BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Special Classes of Univalent Functions with Missing Coefficients and Integral Transforms

¹S. PONNUSAMY AND ²P. SAHOO

¹Department of Mathematics, Indian Institute of Technology, Madras Chennai - 600 036, India ²Department of Mathematics, Mahila Maha Vidyalaya (MMV), Banaras Hindu University, Banaras 221 005, India ¹samy@iitm.ac.in, ²pravatis@yahoo.co.in

Abstract. Let \mathcal{A}_n be the class of all analytic functions f of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, \quad z \in \Delta,$$

where $n \in \mathbb{N}$ is fixed. For $\lambda > 0$ and $\alpha < 1$, define

$$\mathcal{U}_n(\lambda) = \left\{ f \in \mathcal{A}_n : \left| \left(\frac{z}{f(z)} \right)^{n+1} f'(z) - 1 \right| < \lambda, \ z \in \Delta \right\}$$

and

$$\mathcal{S}_{\alpha}^{*} = \left\{ f \in \mathcal{S}^{*}(\alpha) : \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \alpha, \ z \in \Delta \right\}.$$

In this paper, we find suitable conditions on λ and α so that $\mathcal{U}_n(\lambda)$ is included in S_{α} and $S^*(\alpha)$. Here S_{α} and $S^*(\alpha)$ denote the usual classes of strongly starlike and starlike of order α , respectively. We determine necessary conditions so that $f \in \mathcal{U}_n(\lambda)$ implies that

$$\left|\frac{zf'(z)}{f(z)} - \frac{1}{2\beta}\right| < \frac{1}{2\beta}, \quad z \in \Delta,$$

or

$$\left| 1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \quad |z| < r,$$

where $r = r(\lambda, n)$ will be specified. For c + 1 - n > 0, define

$$[I(f)](z) = F(z) = z \left[\frac{c+1-n}{z^{c+1-n}} \int_0^z \left(\frac{t}{f(t)} \right)^n t^{c-n} dt \right]^{1/n}$$

We also find conditions on λ , α and c so that $I(\mathcal{U}_n(\lambda)) \subset \mathcal{S}^*_{\alpha}$.

2000 Mathematics Subject Classification: 30C45, 30C55

Key words and phrases: Univalent, starlike and convex functions, subordination, and integral transforms.

Received: April 18, 2005; Revised: June 22, 2005.

1. Introduction and preliminaries

Let \mathcal{H} denote the class of analytic functions in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{A} denote the class of all functions f in \mathcal{H} such that f(0) = 0 = f'(0) - 1. Let $\mathcal{S} = \{f \in \mathcal{A} : f \text{ is univalent in } \Delta \}$ and (see [3])

$$\mathcal{S}^* = \{ f \in \mathcal{A} : f(\Delta) \text{ is starlike } \} \equiv \left\{ f \in \mathcal{S} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in \Delta \right\}.$$

Also, we let $\mathcal{S}^*(\alpha)$, $\alpha < 1$, to be the family of starlike functions of order α . It is well-known that $f \in \mathcal{S}^*(\alpha)$ iff $\operatorname{Re}(zf'(z)/f(z)) > \alpha$ for $z \in \Delta$; $\mathcal{S}^*(\alpha) \subsetneq \mathcal{S}^*$ for $0 < \alpha < 1$. For $0 < \alpha \leq 1$, a function $f \in \mathcal{A}$ is called strongly starlike of order α iff f satisfies the condition

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\alpha}, \quad z \in \Delta,$$

where \prec denotes the usual subordination (see [3]). The class of all strongly starlike functions of order α is denoted by S_{α} . Clearly, $S_1 \equiv S^*$ and if $0 < \alpha < 1$, then the class S_{α} is completely contained in the class of all bounded starlike functions [2]. For $\mu < 0$, define

$$\mathcal{B}(\mu) = \left\{ f \in \mathcal{A} : \operatorname{Re}\left(f'(z)\left(\frac{z}{f(z)}\right)^{\mu+1}\right) > 0, \ z \in \Delta \right\}.$$

It is shown in [1] that $\mathcal{B}(\mu)$ is a subclasses of the class of Bazilveič functions that is contained in the class \mathcal{S} .

In [9], Ponnusamy has considered a subclass of $\mathcal{B}(\mu)$ defined by

$$\mathcal{U}(\lambda,\mu) = \left\{ f \in \mathcal{A} : \left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu+1} - 1 \right| < \lambda, \ z \in \Delta \right\}.$$

Clearly, $\mathcal{U}(\lambda,\mu)$ is contained in \mathcal{S} for $\mu < 0$. In [9], Ponnusamy found conditions on λ and $\mu < 0$ so that $\mathcal{U}(\lambda,\mu)$ is included in \mathcal{S}^* or other well-known subclasses of \mathcal{S} . On the other hand, Nunokawa and Ozaki [8] has shown that $\mathcal{U}(\lambda,1) \equiv \mathcal{U}(\lambda)$ is also included in \mathcal{S} for $0 < \lambda \leq 1$. It is important to observe that the Koebe function $z/(1-z)^2$ belongs to $\mathcal{U}(1)$ but $\mathcal{U}(1)$ not included in \mathcal{S}^* , see [6]. In view of these observations, Ponnusamy and Vasundhra [13] found conditions on λ_0 so that $\mathcal{U}(\lambda) \subseteq \mathcal{S}^*$ for $0 < \lambda \leq \lambda_0$. Further, it is interesting to find the analog of the inclusion results (such as the containment theorems $\mathcal{U}(\lambda,\mu) \subset \mathcal{S}^*(\alpha)$ for $\mu < 0$) also for the case $0 < \mu < 1$. For $0 < \mu < 1$, the class $\mathcal{U}(\lambda,\mu)$ has been discussed by Obradović [5].

Let \mathcal{A}_n denote the class of all functions $f \in \mathcal{A}$ such that f has the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$

where $n \in \mathbb{N}$ is fixed. Clearly, $\mathcal{A} := \mathcal{A}_1$. For $f \in \mathcal{A}_n$ such that $f(z)/z \neq 0$, we have

$$\left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) = 1 + (n-\mu)a_{n+1}z^n + \cdots,$$

and so, it is essential to consider two cases, namely $\mu \in (0, n)$ and $\mu = n$, separately. For $\mu \in (0, n)$ and $\lambda > 0$, the class $\mathcal{U}_n(\lambda, \mu) \equiv \mathcal{A}_n \cap \mathcal{U}(\lambda, \mu)$ has been discussed by the authors in [10]. However, the case $\mu = n$, which does produce a slightly different implication, has not been discussed in [10]. For $\mu = n$, the class $\mathcal{U}_n(\lambda, \mu)$ will be denoted by $\mathcal{U}_n(\lambda)$ for convenience. Thus it is now natural to raise the following problem.

Problem. Find conditions on λ and α such that $\mathcal{U}_n(\lambda)$ is included $\mathcal{S}^*(\alpha)$ or \mathcal{S}_{α} .

The main aim of this paper is to answer this problem in a more general form. For the special case n = 1, this class has been studied by several authors [5, 6, 7, 12].

2. Basic properties of $U_n(\lambda)$

By definition, each $f \in \mathcal{U}_n(\lambda)$ can be written as

(2.1)
$$\left(\frac{z}{f(z)}\right)^{n+1} f'(z) = 1 + \lambda w(z) = 1 + A_{n+1} z^{n+1} + \cdots,$$

for some $w \in \mathcal{B}_n$. Here,

 $\mathcal{B}_n = \{ w \in \mathcal{H} : w(0) = w'(0) = \cdots = w^{(n)}(0) = 0, \text{ and } |w(z)| < 1 \text{ for } z \in \Delta \}$ and throughout the paper a_{n+1} is meant for $f^{(n+1)}(0)/(n+1)!$. If we set

$$p(z) = \left(\frac{z}{f(z)}\right)^n = 1 - na_{n+1}z^n + \cdots,$$

then p is analytic in Δ , p(0) = 1 and $p^{(k)}(0) = 0$ for k = 1, 2, ..., n - 1. Further, (2.1) is seen to be equivalent to

$$p(z) - \frac{1}{n}zp'(z) = 1 + \lambda w(z).$$

An algebraic computation implies that

(2.2)
$$p(z) = 1 - na_{n+1}z^n - n\lambda \int_0^1 \frac{w(tz)}{t^{n+1}} dt.$$

As $w(z) \in \mathcal{B}_n$, Schwarz's lemma gives that $|w(z)| \leq |z|^{n+1}$ for $z \in \Delta$ and therefore,

$$|p(z) - 1| \le n|z|^n (|a_{n+1}| + \lambda|z|), \quad z \in \Delta,$$

which is

(2.3)
$$\left| \left(\frac{z}{f(z)} \right)^n - 1 \right| \le n|z|^n \left(|a_{n+1}| + \lambda |z| \right), \quad z \in \Delta,$$

so that

(2.4)
$$1 - n|z|^n(|a_{n+1}| + \lambda|z|) \le \operatorname{Re}\left(\frac{z}{f(z)}\right)^n \le 1 + n|z|^n(|a_{n+1}| + \lambda|z|).$$

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of the form

$$f(z) = \frac{z}{\left(1 \pm n |a_{n+1}| z^n + \lambda n z^{n+1}\right)^{1/n}}$$

3. Strongly starlikeness and convexity for functions in $U_n(\lambda)$

We are now in a position to state our main results and their consequences. The proof of these results will be given in Section 4.

Theorem 3.1. Let $\gamma \in (0, 1]$, $n \ge 1$ and

$$\lambda_*(\gamma, n) = \frac{-n(n + \cos(\gamma \pi/2))|a_{n+1}| + \sin(\gamma \pi/2)\sqrt{1 + n^2(1 - |a_{n+1}|^2) + 2n\cos(\gamma \pi/2)}}{1 + 2n\cos(\gamma \pi/2) + n^2}$$

If $f \in \mathcal{U}_n(\lambda)$, then $f \in \mathcal{S}_\gamma$ for $0 < \lambda \le \lambda_*(\gamma, n)$.

Theorem 3.1 for n = 1 is due to Obradović *et al* [7]. In the case $\gamma = 1$, Theorem 3.1 yields criteria for starlike functions.

Corollary 3.1. If $f \in \mathcal{U}_n(\lambda)$ and $0 < \lambda \le \frac{-n^2 |a_{n+1}| + \sqrt{1 + n^2 (1 - |a_{n+1}|^2)}}{1 + n^2}$, then $f \in S^*$.

For n = 1, Corollary 3.1 yields

Corollary 3.2. If
$$f \in \mathcal{U}(\lambda)$$
, then $f \in \mathcal{S}^*$ for $0 < \lambda \leq \frac{-|a_2| + \sqrt{2 - |a_2|^2}}{2}$.

This corollary was stated as a conjecture in [6] but was settled later in [7]. The same reasoning indicated in the proof of Theorem 3.1 helps to obtain the following result.

Theorem 3.2. Let $f \in U_n(\lambda)$ and $\lambda_*(\gamma, n)$ be as in Theorem 3.1. Then, for $\lambda_*(\gamma, n) \leq \lambda$, f is strongly starlike in $|z| < r(\lambda, \gamma, n)$, where $r = r(\lambda, \gamma, n)$ is the smallest positive root of the equation $E_{\lambda}(n, r) = 0$, where

$$E_{\lambda}(n,r) = \lambda^2 r^{2(n+1)} \left(1 + n^2 + 2n \cos(\gamma \pi/2) \right) + 2\lambda n \left(n + \cos(\gamma \pi/2) \right) |a_{n+1}| r^{2n+1} + n^2 |a_{n+1}|^2 r^{2n} - \sin^2(\gamma \pi/2).$$

In the case $\gamma = 1$, Theorem 3.2 yields

Corollary 3.3. If $f \in \mathcal{U}_n(\lambda)$ and

$$\frac{-n^2|a_{n+1}| + \sqrt{1 + n^2(1 - |a_{n+1}|^2)}}{1 + n^2} < \lambda \le 1,$$

then $f \in S^*$ in $|z| < r = r(\lambda, n)$, where r is the smallest root of

$$\lambda^2 (1+n^2)r^{2(n+1)} + 2\lambda n^2 |a_{n+1}|r^{2n+1} + n^2 |a_{n+1}|^2 r^{2n} - 1 = 0$$

For n = 1, Corollary 3.3 yields

Example 3.1. If $f \in \mathcal{U}(\lambda)$, then $\frac{1}{r}f(rz) \in \mathcal{S}^*$ for $\frac{-|a_2| + \sqrt{2 - |a_2|^2}}{2} \leq \lambda \leq 1$, where r is the smallest positive root of

$$2\lambda^2 r^4 + 2\lambda |a_2|r^3 + |a_2|^2 r^2 - 1 = 0.$$

Example 3.2. Suppose that $f \in \mathcal{U}_n(\lambda)$ with $a_{n+1} = 0$, and

$$\lambda_0(\gamma, n) = \frac{\sin(\pi\gamma/2)}{\sqrt{1 + 2n\cos(\pi\gamma/2) + n^2}}.$$

Then, by Theorems 3.1 and 3.2, we have the following:

(i)
$$f \in S_{\gamma}$$
 whenever $0 < \lambda \le \lambda_0 = \lambda_0(\gamma, n)$
(ii) $f \in S_{\gamma}$ for $|z| < r = \left(\frac{\lambda_0(\gamma, n)}{\lambda}\right)^{1/(n+1)}$ whenever $\lambda_0(\gamma, n) < \lambda \le 1$.

In the following theorem, we consider similar results for certain subsets of the set of all starlike functions. To do this, we define

$$\mathcal{S}_b^*(\beta) = \left\{ f \in \mathcal{S}^* : \left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \ z \in \Delta \right\},\$$

where $0 < \beta < 1$.

Theorem 3.3. Let $n \in \mathbb{N}$ and $\lambda \in (0,1]$. If $f \in \mathcal{U}_n(\lambda)$, then for $0 < \beta < 1$ we have

$$\left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta} \quad for \ |z| < r_0 = r_0(\lambda, n, \beta),$$

where r_0 is the positive root of the equation

$$2\lambda(\beta+n)r^{n+1} + 2n|a_{n+1}|r^n + |2\beta - 1| - 1 = 0$$

For n = 1, Theorem 3.3 has been obtained by Obradović *et al* [7].

Theorem 3.4. Let $n \in \mathbb{N}$ and $\lambda \in (0,1]$. If $f \in \mathcal{U}_n(\lambda)$, then for $0 < \beta \leq 1$ we have

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta}\right| < \frac{1}{2\beta} \quad for \ |z| < r_{\lambda,n}(\beta),$$

where $r = r_{\lambda,n}(\beta)$ is the smallest positive root of the equation

$$(3.1) \qquad 2\beta\lambda^2 nr^{2n+3} + 2\beta\lambda n|a_{n+1}|r^{2n+2} + 2\lambda\left(\beta n^2 + (\beta+1)n + \beta\right)r^{n+3} + 2\left(\beta\lambda(\lambda n - 1) + (\beta n + 1)n|a_{n+1}|\right)r^{n+2} - 2\lambda\left(\beta n^2 + (1+\beta)n + \beta - \beta n|a_{n+1}|\right)r^{n+1} - 2\left(\beta n + 1\right)n|a_{n+1}|r^n - (1 - |2\beta - 1|)r^2 - 2\beta\lambda r - |2\beta - 1| + 1 = 0.$$

In particular, $r^{-1}f(rz) \in \mathcal{K}$, where \mathcal{K} denotes the class of all convex functions g, *i.e.* zg'(z) belongs \mathcal{S}^* .

If we choose $\beta = 1/2$, we obtain

Corollary 3.4. Let $f \in \mathcal{U}_n(\lambda)$. Then

$$\left|\frac{zf''(z)}{f'(z)}\right| < 1 \text{ for } |z| < r_{\lambda,n}(1/2),$$

where $r_{\lambda,n}(1/2)$ is the smallest positive root of the equation

$$\lambda^{2} n r^{2n+3} + \lambda n |a_{n+1}| r^{2n+2} + \lambda (n^{2} + 3n + 1) r^{n+3} + [(n+2)n|a_{n+1}| + \lambda(\lambda n - 1)] r^{n+2} - \lambda (n^{2} + 3n - n|a_{n+1}| + 1) r^{n+1} - (n+2)n|a_{n+1}| r^{n} - r^{2} - \lambda r + 1 = 0.$$

Example 3.3. In particular, the last corollary gives the following: $f \in \mathcal{U}_n(1)$ with $a_{n+1} = 0$ implies that

$$\left| \frac{zf''(z)}{f'(z)} \right| < 1$$
 for $|z| < r_{1,n}(1/2)$

where $r_{1,n}(1/2)$ is the smallest positive root of the equation

$$nr^{2n+3} + (n^2 + 3n + 1)r^{n+3} + (n-1)r^{n+2} - (n^2 + 3n + 1)r^{n+1} - r^2 - r + 1 = 0.$$

4. Proofs of the main theorems

4.1. Proof of Theorem 3.1. Suppose that $f \in \mathcal{U}_n(\lambda)$ for some $\lambda \in$ (0,1] and $n \in \mathbb{N}$. Then, by the definition of $\mathcal{U}_n(\lambda)$, we have

$$\left| \left(\frac{z}{f(z)} \right)^{n+1} f'(z) - 1 \right| \le \lambda |z|^{n+1} < \lambda$$

and, by (2.3), we get

$$\left| \left(\frac{z}{f(z)} \right)^n - 1 \right| \le n|z|^n (|a_{n+1}| + \lambda|z|) < n(|a_{n+1}| + \lambda)$$

Therefore, it follows that

(4.2)
$$\left| \arg\left(\frac{z}{f(z)}\right)^{n+1} f'(z) \right| < \arcsin(\lambda)$$

and

(4.3)
$$\left| \arg\left(\frac{z}{f(z)}\right)^n \right| < \arcsin(n(|a_{n+1}| + \lambda)).$$

Using (4.2), (4.3) and the addition formula for the inverse of sine function, namely,

$$\arcsin(x) + \arcsin(y) = \arcsin\left[x\sqrt{1-y^2} + y\sqrt{1-x^2}\right],$$

we find that

$$\begin{vmatrix} \arg \frac{zf'(z)}{f(z)} \end{vmatrix} \leq \begin{vmatrix} \arg \left(\frac{z}{f(z)} \right)^{n+1} f'(z) \end{vmatrix} + \left| \arg \left(\frac{z}{f(z)} \right)^n \right| \\ < \ \arcsin(\lambda) + \arcsin(n(|a_{n+1}| + \lambda))) \\ = \ \arcsin\left[\lambda \sqrt{1 - n^2(|a_{n+1}| + \lambda)^2} + n(|a_{n+1}| + \lambda)\sqrt{1 - \lambda^2} \right].$$

Thus, $f \in S_{\gamma}$ whenever $\lambda \in (0, \lambda_*(\gamma, n)]$. Here $\lambda_*(\gamma, n)$ is the solution of the equation

$$\phi(\lambda) = \lambda \sqrt{1 - n^2 (|a_{n+1}| + \lambda)^2} + n(|a_{n+1}| + \lambda) \sqrt{1 - \lambda^2} - \sin\left(\frac{\pi\gamma}{2}\right) = 0$$

h proves the Theorem.

which proves the Theorem.

4.4. Proof of Theorem 3.2. Let $f \in \mathcal{U}_n(\lambda)$. Following the proof of Theorem 3.1, we obtain that

$$\left| \arg\left(\frac{z}{f(z)}\right)^{n+1} f'(z) \right| \le \arcsin(\lambda r^{n+1})$$

and

$$\left|\arg\left(\frac{z}{f(z)}\right)^n\right| \le \arcsin\left(nr^n(|a_{n+1}| + \lambda r)\right)$$

Combining the last two inequalities, we get

$$\left|\arg\frac{zf'(z)}{f(z)}\right| \le \arcsin\left[\lambda r^{n+1}\sqrt{1 - n^2 r^{2n} (|a_{n+1}| + \lambda r)^2} + nr^n (|a_{n+1}| + \lambda r)\sqrt{1 - \lambda^2 r^{2(n+1)}}\right]$$

By a simple calculation, we see that the right hand side of the last inequality is less than or equal to $\pi\gamma/2$ provided that $E_{\lambda}(n,r) \leq 0$, where $E_{\lambda}(n,r)$ is as in Theorem 3.2.

4.5. Proof of Theorem 3.3. Let $f \in \mathcal{U}_n(\lambda)$. Then, by the representations (2.1) and (2.2), it follows that

(4.6)
$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda w(z)}{1 - na_{n+1}z^n - \lambda n \int_0^1 \frac{w(tz)}{t^{n+1}} dt},$$

where $w \in \mathcal{B}_n$. We proceed with the method of proof of Theorem 1.9 in [7]. According to this,

$$\begin{aligned} \left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| &= \frac{1}{2\beta} \left[\frac{\left| 2\beta - 1 + na_{n+1}z^n + 2\beta\lambda w(z) + \lambda n \int_0^1 \frac{w(tz)}{t^{n+1}} dt \right|}{\left| 1 - na_{n+1}z^n - \lambda n \int_0^1 \frac{w(tz)}{t^{n+1}} dt \right|} \right] \\ &\leq \frac{1}{2\beta} \left[\frac{\left| 2\beta - 1 \right| + n|a_{n+1}| \left| z \right|^n + (2\beta + n)\lambda \left| z \right|^{n+1}}{1 - n|a_{n+1}| \left| z \right|^n - \lambda n \left| z \right|^{n+1}} \right], \end{aligned}$$

since $|w(z)| \le |z|^{n+1}$. It is a simple exercise to see that the square bracketed term in the last step is less than 1 provided

$$2\lambda(\beta+n)|z|^{n+1} + 2n|a_{n+1}||z|^n + |2\beta-1| - 1 < 0.$$

Thus, it follows that

$$\left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta} \quad \text{for } |z| < r_0,$$

where r_0 is the positive root of the equation

$$2\lambda(\beta+n)r^{n+1} + 2n|a_{n+1}|r^n + |2\beta - 1| - 1 = 0.$$

We complete the proof.

4.7. Proof of Theorem 3.4. Let $f \in U_n(\lambda)$. Then the logarithmic derivative of the representation given by (2.1) yields that

$$1 + \frac{zf''(z)}{f'(z)} = (n+1)\frac{zf'(z)}{f(z)} - n + \frac{\lambda zw'(z)}{1 + \lambda w(z)}, \quad w \in \mathcal{B}_n.$$

In view of this equation and the representation (4.6), we see that

,

$$1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta} = (n+1)\left(\frac{1 + \lambda w(z)}{1 - na_{n+1}z^n - \lambda n\int_0^1 \frac{w(tz)}{t^{n+1}}\,dt}\right) - n + \frac{\lambda zw'(z)}{1 + \lambda w(z)} - \frac{1}{2\beta}$$

、

Since $w \in \mathcal{B}_n$, by the definition of \mathcal{B}_n , we have $|w(z)| \leq |z|^{n+1}$. By the well-known Schwarz-Pick lemma, we obtain that

$$|w'(z)| \le \frac{1 - |w(z)|^2}{1 - |z|^2}.$$

It follows that (as $\lambda \leq 1$)

$$\left|\frac{zw'(z)}{1+\lambda w(z)}\right| \leq \frac{|z|}{1-\lambda |w(z)|} \left(\frac{1-|w(z)|^2}{1-|z|^2}\right) \leq \frac{|z|(1+|z|^{n+1})}{1-|z|^2}.$$

With the help of this inequality and the fact that $|w(z)| \le |z|^{n+1}$, after some computation, we get that

$$\left|1+\frac{zf''(z)}{f'(z)}-\frac{1}{2\beta}\right|<\frac{1}{2\beta}R_n(\lambda,\beta,|z|),$$

where

$$R_n(\lambda,\beta,|z|) = \frac{|2\beta-1| + (2\beta n+1)n|a_{n+1}| |z|^n + \lambda[2\beta(n^2+n+1)+n]|z|^{n+1}}{1-n|a_{n+1}| |z|^n - \lambda n|z|^{n+1}} + \frac{2\beta\lambda|z|(1+|z|^{n+1})}{1-|z|^2}.$$

It can be easily seen that the inequality $R_n(\lambda, \beta, |z|) < 1$ is equivalent to (3.1). The desired conclusion follows.

148

5. Order of starlikeness for functions in $U_n(\lambda)$

Theorem 5.1. If $f \in U_n(\lambda)$ and $b = |a_{n+1}| \leq 1/n$, then $f \in S^*(\alpha)$ whenever $0 < \lambda \leq \lambda_0(\alpha)$, where

$$\lambda_0(\alpha) = \begin{cases} \frac{\sqrt{(1-2\alpha)(1+n^2(1-2\alpha-b^2))} - n^2b(1-2\alpha)}{1+n^2(1-2\alpha)} & \text{if } 0 \le \alpha < \alpha_0(n,b), \\ \frac{1-\alpha(1+nb)}{1+n\alpha} & \text{if } \alpha_0(n,b) \le \alpha < \frac{1}{1+nb} \\ \text{with } \alpha_0(n,b) = \frac{n(b+1)}{n(b+2)+1}. \end{cases}$$

We observe that if we choose $\alpha = 0$ in Theorem 5.1, then Corollary 3.1 follows. Further, we believe that the order of starlikeness given above for functions in $\mathcal{U}_n(\lambda)$ is sharp although at present we do not have a concrete proof for our claim. However, from Theorem 5.1, one can obtain a number of new results.

Corollary 5.1. If $f \in \mathcal{U}_n(\lambda)$ with $f^{(n+1)}(0) = 0$, then $f \in \mathcal{S}^*(\alpha)$ whenever $0 < \lambda \leq \lambda_0(\alpha)$, where

$$\lambda_0(\alpha) = \begin{cases} \sqrt{\frac{1-2\alpha}{1+n^2(1-2\alpha)}} & \text{if } 0 \le \alpha < \frac{n}{2n+1} \\ \frac{1-\alpha}{1+n\alpha} & \text{if } \frac{n}{2n+1} \le \alpha < 1. \end{cases}$$

The following corollary is an equivalent form of Corollary 5.1 which is some what handy and is of independent interest in some special situations.

Corollary 5.2. If $f \in \mathcal{U}_n(\lambda)$ with $f^{(n+1)}(0) = 0$ and $0 < \lambda \leq 1/\sqrt{n^2+1}$, then $f \in \mathcal{S}^*(\alpha)$, where

(5.1)
$$\alpha := \alpha(\lambda) = \begin{cases} \frac{1-\lambda}{1+n\lambda} & \text{if } 0 < \lambda \le 1/(n+1) \\ \frac{1-(1+n^2)\lambda^2}{2(1-n^2\lambda^2)} & \text{if } 1/(n+1) < \lambda \le 1/\sqrt{n^2+1} \end{cases}$$

For n = 1, Theorem 5.1 is due to [13].

5.2. Proof of Theorem 5.1. Suppose that $f \in \mathcal{U}_n(\lambda)$. Then, we can write

(5.3)
$$-\frac{1}{n}z\left\{\left(\frac{z}{f(z)}\right)^n\right\}' + \left(\frac{z}{f(z)}\right)^n = \left(\frac{z}{f(z)}\right)^{n+1}f'(z) = 1 + \lambda w(z),$$

where $w \in \mathcal{B}_n$. It follows that (see Section 2)

$$\left(\frac{z}{f(z)}\right)^n = 1 - na_{n+1}z^n - n\lambda \int_0^1 \frac{w(tz)}{t^{n+1}} dt,$$

and therefore, by (5.3), we see that

$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda w(z)}{1 - na_{n+1}z^n - n\lambda \int_0^1 \frac{w(tz)}{t^{n+1}} dt}.$$

Thus,

$$\frac{1}{1-\alpha} \left(\frac{zf'(z)}{f(z)} - \alpha \right) = \frac{1 + \frac{\lambda}{1-\alpha} w(z) + \frac{n\alpha}{1-\alpha} \left[\lambda \int_0^1 \frac{w(tz)}{t^{n+1}} dt + a_{n+1} z^n \right]}{1 - na_{n+1} z^n - n\lambda \int_0^1 \frac{w(tz)}{t^{n+1}} dt}.$$

Now, $\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha$ is equivalent to the condition

$$\frac{1+\frac{\lambda}{1-\alpha}w(z)+\frac{n\alpha}{1-\alpha}\left[\lambda\int_{0}^{1}\frac{w(tz)}{t^{n+1}}\,dt+a_{n+1}z^{n}\right]}{1-na_{n+1}z^{n}-n\lambda\int_{0}^{1}\frac{w(tz)}{t^{n+1}}\,dt}\neq -iT, \quad \text{for all } T\in\mathbb{R} \text{ and } z\in\Delta,$$

which can be rewritten as

$$\lambda \left[\frac{w(z) + n(\alpha - i(1 - \alpha)T) \int_0^1 \frac{w(tz)}{t^{n+1}} dt}{(1 - \alpha)(1 + iT) + n(\alpha - iT(1 - \alpha))a_{n+1}z^n} \right] \neq -1, \quad \text{for all } T \in \mathbb{R} \text{ and } z \in \Delta.$$

If we let

$$M = \sup_{z \in \Delta, \ w \in \mathcal{B}_n, \ T \in \mathbb{R}} \left| \frac{w(z) + n(\alpha - i(1 - \alpha)T) \int_0^1 \frac{w(tz)}{t^{n+1}} dt}{(1 - \alpha)(1 + iT) + n(\alpha - iT(1 - \alpha))a_{n+1}z^n} \right|$$

then, in view of the rotation invariance property of the space \mathcal{B}_n , we obtain that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad \text{if } \lambda M \leq 1.$$

This observation shows that it suffices to find M. Since $|w(z)| \le |z|^{n+1}$ for $z \in \Delta$, we first we notice that

$$M \le \sup_{T \in \mathbb{R}} \left\{ \frac{1 + n\sqrt{\alpha^2 + (1 - \alpha)^2 T^2}}{|(1 - \alpha)\sqrt{1 + T^2} - nb\sqrt{\alpha^2 + (1 - \alpha)^2 T^2}|} \right\},$$

where, for convenience, we use the notation $b = |a_{n+1}|$. Define $\phi : [0, \infty) \to \mathbb{R}$ by

(5.4)
$$\phi(x) = \frac{1 + n\sqrt{\alpha^2 + (1 - \alpha)^2 x}}{(1 - \alpha)\sqrt{1 + x} - nb\sqrt{\alpha^2 + (1 - \alpha)^2 x}}.$$

First we observe that the denominator in the expression of $\phi(x)$ is positive for all $x \in [0, \infty)$ provided $0 \le \alpha < 1/(1 + nb)$ and $0 \le b \le 1/n$.

Further, it is a simple exercise to see that

$$\phi'(x) = \frac{(1-\alpha)N(x)}{2\left[(1-\alpha)\sqrt{1+x} - nb\sqrt{\alpha^2 + (1-\alpha)^2x}\right]^2\sqrt{1+x}\sqrt{\alpha^2 + (1-\alpha)^2x}}$$

ere

where

$$N(x) = n(1 - 2\alpha) - \sqrt{\alpha^2 + (1 - \alpha)^2 x} + nb(1 - \alpha)\sqrt{1 + x}.$$

Case (I): Let b = 0. Then, we have

$$\phi'(x) = \frac{n(1-2\alpha) - \sqrt{\alpha^2 + (1-\alpha)^2 x}}{2(1-\alpha)\sqrt{(1+x)^3}\sqrt{\alpha^2 + (1-\alpha)^2 x}}$$

For $\alpha \ge \frac{n}{2n+1}$, we note that $\phi'(x) \le 0$ for all $x \ge 0$ and therefore,

$$\phi(x) \le \phi(0) = \frac{1+n\alpha}{1-\alpha}.$$

If $0 \le \alpha < n/(2n+1)$, then

$$x_0 = \frac{n^2 (1 - 2\alpha)^2 - \alpha^2}{(1 - \alpha)^2}$$

is the only critical point and that $\phi''(x_0) < 0$. This observation shows that, for $0 < \alpha < n/(2n+1)$, ϕ attains its maximum value at x_0 so that

$$\phi(x_0) = \sqrt{\frac{1 + n^2(1 - 2\alpha)}{1 - 2\alpha}}.$$

This gives essentially a direct proof for Corollary 5.1.

Case (II): Now we consider the case $b \neq 0$. In this case, the proofs run into several subcases. Firstly, we consider $1/2 \leq \alpha < 1/(1+nb)$. It follows that

$$N(x) \le n(1 - 2\alpha) \le 0,$$

because

$$nb(1-\alpha)\sqrt{1+x} \le \sqrt{\alpha^2 + (1-\alpha)^2 x}$$

Indeed, the last inequality follows from the fact that $nb \leq 1$,

$$0 \ge (1 - \alpha)^2 - \alpha^2 = 1 - 2\alpha \ge n^2 b^2 (1 - \alpha)^2 - \alpha^2,$$

and

$$x(1-\alpha)^2(1-n^2b^2) \ge n^2b^2(1-\alpha)^2 - \alpha^2.$$

Thus, $\phi'(x) \leq 0$ for all $x \geq 0$ whenever $1/2 \leq \alpha < 1/(1+nb)$. Next, we consider the case

$$\frac{n(b+1)}{n(b+2)+1} \le \alpha < 1/2.$$

S. Ponnusamy and P. Sahoo

In this case, it suffices to compute

$$N'(x) = -\frac{(1-\alpha)^2}{2\sqrt{\alpha^2 + (1-\alpha)^2 x}} + \frac{nb(1-\alpha)}{2\sqrt{1+x}}$$

and note that $N'(x) \leq 0$ holds for $x \geq 0$ if and only if

$$x(1-\alpha)^2(1-n^2b^2) \ge n^2b^2\alpha^2 - (1-\alpha)^2.$$

Since $\alpha < 1/2$ implies that

$$0 > 2\alpha - 1 = \alpha^{2} - (1 - \alpha)^{2} \ge n^{2}b^{2}\alpha^{2} - (1 - \alpha)^{2},$$

the function N(x) is decreasing for $x \ge 0$. Therefore, for $\frac{n(b+1)}{n(b+2)+1} \le \alpha < 1/2$, we have

$$N(x) \le N(0) = n(b+1) - \alpha(2n+nb+1) \le 0$$
 for $x \ge 0$.

The above observation shows that $\phi(x)$ defined by (5.4) is a decreasing function on $[0,\infty)$ whenever $\frac{n(b+1)}{n(b+2)+1} \leq \alpha < \frac{1}{1+nb}$. In particular,

$$\phi(x) \le \phi(0) = \frac{1 + n\alpha}{1 - (1 + nb)\alpha} \quad \text{ for } \quad \frac{n(b+1)}{n(b+2) + 1} \le \alpha < \frac{1}{1 + nb}$$

Case (III): Assume $b \neq 0$ and $0 \leq \alpha < \frac{n(b+1)}{n(b+2)+1}$. We make the substitution

$$t = \frac{1}{\sqrt{\alpha^2 + (1 - \alpha)^2 x}}$$

and note that

$$\sup_{x\in[0,\infty)}\phi(x)=\sup_{t\in(0,1/\alpha]}\psi(t)$$

where $\phi(x)$ becomes

$$\psi(t) = \frac{n+t}{\sqrt{1+(1-2\alpha)t^2} - nb}$$

with the above substitution. Now we compute

$$\psi'(t) = \frac{R(t)}{\left[\sqrt{1 + (1 - 2\alpha)t^2} - nb\right]^2 \sqrt{1 + (1 - 2\alpha)t^2}}$$

where

$$R(t) = 1 - n(1 - 2\alpha)t - nb\sqrt{1 + (1 - 2\alpha)t^2}.$$

Since R(t) decreases,

$$R(0) = 1 - nb \ge 0 > R(1/\alpha) = \frac{n(2+b) + 1}{\alpha} \left[\alpha - \frac{n(1+b)}{n(b+2) + 1} \right],$$

 $R(t) \neq 0$ for $t > 1/(n(1-2\alpha)),$ we get the estimate

$$M \le \{\psi(t): \ 0 \le t \le 1/(n(1-2\alpha)), \ R(t) = 0\} = \psi(s)$$

where

$$s = \frac{-(1-2\alpha) + b\sqrt{(1-2\alpha)(n^2+1-2\alpha n^2-n^2b^2)}}{n(1-2\alpha)(b^2-1+2\alpha)}$$

A simple calculation shows that $f \in \mathcal{S}^*(\alpha)$ whenever

$$\lambda \leq \frac{1}{\psi(s)} = \frac{b\sqrt{(1-2\alpha)(1+n^2(1-2\alpha-b^2))} - (1-2\alpha)}{b - \sqrt{(1-2\alpha)(1+n^2(1-2\alpha-b^2))}}$$

which, by multiplying both the numerator and the denominator by the quantity

$$b + \sqrt{(1 - 2\alpha)(1 + n^2(1 - 2\alpha - b^2))},$$

is seen to be equivalent to

$$\lambda \le \frac{1}{\psi(s)} = \frac{\sqrt{(1-2\alpha)(1+n^2(1-2\alpha-b^2))} - n^2b(1-2\alpha)}{1+n^2(1-2\alpha)}$$

$$n(b+1)$$
This completes the proof

for $0 \le \alpha < \frac{n(b+1)}{n(b+2)+1}$. This completes the proof.

6. Integral transforms

In this section we consider the following integral transform I(f) of $f \in \mathcal{A}$ defined by

(6.1)
$$[I(f)](z) = F(z) = z \left[\frac{c+1-n}{z^{c+1-n}} \int_0^z \left(\frac{t}{f(t)} \right)^n t^{c-n} dt \right]^{1/n}, \quad c+1-n > 0.$$

When c = n = 1, (6.1) becomes

$$\int_0^z \frac{t}{f(t)} \, dt$$

which is similar to Alexander transform. Also, I(f) is similar to Bernadi transformation when n = 1 and c > 0.

Theorem 6.1. Let $f \in U_n(\lambda)$ for some $\lambda > 0$ and $n \ge 1$. For c + 1 - n > 0, F = I(f) be defined by (6.1). Then $F \in S^*_{\alpha}$ whenever $|a_{n+1}|$, c, λ are related by

(6.2)
$$0 < \lambda \le \frac{c+2}{(c+1-n)(c+1)} \left[\frac{(1-\alpha)(c+1) - n(2-\alpha)(c+1-n)|a_{n+1}|}{1+(2-\alpha)n} \right].$$

Proof. From (6.2) we observe that

$$a_{n+1}| < \left(\frac{c+1}{n(c+1-n)}\right) \left(\frac{1-\alpha}{2-\alpha}\right).$$

153

S. Ponnusamy and P. Sahoo

By (6.1), we see that

$$(c+1-n)\left(\frac{F(z)}{z}\right)^n + z\frac{d}{dz}\left(\frac{F(z)}{z}\right)^n = (c+1-n)\left(\frac{z}{f(z)}\right)^n.$$

It is a simple exercise to show that

$$\frac{1}{n(c+1-n)} \left[(c-n)(n+1) \left(\frac{F(z)}{z}\right)^n - (c-2n) \frac{d}{dz} \left(z \left(\frac{F(z)}{z}\right)^n \right) - z \frac{d^2}{dz^2} \left(z \left(\frac{F(z)}{z}\right)^n \right) \right] = \left(\frac{z}{f(z)}\right)^{n+1} f'(z).$$

If we set

(6.3)
$$P(z) = z \left(\frac{F(z)}{z}\right)^n,$$

then, from the last equation and the assumption $f \in \mathcal{U}_n(\lambda)$, it follows that P(z) satisfies the second order differential equation

(6.4)
$$\left(\frac{(c-n)(n+1)}{n(c+1-n)}\right)\frac{P(z)}{z} - \frac{(c-2n)P'(z)}{n(c+1-n)} - \frac{zP''(z)}{n(c+1-n)} = 1 + \lambda w(z)$$

where $w \in \mathcal{B}_n$. If we let $P(z) = z + \sum_{k=n+1}^{\infty} c_k z^k$ and $w(z) = \sum_{k=n+1}^{\infty} w_k z^k$ in (6.4), then, by equating the coefficients of z^n , we get the representations

(6.5)
$$\frac{P(z)}{z} = 1 + c_{n+1} z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (1 - t^{c+1}) dt$$

and

(6.6)
$$P'(z) = 1 + (n+1)c_{n+1}z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (n+1+(c-n)t^{c+1}) dt$$

4

where

(6.7)
$$c_{n+1} = -\frac{n(c+1-n)}{c+1}a_{n+1}.$$

In view of the representation

$$\left(\frac{z}{f(z)}\right)^{n+1} f'(z) = \left(\frac{z}{f(z)}\right)^n - \frac{1}{n^2} z \left\{ \left(\frac{z}{f(z)}\right)^n \right\}' = 1 + \lambda w(z) \quad (w \in \mathcal{B}_n),$$

it follows that (see Section 2)

$$\left(\frac{z}{f(z)}\right)^n = 1 - n \, a_{n+1} \, z^n - \lambda n \int_0^1 \frac{w(tz)}{t^{n+1}} \, dt \, .$$

From (6.3), we have

(6.8)
$$\frac{zF'(z)}{F(z)} - 1 = \frac{1}{n} \left(\frac{zP'(z)}{P(z)} - 1 \right).$$

Using (6.5), (6.6) and (6.8), we find that

$$\begin{aligned} &\frac{zF'(z)}{F(z)} - 1 \\ &= \frac{1}{n} \left[-1 + \frac{1 + (n+1)c_{n+1}z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (n+1+(c-n)t^{c+1}) dt}{1 + c_{n+1}z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (1 - t^{c+1}) dt} \right] \\ &= \frac{1}{n} \left[\frac{nc_{n+1}z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (n+(c+1-n)t^{c+1}) dt}{1 + c_{n+1}z^n - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 \frac{w(tz)}{t^{n+1}} (1 - t^{c+1}) dt} \right] \end{aligned}$$

so that

$$\begin{aligned} \left| \frac{zF'(z)}{F(z)} - 1 \right| &< \frac{|c_{n+1}| + \frac{\lambda(c+1-n)}{c+1} \int_0^1 (n+(c+1-n)t^{c+1}) dt}{1 - |c_{n+1}| - \frac{\lambda n(c+1-n)}{c+1} \int_0^1 (1-t^{c+1}) dt} \\ &= \frac{(c+1-n) \left[\frac{n|a_{n+1}|}{c+1} + \frac{\lambda(n+1)}{c+2} \right]}{1 - n(c+1-n) \left[\frac{|a_{n+1}|}{c+1} + \frac{\lambda}{c+2} \right]} \le 1 - \alpha, \quad \text{by (6.2) and (6.7).} \end{aligned}$$

This completes the proof.

If we let n = 1 in Theorem 6.1, then we have the following

Corollary 6.1. Let $f(z) = z + a_2 z^2 + \cdots \in \mathcal{U}(\lambda)$ for some $\lambda > 0$. If c > 0 and $\alpha < 1$, then F(z) defined in (6.1) is in S^*_{α} whenever c, λ are related by

(6.9)
$$0 < \lambda \le \frac{c+2}{c(c+1)} \left[\frac{(1-\alpha)(c+1) - (2-\alpha)c|a_2|}{3-\alpha} \right].$$

From (6.9), we note that

$$|a_2| < \left(\frac{c+1}{c}\right) \left(\frac{1-\alpha}{2-\alpha}\right).$$

Corollary 6.1 was obtained recently by Ponnusamy et al. in [12]. We end the paper with the following conjecture which we are unable to handle at present.

Conjecture. The results of Theorems 3.1, 3.2 and 6.1 are all sharp.

S. Ponnusamy and P. Sahoo

References

- I. E. Bazilevič, On a case of integrability in quadratures of the Löewner-Kufarev equation, Mat. Sb. 37(79) (1955), 471–476.
- [2] D. Brannan and W. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431–443.
- [3] P. L. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften 659, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
- [4] A. W. Goodman, Univalent Functions, Vol. I & II, Mariner Publ. Co. Tampa, Florida 1983.
- [5] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), 329-315.
- [6] M. Obradović and S. Ponnusamy, New criteria and distortion theorems for univalent functions, *Complex Variables: Theory and Appl.* 44 (2001), 173–191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).
- [7] M. Obradović, S. Ponnusamy, V. Singh and P. Vasundhra, Univalency, starlikeness and convexity applied to certain classes of rational functions, *Analysis (Munich)* 22(3) (2002), 225–242.
- [8] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2)(1972), 392–394.
- [9] S. Ponnusamy, Pólya Schoenberg conjecture by Carathéodory functions, J. London Math. Soc. (2)51(1995), 93–104.
- [10] S. Ponnusamy and P. Sahoo, Geometric properties of certain linear integral transforms Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 95–108
- [11] S. Ponnusamy and V. Singh, Convolution properties of some classes analytic functions, Zapiski Nauchnych Seminarov POMI 226 (1996), 138–154.
- [12] S. Ponnusamy, V. Singh and P. Vasundhra, Starlikeness and convexity of an integral transform, *Integral Transforms Spec. Funct.* 15(3) (2004), 267–280.
- [13] S. Ponnusamy and P. Vasundhra, Criteria for univalence, starlikeness and convexity, Ann. Polon. Math. 85 (2005), 121–133
- [14] S. Ponnusamy and P. Vasundhra, Univalent functions with missing Taylor coefficients, *Hokkaido Math. J.* 33 (2004), 341–355.
- [15] St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.