≤ M(z0) < +∞ (m = 0, 1, · · · k − 1)

for j large enough, where M(z0) is a constant, and we can deduce that

k−1∑
m=0

ak−m(zj + ρjξ)ρk−m
j gn

j (ξ)g(m)
j (ξ)

converges uniformly to 0 on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ). Thus we know that

fn
j (zj + ρjξ){f (k)

j (zj + ρjξ) + a1(zj + ρjξ)f
(k−1)
j (zj + ρjξ)+

· · ·+ ak(zj + ρjξ)fj(zj + ρjξ)} − h(zj + ρjξ)

= gn
j (ξ)g(k)

j (ξ)− h(zj + ρjξ) +
k−1∑
m=0

ak−m(zj + ρjξ)ρk−m
j gn

j (ξ)g(m)
j (ξ)

converges uniformly to gn(ξ)g(k)(ξ)− h(z0) on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ).
Since gn(ξ0)g(k)(ξ0) − h(z0) = 0, if gn(ξ)g(k)(ξ) ≡ h(z0), then g 6= 0, so g is an

entire function and hence of exponential type. Hence g(ξ) = Aecξ, where A 6= 0, c 6=
0. But then gn(ξ)g(k)(ξ) = ckAn+1e(n+1)cξ, which contradicts gng(k) ≡ h(z0). Thus
gn(ξ0)g(k)(ξo) = h(z0), and gn(ξ)g(k)(ξ) − h(z0) 6≡ 0. By Hurwitz Theorem, there
exists ξj , ξj → ξ0, such that for j large enough,

fn
j (zj + ρjξj){f (k)

j (zj + ρjξj) + a1(zj + ρjξj)f
(k−1)
j (zj + ρjξj)

+ · · ·+ ak(zj + ρjξj)fj(zj + ρjξj)} − h(zj + ρjξj)

= g
(k)
j (ξj)gn

j (ξj) +
k−1∑
m=0

ak−m(zj + ρjξ)ρk−m
j gn

j (ξ)g(m)
j (ξ)− h(zj + ρjξj) = 0
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on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ). i.e. (for j large enough)

fn
j (zj + ρjξj){f (k)

j (zj + ρjξj) + a1(zj + ρjξj)f
(k−1)
j (zj + ρjξj)

+ · · ·+ ak(zj + ρjξj)fj(zj + ρjξj)} = h(zj + ρjξj)

on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ) .
By assumption, we have

|g(k)
j (ξj)| = ρ

k− k
n+1

j |f (k)
j (zj + ρjξj)| ≤ ρ

k− k
n+1

j M

on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ). Thus

g(k)(ξ0) = lim
j→∞

g
(k)
j (ξj) = 0

on D 1
2 δ(ξ : |ξ − ξ0| < 1

2δ), which contradicts that g(k)(ξ0)gn(ξ0) = h(z0) 6= 0. Thus
the proof of Theorem 1.3 is complete. �

Theorem 1.4 can be proved by a similar manner using Lemmas 2.2, 2.3, 2.4 and
2.5. We omit the details.
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