
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 28(2) (2005), 131–139

Approximating Fisher’s Information for the Replicated
Linear Circular Functional Relationship Model

Abdul Ghapor Hussin
Centre for Foundation Studies in Science, University of Malaya,

50603 Kuala Lumpur, Malaysia

ghapor@um.edu.my

Abstract. The problem that this paper attempting to solve is the derivation of
Fisher’s information matrix using four parameters which are two error concen-

tration parameters of variables, intercept and slope parameter for the replicated

linear circular functional relationship model. The model is formulated assuming
both variables are circular, subject to errors and there is a linear relationship

between them. The maximum likelihood estimation have been used to esti-

mate all the parameters. It is shown that estimate of Fisher’s information can
be obtained by using various theories of matrices and approximation of the

asymptotic properties of Bassel function.
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1. Introduction

The functional relationship model is an extension of a regression model which allows
for sampling variability in the measurements of both the response and explanatory
variables. This relationship arises from data or observation that have been obtained
or measured from continuous linear variables subject to some sort of errors, e.g. ob-
servational or individual error variability. This model have been explored since the
later part of the 19th century when Adcock [1, 2] investigated estimation properties
under somewhat restrictive but realistic assumption in ordinary linear regression
model when both variables are subject to errors. Since then, several authors have
worked on the problem of estimating the parameters, in particular for the unrepli-
cated linear functional relationship model. The work of Fuller [3] represent the
most comprehensive single source of information on functional model to date. This
book covers the topics of functional extending ordinary linear regression models,
multivariate linear regression and non-linear regression models.

The functional model can also be extended to the case when both the response
and explanatory variables are circular instead of continuous linear. Circular random
variable is one which takes values on the circumference of a circle, i.e. they are angles
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in the range (0, 2π) radians or (00, 3600). This random variable must analysed by
techniques differing from those appropriate for the usual Euclidean type variables
because the circumference is a bounded closed space, for which the concept of origin
is arbitrary or undefined. A continuous linear variable is a random variable with
realisations on the straight line which may be analysed straightforwardly by usual
techniques.

By “linear circular functional relationship model” we denote the model which has
an (unknown) linear relationship and generally given by xi = Xi+δi and yi = Yi+εi,
where Yi=α+βXi (mod 2π), for i = 1, 2, . . . , n. In this, observations are made of two
circular variables on range (0, 2π) subject to error. One example of the application
of the linear circular functional relationship model is in an analysis of the wind
direction data, specifically an instrument calibration problem where the aim is to
compare the accuracy of the new instruments (high frequency radar) with that of a
standard instrument (anchored wave buoy) for measuring a wind direction, (Sova,
[4]).

The errors δi and εi are assumed to be mutually independently distributed with
von Mises distributions, that is δi ∼ V M(0, κ) and εi ∼ V M(0, ν) respectively. The
von Mises distribution denoted by V M(µ, κ) was first introduced by von Mises in
1918 to study the deviations of measured atomic weights from integral values, i.e.
the remainders when divided by some quantum value. This is a symmetric distri-
bution which is the most common model for unimodal samples of circular data and
in many respects this distribution is also the natural analogue on the circle of the
Normal distribution on the real line. The parameter µ is the mean direction, while
the parameter κ is described as the concentration parameter. The distribution is
symmetric about µ and the mode is also µ. For large κ the distribution is clustered
about the mean direction. The smaller the value of κ, the more spread the distribu-
tion. Depending on the values of κ, the von Mises distribution can be approximated
by other distribution such as the Uniform, the Cardioid or the Wrapped Normal.
The probability density function for the von Mises distribution is given by

f(θ;µ, κ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} , 0 < θ ≤ 2π, 0 ≤ µ < 2π, κ > 0,

where I0(κ) is the modified Bessel function of the first kind and order zero, i.e.

I0(κ) =
∞∑

r=0

1
r!2

(
1
2
κ

)2r

.

We will consider primarily the linear circular functional relationship model above
i.e. when the variables have a simple linear relationship of Y = α + βX (mod 2π).
Strictly, the term “wrapped linear functional relationship model” might be prefer-
able to express the relationship between X and Y but for conciseness we will omit
“wrapped” from the terminology. Without loss of generality we restrict α to the
range (0, 2π). In the next section we propose the model for the replicated linear
circular functional relationship and establish notation. Maximum likelihood estima-
tion of the parameters is discussed as well as the Fisher information matrix together
with the numerical example.
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2. The replicated linear circular functional relationship model

The unreplicated linear circular functional relationship assumed that the circular
observation (xi, yi) measures, inexactly, the parameters (Xi, Yi), where Yi = α +
βXi (mod 2π). However, corresponding to a particular pair (Xi, Yi) there may be
replicated observations of Xi and Yi occurring in p groups. Measurements xij ,
(j = 1, . . . ,mi) are made on Xi and measurements yik, (k = 1, . . . , ni) on Yi, where
0 ≤ xij , yik < 2π. Note that there is no inherent pairing of any xij with yik, indeed
mi may not equal ni. We also assume that the observations on Xi and Yi have been
measured with errors δi and εi respectively.

The full model for the replicated linear circular functional relationship is therefore

(2.1)
xij = Xi + δij and yik = Yi + εik, where Yi = α + βXi (mod 2π),

for i = 1, . . . , p, j = 1, . . . ,mi and k = 1, . . . ni.

The errors δij and εik are homogeneous and independently distributed with a von
Mises distributions of zero mean circular, i.e. δij ∼ V M(0, κ) and εik ∼ V M(0, ν).
There are (p+4) parameters to be estimated, i.e. α, β, κ, ν and the incidental
parameters Xi, i = 1, . . . , p by the maximum likelihood method. Suppose L is the
log likelihood function of model (2.1). Then

L(α, β, κ, ν, Xi, . . . , Xp;x11, . . . , xpmp
, y11, . . . , ypnp

) = −NM log(2π)−N log I0(κ)

−M log I0(ν) +
∑ ∑

κ cos(xij −Xi) +
∑ ∑

ν cos(yik − α− βXi)

where N =
p∑

i=1

ni, M =
p∑

i=1

mi and as usual I0(ν) and I0(κ) are the modified Bessel

functions of the first kind and order zero. Differentiating log L with respect to α, β,
κ, ν and Xi we obtain the likelihood equation for parameters which may be solved
iteratively given some suitable initial values at the estimate and given by

α̂ =


tan−1

(
S
C

)
, S > 0, C > 0

tan−1
(

S
C

)
+ π, C < 0

tan−1
(

S
C

)
+ 2π, S < 0, C > 0

where S =
∑

sin(yi − β̂xi) and C =
∑

cos(yi − β̂xi). Also

(2.2) X̂i1 ≈ X̂i0 +

∑
j

sin(xij − X̂i0) + ν̂
κ̂ β̂

∑
k

sin(yik − α̂− β̂X̂i0)∑
j

cos(xij − X̂i0) + ν̂
κ̂ β̂2

∑
k

cos(yik − α̂− β̂X̂i0)
,

where X̂i1 is an improvement estimate of X̂i0 which is the initial estimate of X̂i.

(2.3) β̂1 ≈ β̂0 +
∑∑

Xi sin(yik − α̂− β̂0X̂i)∑∑
Xi cos(yik − α̂− β̂0X̂i)

,

where β̂1 is an improvement estimate of β̂0 which is an initial estimate of β̂. Further,
the estimates of κ and ν are given by

κ̂ = A−1

(
1
N

∑ ∑
cos(xij − X̂i)

)
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and

ν̂ = A−1

(
1
M

∑ ∑
cos(yik − α̂− β̂X̂)

)
respectively where

A(r) =
I1(r)
I0(r)

= 1− 1
2r
− 1

8r2
− 1

8r3
+ 0(r−4).

Hence α̂, β̂, κ̂, ν̂, X̂1, . . . X̂p can be solved iteratively and possible initial estimates
for the iteration are putting β̂0 = 1.0 in equation (2.3) and ν̂

κ̂ = 1.0 in equation (2.2).
An initial estimate of Xi in equation (2.2) can be chosen from the mean direction
of xij , that is

X̂i0 =


tan−1

(
Si

Ci

)
, Si > 0, Ci > 0

tan−1
(

Si

Ci

)
+ π, Ci < 0

tan−1
(

Si

Ci

)
+ 2π, Si < 0, Ci > 0

where Si =
mi∑
j=1

sin(xij) and Ci =
mi∑
j=1

cos(xij). Finally, the estimates of ν and κ can

be obtain by using the approximation given by Dobson [5], that is

A−1(w) ≈ 9− 8w + 3w2

8(1− w)
.

Thus for replicated circular functional relationship, when the errors are distributed
as a von Mises, all the parameters can be estimated.

3. Fisher information matrix of parameters

In this section we consider the Fisher information matrix of parameters. The first
partial derivatives for log likelihood function are given by

∂L

∂α
=

∑ ∑
ν sin(yik − α− βXi)

∂L

∂β
=

∑ ∑
νXi sin(yik − α− βXi)

∂L

∂Xi
= κ

∑
j

sin(xij −Xi) + νβ
∑

k

sin(yik − α− βXi)

∂L

∂κ
= −NA(κ) +

∑ ∑
cos(xij −Xi)

∂L

∂ν
= −MA(ν) +

∑ ∑
cos(yik − α− βXi).

The second derivatives for log likelihood function and their negative expected
values are given by
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∂2L

∂X2
i

= −κ
∑

j

cos(xij −Xi)− νβ2
∑

k

cos(yik − α− βXi), hence

E

[
−∂2L

X2
i

]
=

κN

P
A(κ) +

νβ2M

P
A(ν).

∂2L

∂Xi∂Xj
= 0, hence E

[
− ∂2L

∂Xi∂Xj

]
= 0, for i 6= j.

∂2L

∂Xi∂α
= −νβ

∑
k

cos(yik − α− βXi), hence E

[
− ∂2L

∂Xi∂α

]
=

νβM

P
A(ν).

∂2L

∂Xi∂β
= −νβXi

∑
k

cos(yik − α− βXi), hence E

[
− ∂2L

∂Xi∂β

]
=

νβM

P
XiA(ν).

∂2L

∂Xi∂κ
=

∑
j

sin(xij −Xi), hence E

[
− ∂2L

∂Xi∂κ

]
= 0, and also E

[
− ∂2L

∂Xi∂ν

]
= 0.

∂2L

∂α2
= −

∑ ∑
ν cos(yik − α− βXi), hence E

[
−∂2L

∂α2

]
= νMA(ν).

∂2L

∂α∂β
= −ν

∑ ∑
Xi cos(yik − α− βXi), hence E

[
− ∂2L

∂α∂β

]
=

Mν

P
A(ν)

∑
Xi.

∂2L

∂α∂κ
= 0, hence E

[
− ∂2L

∂α∂κ

]
= 0.

∂2L

∂α∂ν
=

∑ ∑
sin(yik − α− βXi), hence E

[
− ∂2L

∂α∂ν

]
= 0.

∂2L

∂β2
= −

∑ ∑
νX2

i cos(yik − α− βXi), hence E

[
−∂2L

∂β2

]
=

M

P
νA(ν)

∑
X2

i .

∂2L

∂β∂κ
= 0, hence E

[
− ∂2L

∂β∂κ

]
= 0.

∂2L

∂β∂ν
=

∑ ∑
Xi sin(yik − α− βXi), hence E

[
− ∂2L

∂β∂ν

]
= 0.

∂2L

∂κ2
= −NA′(κ), hence E

[
∂2L

∂κ2

]
= NA′(κ).

∂2L

∂κ∂ν
= 0, henceE

[
− ∂2L

∂κ∂ν

]
= 0.

∂2L

∂2ν
= −MA′(ν), henceE

[
−∂2L

∂ν2

]
= MA′(ν).

Next we find the estimated Fisher information matrix, F , for X̂i, . . . , X̂P , κ̂, ν̂,
α̂ and β̂ given by

F =

 B 0 E
0 C 0

ET 0 D


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where B is a P × P matrix given by

B =


κ̂NA(κ̂)+ν̂β̂2MA(ν̂)

P 0
. . .

0 κ̂NA(κ̂)+ν̂β̂2MA(ν̂)
P

 ,

E is a P × 2 matrix given by

E =


ν̂β̂M

P A(ν̂) ν̂β̂M
P X̂iA(ν̂)

...
...

ν̂β̂M
P A(ν̂) ν̂β̂M

P X̂iA(ν̂)

 ,

C is a 2× 2 matrix given by

C =
[
NA′(κ̂) 0

0 NA′(ν̂)

]
,

D is a 2× 2 matrix, given by

D =
[

ν̂MA(ν̂) M
P ν̂A(ν̂)

∑
X̂i

M
P ν̂A(ν̂)

∑
X̂i

M
P ν̂A(ν̂)

∑
X̂2

i

]
.

Our main interest is the asymptotic covariance matrix of κ̂, ν̂, α̂ and β̂, which is
the bottom right minor of order 4× P of the inverse of matrix F . From the theory
of partitioned matrices, (Graybill [6]), this is given by

V̂ ar


κ̂
ν̂
α̂

β̂

 =
[
C−1 0

0 (D − ET B−1E)−1

]
,

where

C−1 =
[
(NA′(κ̂))−1 0

0 (MA′(ν̂))−1

]
.

It can be shown that

(
D − ET B−1E

)−1
= H

[ P
X̂2

i

P −
P

X̂i

P

−
P

X̂i

P 1

]
,

where

H =
P 2

(
κ̂NA(κ̂) + ν̂β̂2MA(ν̂)

)
ν̂MA(ν̂)κ̂NA(κ̂)

(
P

∑
X̂2

i − (
∑

X̂i)2
) .
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Therefore, the asymptotic covariance matrix for κ̂, ν̂, α̂ and β̂ is given by
(NA′(κ̂))−1 0 0 0

0 (MA′(ν̂))−1 0 0

0 0 H
P

X̂2
i

P −H
P

X̂i

P

0 0 −H
P

X̂i

P H


where

H =
p2

(
κ̂NA(κ̂) + ν̂β̂2MA(ν̂)

)
ν̂MA(ν̂)κ̂NA(κ̂)

(
p

∑
X̂2

i − (
∑

X̂i)2
) .

4. Results

Using the Fisher information matrix derived above we have the following results:

V âr(κ̂) =
κ̂

N (κ̂− κ̂A2(κ̂)−A(κ̂))
,

V âr(ν̂) =
ν̂

M (ν̂ − ν̂A2(ν̂)−A(ν̂))
,

V âr(α̂) =
p

(
κ̂NA(κ̂) + ν̂β̂2MA(ν̂)

) ∑
X̂2

i

ν̂MA(ν̂)κ̂NA(κ̂)
(
p

∑
X̂2

i − (
∑

X̂i)2
) ,

V âr(β̂) =
p2

(
κ̂NA(κ̂) + ν̂β̂2MA(ν̂)

)
ν̂MA(ν̂)κ̂NA(κ̂)

(
p

∑
X̂2

i − (
∑

X̂i)2
)

and

Côv
(
α̂, β̂

)
= −

p
(
κ̂NA(κ̂) + ν̂β̂2MA(ν̂)

) ∑
X̂i

ν̂MA(ν̂)κ̂NA(κ̂)
(
p

∑
X̂2

i − (
∑

X̂i)2
)

Furthermore, for calculation purposes A(κ) can be approximated (Mardia [7]), by

A(κ) =
1
2
κ

(
1− 1

8
κ2 +

1
48

κ4 . . .

)
for small value of κ (less than 10) and

A(κ) = 1− 1
2κ

− 1
8κ2

− 1
8κ3

. . .

for large value of κ.

5. Numerical example and discussion

As an illustration we used the wave direction data in Sova [4] to show that, in
particular by using various approximation and Fisher information matrix we can
find the estimated of parameters as well as the standard error. We proposed the
model for replicated data given by
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Table 1. Parameter estimates for the wave direction data

Parameter Estimate Standard Error
α 3.827 0.442
β 1.039 0.113
κ 1.451 0.181
ν 1.361 0.165

Table 2. Parameter estimates for the wave direction data assuming β = 1.0

Parameter Estimate Standard Error
α 3.827 0.435
κ 1.451 0.181
ν 1.361 0.163

xij = Xi + δij and yik = Yi + εik where Yi = α + βXi (mod 2π),
for i = 1, 2, . . . , p, j = 1, 2, . . . , mi and k = 1, 2, . . . , ni

and also δij ∼ V M(0, κ) and εik ∼ V M(0, ν) where xij are the measurement for
group i by radar with some random error δij and yik is the measurement for group
i by an anchored buoy with some random error εik. Xi and Yi are said to be the
underlying or real directions measured by radar and anchored buoy respectively.
The maximum likelihood estimates and standard errors are given in Table 1. The
estimated ratio of error concentration parameters is given by λ̂ = ν̂

κ̂ = 0.94. However,
the 95% confidence interval for β̂ is given by (0.818, 1.260), which suggests that
β = 1.0 is a reasonable value. Re-estimating the parameters by assuming β equal to
1.0, we obtain the estimates as shown in Table 2.

We found that at the 5% significance level, there is no difference from 1.0 in the
estimates of the slope parameter, β, for the wave directions data. We found that
there is a non-zero intercept, i.e α̂ = 3.827. This suggests that there is almost no dif-
ference in the relative calibration between the measurements by radar and anchored
buoy but that an additive correction is required to move from one measurement
method to the other.

We also found that the ratio of error concentration parameters between anchored
buoy and radar, λ, is less than 1.0, and also the estimated standard error for er-
ror concentration parameters of measurements by anchored buoy is less than the
estimated standard error for error concentration parameters by radar which suggest
that measurements by anchored buoy seems to be more precise.
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