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Abstract. The idea of difference sequence sets, X(A)={z=(z}):AzeX}, where
X=(oo, c and cg was introduced by Kizmaz [4], and then this subject has been
studied and generalized by various mathematicians. In this study, we define
a new sequence space denoted by m(¢,p)(AT) and give some properties of this
sequence space. The obtained results generalize some known results.
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1. Introduction

Let w denote the space of all complex sequences and /., ¢ and ¢y be the linear
spaces of bounded, convergent and null sequences x = (x3) with complex terms,
respectively, normed by ||z||,, = sup,, |zk|, where k € N={1,2,...}.

A sequence space X is called a K-space provided each of the maps 7, : X — C (=
complex numbers) defined by 74 (z) =z (k =1,2,...) is continuous. A K-space X
is called a BK-space provided X is a Banach space.

The difference sequence spaces were introduced by Kizmaz [4]. The notion of
difference sequence spaces was generalized by Et and Colak [3] as follows:

(1) XA ={zew: A"z e X},

for X = lo, c and cg, where r € N, A2 = 2z, Az = (2 —2ps1), A2 =
(A" tay, — A" o), and so ATz, = 30 (—1)" (])@k+0. These sequence spaces
are BK-spaces with the norm ||z||, = Y i_, |@i| + |A™z| ..

Subsequently difference sequence spaces have been studied by Colak and Et [1],
Et and Basarir [2], Malkowsky and Parashar [6], Mursaleen [7] and many others.

Let X be a sequence space, then X is called perfect if X = X*%; solid (or normal)
if (agxr) € X whenever, (zx) € X for all sequences (ay) of scalars with |ag| <1
for all k € N and symmetric if (z) € X implies (z.()) € X, where 7 (k) is a
permutation of N, and X“* = (X %) denotes the second a-dual of X (for definition
of X% see [1]).
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2. Main results

In this section we introduce a new class of sequences and establish some inclusion
relations. Also we show that this space is not perfect and not normal. The obtained
results are more general than those of Sargent [8] and Tripathy and Sen [10].

Throughout this section ¢, denotes the class of all subsets of N, those do not
contain more than s elements. Let (¢,) be a non-decreasing sequence of positive
numbers such that ng,+1 < (n+ 1) ¢, for all n € N. The class of all sequences (¢,)
is denoted by ®. The sequence space m (¢) was introduced by Sargent [8] and he
studied some of its properties and obtained some relations with the space [P. Later
on it was investigated by Tripathy [9], Tripathy and Sen [10] and Malkowsky and
Mursaleen [5] from the point of view of sequence spaces.

Let r be a fixed positive integer and 0 < p < co. Now we define the sequence
space m (¢, p) (A") as follows:

m(¢,p) (A") = {x Ew: sup Z A"z, |P < oo}

s>1, o€ps ¢s neo

From the definition it is clear that m (¢,p) (A°) = m(¢,p) and m(¢,1) (A°) =
m (¢). In the case p = 1, we shall write m (¢) (A") instead of m (¢, 1) (A").

Theorem 2.1. For any ¢ € ® the space m (¢p,p) (A") is a Banach space with the
norm

(2) lzlla, =D leil + _sup (Z Ianlp> , 1<p<oo,
i=1

s>1, o€ps d)s neo

and a complete p-normed space by p-norm

T

1
(3) o, =S leilP+ sup — ST |A@ P, 0<p<t.

i=1 521, 0€0s ¥s es

Proof. Tt is a routine verification that m (¢, p) (A") is a normed linear space normed
by (2) for 1< p < oo and a p-normed space by p-norm (3) for 0 < p < 1. To
show that m (¢,p) (A") is complete, let (z') be a Cauchy sequence in m (¢, p) (A"),
(1 <p<o0), where 2! = (xfc)k = (a4, 2h,...) € m(¢,p) (A") for each | € N. Then
given £ > 0 there exists ng € N such that

1
O el =Sl (Sl <
s>1, o€p. Ps P
for all [,¢ > ng. Hence we obtain
|x§€ - a:fc‘ — 0, as [,t — oo, for each k € N.

Therefore (wé)l = (mi,x? .. ) is a Cauchy sequence in C for each k. Since C is
complete, it is convergent

li}n ah = xy,
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say, for each k € N. Taking limit as t — oo in (4), we get

1
T P
Z|xﬁ—xi|+ sup (Z{AT xk|> <e
i=1

s>1, o€ps ¢s kco

for all I > ng. Hence (z, — 1) € m (¢,p) (A"). Since m (¢, p) (A") is a linear space
and (azk) , (va - xk) are in m (¢, p) (A"), it follows that

(zk) = (o) — (z}, — z) € m(¢,p) (AT).
Therefore m (¢, p) (A") is complete.
It can similarly be shown that m (¢, p) (A") is complete space p-normed by (3)
for 0 <p< 1. O

Theorem 2.2. For any ¢ € ® the space m (¢, p) (A") is a K-space.
Proof. Omitted. O
Theorem 2.3. m (¢) (A”) C m(¢,p) (A"), for any ¢ € P.

A

Proof. Let © € m (¢) (A"). Then there is a positive number K such that

Z|Arxn|§K¢5 i O-ESDS

neo
for each fixed s. Hence > |ATz,|" < K¢s, for each p > 0 and o € ;. Thus
neo
z € m(p,p) (A7) 0

Theorem 2.4. For any two sequences (¢s) and (¢¥s) of real numbers

m (¢,p) (A") Cm (,p) (A")

sup <¢ ) 0.
s>1 ws
Proof. Let © € m (¢, p) (A"). Then

1
sup  — Z |A"z, P < .

s>1,0€ps Ps

if and only if

neco

Suppose that sup ( v ) < 00. Then ¢4 < K1, and so that 1/% ¢£ for some positive
s>1

number K and for all s. Therefore we have

1/) Z |AT1‘n‘p <= Z |A7"33n|p

neo S neo

for each s. Now taking supremum over s > land o € cps we get

sup Z |A"x,|P < K sup Z |A" 2, |P

s>1,0€ps ¥s s>1 JGL,D; s

neo neo

and hence 1
sup — Z A"z, P < oo

s>1,0cps ¥s neo
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Therefore x € m (1, p) (A").
Conversely let m (¢,p) (A") C m (i, p) (A”) and suppose that sup,s, (i—) =

oco. Then there exists an increasing sequence (s;) of naturals numbers such that

lim (zs) = oo. Now for every B € R, the set of positive real numbers, there
i 84

exists ig € N such that ¢l > B for all s; > iy. Hence - > B and so that

Ps; Ps;
Z |A"2,|P > Z |A" 2, P

neo 81 neo

Vs,

for all s; > 79. Now taking supremum over s; > ig and o € p, we get

Z |A"2,|P > B sup Z |A" 2, |P .

(5) sup
8$i>10, O€Ps ¢31 n€o

S$i>10, O€Ps 'Q[Jsl

neo

Since (5) holds for all B € Ry (we may take the number B sufficiently large) we
have

sup YA -

8i 210, OEPs 51 neo

when x € m (¢, p) (A™) with

0< sup Z A"z, P < 0.

s>1, o€ps S neo

Therefore x ¢ m (¢, p) (A™). This contradicts to m (¢,p) (A™) C m (1, p) (A").
Hence sup, >, (fb) ) < 0. ]
From Theorem 2.4, we get the following result.

Corollary 2.1. m (¢,p) (A") = m (¢, p) (A") if and only if

o<t (§) < (32) <=

Theorem 2.5. m (¢,p) (A™™') C m (¢,p) (A") and the inclusion is strict.
Proof. Proof follows from the following inequality and Minkowski’s inequality
|ATz| = |A7'_1a:k — A’“_lmkﬂl < |A7'_1a:k‘ + |A7'_1:1:k+1| )
To show the inclusion is strict consider the following example.
Example 2.1. Let ¢, =1, for all n € N and # = (k"~'), then
z € by (AT)\Ep (A7)
O

Theorem 2.6. The sequence space m (¢, p) (A") is not sequence algebra, is not solid
and is not symmetric, for r > 1.

Proof. For the proof of this theorem, consider the following examples:
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Example 2.2. It is obvious that = (k""') € m (¢,p) (A"), but

aw = (apai) € m (6p) (A7) for = () = ((-1)*).
Hence m (¢, p) (A") is not solid.

Example 2.3. Let us consider the sequence z = (k") € m (¢,p) (A"). Let (yx)
be a rearrangement of () which is defined as follows:

Yk = {Iﬂl,5U2,9€47$3,$9»=’E5,$16,$6,$257$7,$367$8,$497$10, .- }
Then y ¢ m (¢, p) (A™). Hence m (¢, p) (A") is not symmetric.

Example 2.4. Let x = (k“l) and y = (kr’l). Then z,y € m(¢,p) (A"), but
x.y & m(¢p,p) (A™). Hence m (¢, p) (A") is not sequence algebra.

U
The following result is a consequence of Theorem 2.6.
Corollary 2.2. The sequence space m (¢, p) (A") is not perfect.
Theorem 2.7. £, (A") C m(¢,p) (A") C o (AT).
Proof. Since m (¢,p) (A") = £, (A") for ¢,, =1, for all n € N, then

p (A") Cm(¢,p) (A").
Now assume that = € m (¢, p) (A”). Then we have

1
sup — ATz, P < oo
s>1, o€, ¢s 7; I ‘
and so |A"z,| < K¢, for all n € N and for some positive number K. Thus
x € log (AT). O

Corollary 2.3. If0 < p < g, then m (¢,p) (A") C m (¢, q) (A").

Proof. Proof follows from the following inequality

<Z|$k|q>q < (Z |$k|p>p7 (O<p<q).

k=1 k=1
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