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Abstract. The idea of difference sequence sets, X(∆)={x=(xk):∆x∈X}, where

X=`∞, c and c0 was introduced by Kızmaz [4], and then this subject has been
studied and generalized by various mathematicians. In this study, we define

a new sequence space denoted by m(φ,p)(∆r) and give some properties of this

sequence space. The obtained results generalize some known results.
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1. Introduction

Let w denote the space of all complex sequences and `∞, c and c0 be the linear
spaces of bounded, convergent and null sequences x = (xk) with complex terms,
respectively, normed by ‖x‖∞ = supk |xk|, where k ∈ N = {1, 2, . . .}.

A sequence space X is called a K-space provided each of the maps τk : X → C (=
complex numbers) defined by τk (x) = xk (k = 1, 2, . . .) is continuous. A K-space X
is called a BK-space provided X is a Banach space.

The difference sequence spaces were introduced by Kızmaz [4]. The notion of
difference sequence spaces was generalized by Et and Çolak [3] as follows:

(1) X (∆r) = {x ∈ w : ∆rx ∈ X} ,
for X = `∞, c and c0, where r ∈ N, ∆0x = x, ∆x = (xk − xk+1) , ∆rx =(
∆r−1xk −∆r−1xk+1

)
, and so ∆rxk =

∑r
v=0 (−1)v

(
r
v

)
xk+v. These sequence spaces

are BK-spaces with the norm ‖x‖∆ =
∑r
i=1 |xi|+ ‖∆rx‖∞.

Subsequently difference sequence spaces have been studied by Çolak and Et [1],
Et and Basarır [2], Malkowsky and Parashar [6], Mursaleen [7] and many others.

Let X be a sequence space, then X is called perfect if X = Xαα; solid (or normal)
if (αkxk) ∈ X whenever, (xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1
for all k ∈ N and symmetric if (xk) ∈ X implies

(
xπ(k)

)
∈ X, where π (k) is a

permutation of N, and Xαα = (Xα)α denotes the second α-dual of X (for definition
of Xα see [1]).
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2. Main results

In this section we introduce a new class of sequences and establish some inclusion
relations. Also we show that this space is not perfect and not normal. The obtained
results are more general than those of Sargent [8] and Tripathy and Sen [10].

Throughout this section ϕs denotes the class of all subsets of N, those do not
contain more than s elements. Let (φn) be a non-decreasing sequence of positive
numbers such that nφn+1 ≤ (n+ 1)φn for all n ∈ N. The class of all sequences (φn)
is denoted by Φ. The sequence space m (φ) was introduced by Sargent [8] and he
studied some of its properties and obtained some relations with the space lp. Later
on it was investigated by Tripathy [9], Tripathy and Sen [10] and Malkowsky and
Mursaleen [5] from the point of view of sequence spaces.

Let r be a fixed positive integer and 0 ≤ p < ∞. Now we define the sequence
space m (φ, p) (∆r) as follows:

m (φ, p) (∆r) =

{
x ∈ w : sup

s≥1, σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p <∞

}
.

From the definition it is clear that m (φ, p)
(
∆0
)

= m (φ, p) and m (φ, 1)
(
∆0
)

=
m (φ). In the case p = 1, we shall write m (φ) (∆r) instead of m (φ, 1) (∆r).

Theorem 2.1. For any φ ∈ Φ the space m (φ, p) (∆r) is a Banach space with the
norm

(2) ‖x‖∆1
=

r∑
i=1

|xi|+ sup
s≥1, σ∈ϕs

1
φs

(∑
n∈σ

|∆rxn|p
) 1

p

, 1 ≤ p <∞,

and a complete p-normed space by p-norm

(3) ‖x‖∆2
=

r∑
i=1

|xi|p + sup
s≥1, σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p , 0 < p < 1.

Proof. It is a routine verification that m (φ, p) (∆r) is a normed linear space normed
by (2) for 1≤ p < ∞ and a p-normed space by p-norm (3) for 0 < p < 1. To
show that m (φ, p) (∆r) is complete, let

(
xl
)

be a Cauchy sequence in m (φ, p) (∆r) ,
(1 ≤ p <∞) , where xl =

(
xlk
)
k

=
(
xl1, x

l
2, . . .

)
∈ m (φ, p) (∆r) for each l ∈ N. Then

given ε > 0 there exists n0 ∈ N such that

(4)
∥∥xl − xt

∥∥
∆1

=
r∑
i=1

∣∣xli − xti
∣∣+ sup

s≥1, σ∈ϕs

1
φs

(∑
k∈σ

∣∣∆r
(
xlk − xtk

)∣∣p) 1
p

< ε

for all l, t > n0. Hence we obtain∣∣xlk − xtk
∣∣→ 0, as l, t→∞, for each k ∈ N.

Therefore
(
xlk
)
l

=
(
x1
k, x

2
k, . . .

)
is a Cauchy sequence in C for each k. Since C is

complete, it is convergent
lim
l
xlk = xk
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say, for each k ∈ N. Taking limit as t→∞ in (4) , we get

r∑
i=1

∣∣xli − xi
∣∣+ sup

s≥1, σ∈ϕs

1
φs

(∑
k∈σ

∣∣∆r
(
xlk − xk

)∣∣p) 1
p

< ε

for all l > n0. Hence
(
xlk − xk

)
∈ m (φ, p) (∆r). Since m (φ, p) (∆r) is a linear space

and
(
xlk
)
,
(
xlk − xk

)
are in m (φ, p) (∆r) , it follows that

(xk) =
(
xlk
)
−
(
xlk − xk

)
∈ m (φ, p) (∆r) .

Therefore m (φ, p) (∆r) is complete.
It can similarly be shown that m (φ, p) (∆r) is complete space p-normed by (3)

for 0 < p < 1. �

Theorem 2.2. For any φ ∈ Φ the space m (φ, p) (∆r) is a K-space.

Proof. Omitted. �

Theorem 2.3. m (φ) (∆r) ⊂ m (φ, p) (∆r) , for any φ ∈ Φ.

Proof. Let x ∈ m (φ) (∆r). Then there is a positive number K such that∑
n∈σ

|∆rxn| ≤ Kφs , σ ∈ ϕs

for each fixed s. Hence
∑
n∈σ

|∆rxn|p < Kφs, for each p > 0 and σ ∈ ϕs. Thus

x ∈ m (φ, p) (∆r). �

Theorem 2.4. For any two sequences (φs) and (ψs) of real numbers

m (φ, p) (∆r) ⊂ m (ψ, p) (∆r)

if and only if

sup
s≥1

(
φs
ψs

)
<∞.

Proof. Let x ∈ m (φ, p) (∆r). Then

sup
s≥1, σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p <∞.

Suppose that sup
s≥1

(
φs

ψs

)
<∞. Then φs ≤ Kψs and so that 1

ψs
≤ K

φs
for some positive

number K and for all s. Therefore we have
1
ψs

∑
n∈σ

|∆rxn|p ≤
K

φs

∑
n∈σ

|∆rxn|p

for each s. Now taking supremum over s ≥ 1 and σ ∈ ϕs we get

sup
s≥1, σ∈ϕs

1
ψs

∑
n∈σ

|∆rxn|p ≤ K sup
s≥1,σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p

and hence
sup

s≥1, σ∈ϕs

1
ψs

∑
n∈σ

|∆rxn|p <∞.
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Therefore x ∈ m (ψ, p) (∆r).
Conversely let m (φ, p) (∆r) ⊂ m (ψ, p) (∆r) and suppose that sups≥1

(
φs

ψs

)
=

∞. Then there exists an increasing sequence (si) of naturals numbers such that
lim
i

(
φsi

ψsi

)
= ∞. Now for every B ∈ R+, the set of positive real numbers, there

exists i0 ∈ N such that φsi

ψsi
> B for all si ≥ i0. Hence 1

ψsi
> B

φsi
and so that

1
ψsi

∑
n∈σ

|∆rxn|p >
B

φsi

∑
n∈σ

|∆rxn|p

for all si ≥ i0. Now taking supremum over si ≥ i0 and σ ∈ ϕs we get

(5) sup
si≥i0, σ∈ϕs

1
ψsi

∑
n∈σ

|∆rxn|p > B sup
si≥i0, σ∈ϕs

1
φsi

∑
n∈σ

|∆rxn|p .

Since (5) holds for all B ∈ R+ (we may take the number B sufficiently large) we
have

sup
si≥i0, σ∈ϕs

1
ψsi

∑
n∈σ

|∆rxn|p = ∞

when x ∈ m (φ, p) (∆r) with

0 < sup
s≥1, σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p <∞.

Therefore x /∈ m (ψ, p) (∆r). This contradicts to m (φ, p) (∆r) ⊂ m (ψ, p) (∆r).
Hence sups≥1

(
φs

ψs

)
<∞. �

From Theorem 2.4, we get the following result.

Corollary 2.1. m (φ, p) (∆r) = m (ψ, p) (∆r) if and only if

0 < inf
s≥1

(
φs
ψs

)
≤ sup

s≥1

(
φs
ψs

)
<∞.

Theorem 2.5. m (φ, p)
(
∆r−1

)
⊂ m (φ, p) (∆r) and the inclusion is strict.

Proof. Proof follows from the following inequality and Minkowski’s inequality

|∆rx| =
∣∣∆r−1xk −∆r−1xk+1

∣∣ ≤ ∣∣∆r−1xk
∣∣+ ∣∣∆r−1xk+1

∣∣ .
To show the inclusion is strict consider the following example.

Example 2.1. Let φn = 1, for all n ∈ N and x =
(
kr−1

)
, then

x ∈ `p (∆r) \`p
(
∆r−1

)
.

�

Theorem 2.6. The sequence space m (φ, p) (∆r) is not sequence algebra, is not solid
and is not symmetric, for r ≥ 1.

Proof. For the proof of this theorem, consider the following examples:
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Example 2.2. It is obvious that x =
(
kr−1

)
∈ m (φ, p) (∆r) , but

αx = (αkxk) /∈ m (φ, p) (∆r) for α = (αk) =
(
(−1)k

)
.

Hence m (φ, p) (∆r) is not solid.

Example 2.3. Let us consider the sequence x =
(
kr−1

)
∈ m (φ, p) (∆r). Let (yk)

be a rearrangement of (xk) which is defined as follows:

yk = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, . . .} .
Then y /∈ m (φ, p) (∆r). Hence m (φ, p) (∆r) is not symmetric.

Example 2.4. Let x =
(
kr−1

)
and y =

(
kr−1

)
. Then x, y ∈ m (φ, p) (∆r) , but

x.y /∈ m (φ, p) (∆r). Hence m (φ, p) (∆r) is not sequence algebra.

�

The following result is a consequence of Theorem 2.6.

Corollary 2.2. The sequence space m (φ, p) (∆r) is not perfect.

Theorem 2.7. `p (∆r) ⊂ m (φ, p) (∆r) ⊂ `∞ (∆r).

Proof. Since m (φ, p) (∆r) = `p (∆r) for φn = 1, for all n ∈ N, then

`p (∆r) ⊂ m (φ, p) (∆r) .

Now assume that x ∈ m (φ, p) (∆r). Then we have

sup
s≥1, σ∈ϕs

1
φs

∑
n∈σ

|∆rxn|p <∞

and so |∆rxn| < Kφ1, for all n ∈ N and for some positive number K. Thus
x ∈ `∞ (∆r). �

Corollary 2.3. If 0 < p < q, then m (φ, p) (∆r) ⊂ m (φ, q) (∆r).

Proof. Proof follows from the following inequality(
n∑
k=1

|xk|q
) 1

q

≤

(
n∑
k=1

|xk|p
) 1

p

, (0 < p < q) .

�
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