Special Classes of Univalent Functions with Missing Coefficients and Integral Transforms

${ }^{1}$ S. Ponnusamy and ${ }^{2} \mathrm{P}$. Sahoo
${ }^{1}$ Department of Mathematics, Indian Institute of Technology, Madras Chennai - 600 036, India
${ }^{2}$ Department of Mathematics, Mahila Maha Vidyalaya (MMV),
Banaras Hindu University, Banaras 221 005, India
${ }^{1}$ samy@iitm.ac.in, ${ }^{2}$ pravatis@yahoo.co.in

Abstract. Let \mathcal{A}_{n} be the class of all analytic functions f of the form

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}, \quad z \in \Delta
$$

where $n \in \mathbb{N}$ is fixed. For $\lambda>0$ and $\alpha<1$, define

$$
\mathcal{U}_{n}(\lambda)=\left\{f \in \mathcal{A}_{n}:\left|\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)-1\right|<\lambda, z \in \Delta\right\}
$$

and

$$
\mathcal{S}_{\alpha}^{*}=\left\{f \in \mathcal{S}^{*}(\alpha):\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha, z \in \Delta\right\}
$$

In this paper, we find suitable conditions on λ and α so that $\mathcal{U}_{n}(\lambda)$ is included in \mathcal{S}_{α} and $\mathcal{S}^{*}(\alpha)$. Here \mathcal{S}_{α} and $\mathcal{S}^{*}(\alpha)$ denote the usual classes of strongly starlike and starlike of order α, respectively. We determine necessary conditions so that $f \in \mathcal{U}_{n}(\lambda)$ implies that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, \quad z \in \Delta
$$

or

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, \quad|z|<r
$$

where $r=r(\lambda, n)$ will be specified. For $c+1-n>0$, define

$$
[I(f)](z)=F(z)=z\left[\frac{c+1-n}{z^{c+1-n}} \int_{0}^{z}\left(\frac{t}{f(t)}\right)^{n} t^{c-n} d t\right]^{1 / n}
$$

We also find conditions on λ, α and c so that $I\left(\mathcal{U}_{n}(\lambda)\right) \subset \mathcal{S}_{\alpha}^{*}$.

2000 Mathematics Subject Classification: 30C45, 30C55
Key words and phrases: Univalent, starlike and convex functions, subordination, and integral transforms.

1. Introduction and preliminaries

Let \mathcal{H} denote the class of analytic functions in the unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and \mathcal{A} denote the class of all functions f in \mathcal{H} such that $f(0)=0=f^{\prime}(0)-1$. Let $\mathcal{S}=\{f \in \mathcal{A}: f$ is univalent in $\Delta\}$ and (see [3])

$$
\mathcal{S}^{*}=\{f \in \mathcal{A}: \quad f(\Delta) \text { is starlike }\} \equiv\left\{f \in \mathcal{S}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in \Delta\right\}
$$

Also, we let $\mathcal{S}^{*}(\alpha), \alpha<1$, to be the family of starlike functions of order α. It is well-known that $f \in \mathcal{S}^{*}(\alpha)$ iff $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$ for $z \in \Delta ; \mathcal{S}^{*}(\alpha) \subsetneq \mathcal{S}^{*}$ for $0<\alpha<1$. For $0<\alpha \leq 1$, a function $f \in \mathcal{A}$ is called strongly starlike of order α iff f satisfies the condition

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}, \quad z \in \Delta
$$

where \prec denotes the usual subordination (see [3]). The class of all strongly starlike functions of order α is denoted by \mathcal{S}_{α}. Clearly, $\mathcal{S}_{1} \equiv \mathcal{S}^{*}$ and if $0<\alpha<1$, then the class \mathcal{S}_{α} is completely contained in the class of all bounded starlike functions [2]. For $\mu<0$, define

$$
\mathcal{B}(\mu)=\left\{f \in \mathcal{A}: \operatorname{Re}\left(f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}\right)>0, z \in \Delta\right\}
$$

It is shown in [1] that $\mathcal{B}(\mu)$ is a subclasses of the class of Bazilveič functions that is contained in the class \mathcal{S}.

In [9], Ponnusamy has considered a subclass of $\mathcal{B}(\mu)$ defined by

$$
\mathcal{U}(\lambda, \mu)=\left\{f \in \mathcal{A}:\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|<\lambda, z \in \Delta\right\} .
$$

Clearly, $\mathcal{U}(\lambda, \mu)$ is contained in \mathcal{S} for $\mu<0$. In [9], Ponnusamy found conditions on λ and $\mu<0$ so that $\mathcal{U}(\lambda, \mu)$ is included in \mathcal{S}^{*} or other well-known subclasses of \mathcal{S}. On the other hand, Nunokawa and Ozaki [8] has shown that $\mathcal{U}(\lambda, 1) \equiv \mathcal{U}(\lambda)$ is also included in \mathcal{S} for $0<\lambda \leq 1$. It is important to observe that the Koebe function $z /(1-z)^{2}$ belongs to $\mathcal{U}(1)$ but $\mathcal{U}(1)$ not included in \mathcal{S}^{*}, see [6]. In view of these observations, Ponnusamy and Vasundhra [13] found conditions on λ_{0} so that $\mathcal{U}(\lambda) \subseteq \mathcal{S}^{*}$ for $0<\lambda \leq \lambda_{0}$. Further, it is interesting to find the analog of the inclusion results (such as the containment theorems $\mathcal{U}(\lambda, \mu) \subset \mathcal{S}^{*}(\alpha)$ for $\mu<0$) also for the case $0<\mu<1$. For $0<\mu<1$, the class $\mathcal{U}(\lambda, \mu)$ has been discussed by Obradović [5].

Let \mathcal{A}_{n} denote the class of all functions $f \in \mathcal{A}$ such that f has the form

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

where $n \in \mathbb{N}$ is fixed. Clearly, $\mathcal{A}:=\mathcal{A}_{1}$. For $f \in \mathcal{A}_{n}$ such that $f(z) / z \neq 0$, we have

$$
\left(\frac{z}{f(z)}\right)^{\mu+1} f^{\prime}(z)=1+(n-\mu) a_{n+1} z^{n}+\cdots
$$

and so, it is essential to consider two cases, namely $\mu \in(0, n)$ and $\mu=n$, separately. For $\mu \in(0, n)$ and $\lambda>0$, the class $\mathcal{U}_{n}(\lambda, \mu) \equiv \mathcal{A}_{n} \cap \mathcal{U}(\lambda, \mu)$ has been discussed by the authors in [10]. However, the case $\mu=n$, which does produce a slightly different implication, has not been discussed in [10]. For $\mu=n$, the class $\mathcal{U}_{n}(\lambda, \mu)$ will be denoted by $\mathcal{U}_{n}(\lambda)$ for convenience. Thus it is now natural to raise the following problem.

Problem. Find conditions on λ and α such that $\mathcal{U}_{n}(\lambda)$ is included $\mathcal{S}^{*}(\alpha)$ or \mathcal{S}_{α}.
The main aim of this paper is to answer this problem in a more general form. For the special case $n=1$, this class has been studied by several authors [5, 6, 7, 12].

2. Basic properties of $\mathcal{U}_{n}(\lambda)$

By definition, each $f \in \mathcal{U}_{n}(\lambda)$ can be written as

$$
\begin{equation*}
\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)=1+\lambda w(z)=1+A_{n+1} z^{n+1}+\cdots \tag{2.1}
\end{equation*}
$$

for some $w \in \mathcal{B}_{n}$. Here,

$$
\mathcal{B}_{n}=\left\{w \in \mathcal{H}: w(0)=w^{\prime}(0)=\cdots=w^{(n)}(0)=0, \quad \text { and }|w(z)|<1 \text { for } z \in \Delta\right\}
$$

and throughout the paper a_{n+1} is meant for $f^{(n+1)}(0) /(n+1)$!. If we set

$$
p(z)=\left(\frac{z}{f(z)}\right)^{n}=1-n a_{n+1} z^{n}+\cdots
$$

then p is analytic in $\Delta, p(0)=1$ and $p^{(k)}(0)=0$ for $k=1,2, \ldots, n-1$. Further, (2.1) is seen to be equivalent to

$$
p(z)-\frac{1}{n} z p^{\prime}(z)=1+\lambda w(z)
$$

An algebraic computation implies that

$$
\begin{equation*}
p(z)=1-n a_{n+1} z^{n}-n \lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t \tag{2.2}
\end{equation*}
$$

As $w(z) \in \mathcal{B}_{n}$, Schwarz's lemma gives that $|w(z)| \leq|z|^{n+1}$ for $z \in \Delta$ and therefore,

$$
|p(z)-1| \leq n|z|^{n}\left(\left|a_{n+1}\right|+\lambda|z|\right), \quad z \in \Delta
$$

which is

$$
\begin{equation*}
\left|\left(\frac{z}{f(z)}\right)^{n}-1\right| \leq n|z|^{n}\left(\left|a_{n+1}\right|+\lambda|z|\right), \quad z \in \Delta \tag{2.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
1-n|z|^{n}\left(\left|a_{n+1}\right|+\lambda|z|\right) \leq \operatorname{Re}\left(\frac{z}{f(z)}\right)^{n} \leq 1+n|z|^{n}\left(\left|a_{n+1}\right|+\lambda|z|\right) \tag{2.4}
\end{equation*}
$$

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of the form

$$
f(z)=\frac{z}{\left(1 \pm n\left|a_{n+1}\right| z^{n}+\lambda n z^{n+1}\right)^{1 / n}}
$$

3. Strongly starlikeness and convexity for functions in $\mathcal{U}_{n}(\lambda)$

We are now in a position to state our main results and their consequences. The proof of these results will be given in Section 4.

Theorem 3.1. Let $\gamma \in(0,1], n \geq 1$ and
$\lambda_{*}(\gamma, n)=\frac{-n(n+\cos (\gamma \pi / 2))\left|a_{n+1}\right|+\sin (\gamma \pi / 2) \sqrt{1+n^{2}\left(1-\left|a_{n+1}\right|^{2}\right)+2 n \cos (\gamma \pi / 2)}}{1+2 n \cos (\gamma \pi / 2)+n^{2}}$.
If $f \in \mathcal{U}_{n}(\lambda)$, then $f \in \mathcal{S}_{\gamma}$ for $0<\lambda \leq \lambda_{*}(\gamma, n)$.
Theorem 3.1 for $n=1$ is due to Obradović et al [7]. In the case $\gamma=1$, Theorem 3.1 yields criteria for starlike functions.

Corollary 3.1. If $f \in \mathcal{U}_{n}(\lambda)$ and $0<\lambda \leq \frac{-n^{2}\left|a_{n+1}\right|+\sqrt{1+n^{2}\left(1-\left|a_{n+1}\right|^{2}\right)}}{1+n^{2}}$, then $f \in \mathcal{S}^{*}$.

For $n=1$, Corollary 3.1 yields
Corollary 3.2. If $f \in \mathcal{U}(\lambda)$, then $f \in \mathcal{S}^{*}$ for $0<\lambda \leq \frac{-\left|a_{2}\right|+\sqrt{2-\left|a_{2}\right|^{2}}}{2}$.
This corollary was stated as a conjecture in [6] but was settled later in [7]. The same reasoning indicated in the proof of Theorem 3.1 helps to obtain the following result.

Theorem 3.2. Let $f \in \mathcal{U}_{n}(\lambda)$ and $\lambda_{*}(\gamma, n)$ be as in Theorem 3.1. Then, for $\lambda_{*}(\gamma, n) \leq \lambda, f$ is strongly starlike in $|z|<r(\lambda, \gamma, n)$, where $r=r(\lambda, \gamma, n)$ is the smallest positive root of the equation $E_{\lambda}(n, r)=0$, where

$$
\begin{gathered}
E_{\lambda}(n, r)=\lambda^{2} r^{2(n+1)}\left(1+n^{2}+2 n \cos (\gamma \pi / 2)\right)+2 \lambda n(n+\cos (\gamma \pi / 2))\left|a_{n+1}\right| r^{2 n+1} \\
+n^{2}\left|a_{n+1}\right|^{2} r^{2 n}-\sin ^{2}(\gamma \pi / 2)
\end{gathered}
$$

In the case $\gamma=1$, Theorem 3.2 yields
Corollary 3.3. If $f \in \mathcal{U}_{n}(\lambda)$ and

$$
\frac{-n^{2}\left|a_{n+1}\right|+\sqrt{1+n^{2}\left(1-\left|a_{n+1}\right|^{2}\right)}}{1+n^{2}}<\lambda \leq 1,
$$

then $f \in \mathcal{S}^{*}$ in $|z|<r=r(\lambda, n)$, where r is the smallest root of

$$
\lambda^{2}\left(1+n^{2}\right) r^{2(n+1)}+2 \lambda n^{2}\left|a_{n+1}\right| r^{2 n+1}+n^{2}\left|a_{n+1}\right|^{2} r^{2 n}-1=0 .
$$

For $n=1$, Corollary 3.3 yields
Example 3.1. If $f \in \mathcal{U}(\lambda)$, then $\frac{1}{r} f(r z) \in \mathcal{S}^{*}$ for $\frac{-\left|a_{2}\right|+\sqrt{2-\left|a_{2}\right|^{2}}}{2} \leq \lambda \leq 1$, where r is the smallest positive root of

$$
2 \lambda^{2} r^{4}+2 \lambda\left|a_{2}\right| r^{3}+\left|a_{2}\right|^{2} r^{2}-1=0
$$

Example 3.2. Suppose that $f \in \mathcal{U}_{n}(\lambda)$ with $a_{n+1}=0$, and

$$
\lambda_{0}(\gamma, n)=\frac{\sin (\pi \gamma / 2)}{\sqrt{1+2 n \cos (\pi \gamma / 2)+n^{2}}}
$$

Then, by Theorems 3.1 and 3.2, we have the following:
(i) $f \in \mathcal{S}_{\gamma}$ whenever $0<\lambda \leq \lambda_{0}=\lambda_{0}(\gamma, n)$
(ii) $f \in \mathcal{S}_{\gamma}$ for $|z|<r=\left(\frac{\lambda_{0}(\gamma, n)}{\lambda}\right)^{1 /(n+1)}$ whenever $\lambda_{0}(\gamma, n)<\lambda \leq 1$.

In the following theorem, we consider similar results for certain subsets of the set of all starlike functions. To do this, we define

$$
\mathcal{S}_{b}^{*}(\beta)=\left\{f \in \mathcal{S}^{*}:\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta}, z \in \Delta\right\}
$$

where $0<\beta<1$.
Theorem 3.3. Let $n \in \mathbb{N}$ and $\lambda \in(0,1]$. If $f \in \mathcal{U}_{n}(\lambda)$, then for $0<\beta<1$ we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} \quad \text { for } \quad|z|<r_{0}=r_{0}(\lambda, n, \beta)
$$

where r_{0} is the positive root of the equation

$$
2 \lambda(\beta+n) r^{n+1}+2 n\left|a_{n+1}\right| r^{n}+|2 \beta-1|-1=0
$$

For $n=1$, Theorem 3.3 has been obtained by Obradović et al [7].
Theorem 3.4. Let $n \in \mathbb{N}$ and $\lambda \in(0,1]$. If $f \in \mathcal{U}_{n}(\lambda)$, then for $0<\beta \leq 1$ we have

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} \quad \text { for } \quad|z|<r_{\lambda, n}(\beta)
$$

where $r=r_{\lambda, n}(\beta)$ is the smallest positive root of the equation

$$
\begin{array}{r}
(3.1) \quad 2 \beta \lambda^{2} n r^{2 n+3}+2 \beta \lambda n\left|a_{n+1}\right| r^{2 n+2}+2 \lambda\left(\beta n^{2}+(\beta+1) n+\beta\right) r^{n+3} \tag{3.1}\\
+2\left(\beta \lambda(\lambda n-1)+(\beta n+1) n\left|a_{n+1}\right|\right) r^{n+2}-2 \lambda\left(\beta n^{2}+(1+\beta) n+\beta-\beta n\left|a_{n+1}\right|\right) r^{n+1} \\
-2(\beta n+1) n\left|a_{n+1}\right| r^{n}-(1-|2 \beta-1|) r^{2}-2 \beta \lambda r-|2 \beta-1|+1=0 .
\end{array}
$$

In particular, $r^{-1} f(r z) \in \mathcal{K}$, where \mathcal{K} denotes the class of all convex functions g, i.e. $z g^{\prime}(z)$ belongs \mathcal{S}^{*}.

If we choose $\beta=1 / 2$, we obtain
Corollary 3.4. Let $f \in \mathcal{U}_{n}(\lambda)$. Then

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<1 \quad \text { for } \quad|z|<r_{\lambda, n}(1 / 2)
$$

where $r_{\lambda, n}(1 / 2)$ is the smallest positive root of the equation

$$
\begin{array}{r}
\lambda^{2} n r^{2 n+3}+\lambda n\left|a_{n+1}\right| r^{2 n+2}+\lambda\left(n^{2}+3 n+1\right) r^{n+3}+\left[(n+2) n\left|a_{n+1}\right|+\lambda(\lambda n-1)\right] r^{n+2} \\
-\lambda\left(n^{2}+3 n-n\left|a_{n+1}\right|+1\right) r^{n+1}-(n+2) n\left|a_{n+1}\right| r^{n}-r^{2}-\lambda r+1=0
\end{array}
$$

Example 3.3. In particular, the last corollary gives the following: $f \in \mathcal{U}_{n}(1)$ with $a_{n+1}=0$ implies that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<1 \quad \text { for } \quad|z|<r_{1, n}(1 / 2)
$$

where $r_{1, n}(1 / 2)$ is the smallest positive root of the equation

$$
n r^{2 n+3}+\left(n^{2}+3 n+1\right) r^{n+3}+(n-1) r^{n+2}-\left(n^{2}+3 n+1\right) r^{n+1}-r^{2}-r+1=0 .
$$

4. Proofs of the main theorems

4.1. Proof of Theorem 3.1. \quad Suppose that $f \in \mathcal{U}_{n}(\lambda)$ for some $\lambda \in$ $(0,1]$ and $n \in \mathbb{N}$. Then, by the definition of $\mathcal{U}_{n}(\lambda)$, we have

$$
\left|\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)-1\right| \leq \lambda|z|^{n+1}<\lambda
$$

and, by (2.3), we get

$$
\left|\left(\frac{z}{f(z)}\right)^{n}-1\right| \leq n|z|^{n}\left(\left|a_{n+1}\right|+\lambda|z|\right)<n\left(\left|a_{n+1}\right|+\lambda\right)
$$

Therefore, it follows that

$$
\begin{equation*}
\left|\arg \left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)\right|<\arcsin (\lambda) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{z}{f(z)}\right)^{n}\right|<\arcsin \left(n\left(\left|a_{n+1}\right|+\lambda\right)\right) \tag{4.3}
\end{equation*}
$$

Using (4.2), (4.3) and the addition formula for the inverse of sine function, namely,

$$
\arcsin (x)+\arcsin (y)=\arcsin \left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]
$$

we find that

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| & \leq\left|\arg \left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)\right|+\left|\arg \left(\frac{z}{f(z)}\right)^{n}\right| \\
& <\arcsin (\lambda)+\arcsin \left(n\left(\left|a_{n+1}\right|+\lambda\right)\right) \\
& =\arcsin \left[\lambda \sqrt{1-n^{2}\left(\left|a_{n+1}\right|+\lambda\right)^{2}}+n\left(\left|a_{n+1}\right|+\lambda\right) \sqrt{1-\lambda^{2}}\right]
\end{aligned}
$$

Thus, $f \in \mathcal{S}_{\gamma}$ whenever $\lambda \in\left(0, \lambda_{*}(\gamma, n)\right]$. Here $\lambda_{*}(\gamma, n)$ is the solution of the equation

$$
\phi(\lambda)=\lambda \sqrt{1-n^{2}\left(\left|a_{n+1}\right|+\lambda\right)^{2}}+n\left(\left|a_{n+1}\right|+\lambda\right) \sqrt{1-\lambda^{2}}-\sin \left(\frac{\pi \gamma}{2}\right)=0
$$

which proves the Theorem.
4.4. Proof of Theorem 3.2. Let $f \in \mathcal{U}_{n}(\lambda)$. Following the proof of Theorem 3.1, we obtain that

$$
\left|\arg \left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)\right| \leq \arcsin \left(\lambda r^{n+1}\right)
$$

and

$$
\left|\arg \left(\frac{z}{f(z)}\right)^{n}\right| \leq \arcsin \left(n r^{n}\left(\left|a_{n+1}\right|+\lambda r\right)\right) .
$$

Combining the last two inequalities, we get

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \arcsin & {\left[\lambda r^{n+1} \sqrt{1-n^{2} r^{2 n}\left(\left|a_{n+1}\right|+\lambda r\right)^{2}}\right.} \\
& \left.+n r^{n}\left(\left|a_{n+1}\right|+\lambda r\right) \sqrt{1-\lambda^{2} r^{2(n+1)}}\right] .
\end{aligned}
$$

By a simple calculation, we see that the right hand side of the last inequality is less than or equal to $\pi \gamma / 2$ provided that $E_{\lambda}(n, r) \leq 0$, where $E_{\lambda}(n, r)$ is as in Theorem 3.2.
4.5. Proof of Theorem 3.3. Let $f \in \mathcal{U}_{n}(\lambda)$. Then, by the representations (2.1) and (2.2), it follows that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\lambda w(z)}{1-n a_{n+1} z^{n}-\lambda n \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t} \tag{4.6}
\end{equation*}
$$

where $w \in \mathcal{B}_{n}$. We proceed with the method of proof of Theorem 1.9 in [7]. According to this,

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right| & =\frac{1}{2 \beta}\left[\frac{\left|2 \beta-1+n a_{n+1} z^{n}+2 \beta \lambda w(z)+\lambda n \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t\right|}{\left|1-n a_{n+1} z^{n}-\lambda n \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t\right|}\right] \\
& \leq \frac{1}{2 \beta}\left[\frac{|2 \beta-1|+n\left|a_{n+1}\right||z|^{n}+(2 \beta+n) \lambda|z|^{n+1}}{1-n\left|a_{n+1}\right||z|^{n}-\lambda n|z|^{n+1}}\right]
\end{aligned}
$$

since $|w(z)| \leq|z|^{n+1}$. It is a simple exercise to see that the square bracketed term in the last step is less than 1 provided

$$
2 \lambda(\beta+n)|z|^{n+1}+2 n\left|a_{n+1}\right||z|^{n}+|2 \beta-1|-1<0 .
$$

Thus, it follows that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} \quad \text { for }|z|<r_{0},
$$

where r_{0} is the positive root of the equation

$$
2 \lambda(\beta+n) r^{n+1}+2 n\left|a_{n+1}\right| r^{n}+|2 \beta-1|-1=0 .
$$

We complete the proof.
4.7. Proof of Theorem 3.4. Let $f \in \mathcal{U}_{n}(\lambda)$. Then the logarithmic derivative of the representation given by (2.1) yields that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(n+1) \frac{z f^{\prime}(z)}{f(z)}-n+\frac{\lambda z w^{\prime}(z)}{1+\lambda w(z)}, \quad w \in \mathcal{B}_{n}
$$

In view of this equation and the representation (4.6), we see that
$1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}=(n+1)\left(\frac{1+\lambda w(z)}{1-n a_{n+1} z^{n}-\lambda n \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t}\right)-n+\frac{\lambda z w^{\prime}(z)}{1+\lambda w(z)}-\frac{1}{2 \beta}$.
Since $w \in \mathcal{B}_{n}$, by the definition of \mathcal{B}_{n}, we have $|w(z)| \leq|z|^{n+1}$. By the well-known Schwarz-Pick lemma, we obtain that

$$
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}}
$$

It follows that (as $\lambda \leq 1)$

$$
\left|\frac{z w^{\prime}(z)}{1+\lambda w(z)}\right| \leq \frac{|z|}{1-\lambda|w(z)|}\left(\frac{1-|w(z)|^{2}}{1-|z|^{2}}\right) \leq \frac{|z|\left(1+|z|^{n+1}\right)}{1-|z|^{2}}
$$

With the help of this inequality and the fact that $|w(z)| \leq|z|^{n+1}$, after some computation, we get that

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{1}{2 \beta}\right|<\frac{1}{2 \beta} R_{n}(\lambda, \beta,|z|),
$$

where

$$
\begin{gathered}
R_{n}(\lambda, \beta,|z|)=\frac{|2 \beta-1|+(2 \beta n+1) n\left|a_{n+1}\right||z|^{n}+\lambda\left[2 \beta\left(n^{2}+n+1\right)+n\right]|z|^{n+1}}{1-n\left|a_{n+1}\right||z|^{n}-\lambda n|z|^{n+1}} \\
+\frac{2 \beta \lambda|z|\left(1+|z|^{n+1}\right)}{1-|z|^{2}} .
\end{gathered}
$$

It can be easily seen that the inequality $R_{n}(\lambda, \beta,|z|)<1$ is equivalent to (3.1). The desired conclusion follows.

5. Order of starlikeness for functions in $\mathcal{U}_{n}(\lambda)$

Theorem 5.1. If $f \in \mathcal{U}_{n}(\lambda)$ and $b=\left|a_{n+1}\right| \leq 1 / n$, then $f \in \mathcal{S}^{*}(\alpha)$ whenever $0<\lambda \leq \lambda_{0}(\alpha)$, where
$\lambda_{0}(\alpha)= \begin{cases}\frac{\sqrt{(1-2 \alpha)\left(1+n^{2}\left(1-2 \alpha-b^{2}\right)\right)}-n^{2} b(1-2 \alpha)}{1+n^{2}(1-2 \alpha)} & \text { if } 0 \leq \alpha<\alpha_{0}(n, b), \\ \frac{1-\alpha(1+n b)}{1+n \alpha} & \text { if } \alpha_{0}(n, b) \leq \alpha<\frac{1}{1+n b}\end{cases}$
with $\alpha_{0}(n, b)=\frac{n(b+1)}{n(b+2)+1}$.
We observe that if we choose $\alpha=0$ in Theorem 5.1, then Corollary 3.1 follows. Further, we believe that the order of starlikeness given above for functions in $\mathcal{U}_{n}(\lambda)$ is sharp although at present we do not have a concrete proof for our claim. However, from Theorem 5.1, one can obtain a number of new results.

Corollary 5.1. If $f \in \mathcal{U}_{n}(\lambda)$ with $f^{(n+1)}(0)=0$, then $f \in \mathcal{S}^{*}(\alpha)$ whenever $0<\lambda \leq$ $\lambda_{0}(\alpha)$, where

$$
\lambda_{0}(\alpha)= \begin{cases}\sqrt{\frac{1-2 \alpha}{1+n^{2}(1-2 \alpha)}} & \text { if } 0 \leq \alpha<\frac{n}{2 n+1} \\ \frac{1-\alpha}{1+n \alpha} & \text { if } \frac{n}{2 n+1} \leq \alpha<1\end{cases}
$$

The following corollary is an equivalent form of Corollary 5.1 which is some what handy and is of independent interest in some special situations.

Corollary 5.2. If $f \in \mathcal{U}_{n}(\lambda)$ with $f^{(n+1)}(0)=0$ and $0<\lambda \leq 1 / \sqrt{n^{2}+1}$, then $f \in \mathcal{S}^{*}(\alpha)$, where

$$
\alpha:=\alpha(\lambda)= \begin{cases}\frac{1-\lambda}{1+n \lambda} & \text { if } 0<\lambda \leq 1 /(n+1) \tag{5.1}\\ \frac{1-\left(1+n^{2}\right) \lambda^{2}}{2\left(1-n^{2} \lambda^{2}\right)} & \text { if } 1 /(n+1)<\lambda \leq 1 / \sqrt{n^{2}+1}\end{cases}
$$

For $n=1$, Theorem 5.1 is due to [13].
5.2. Proof of Theorem 5.1. Suppose that $f \in \mathcal{U}_{n}(\lambda)$. Then, we can write

$$
\begin{equation*}
-\frac{1}{n} z\left\{\left(\frac{z}{f(z)}\right)^{n}\right\}^{\prime}+\left(\frac{z}{f(z)}\right)^{n}=\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)=1+\lambda w(z) \tag{5.3}
\end{equation*}
$$

where $w \in \mathcal{B}_{n}$. It follows that (see Section 2)

$$
\left(\frac{z}{f(z)}\right)^{n}=1-n a_{n+1} z^{n}-n \lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t
$$

and therefore, by (5.3), we see that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\lambda w(z)}{1-n a_{n+1} z^{n}-n \lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t}
$$

Thus,

$$
\frac{1}{1-\alpha}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)=\frac{1+\frac{\lambda}{1-\alpha} w(z)+\frac{n \alpha}{1-\alpha}\left[\lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t+a_{n+1} z^{n}\right]}{1-n a_{n+1} z^{n}-n \lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t} .
$$

Now, $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha$ is equivalent to the condition

$$
\frac{1+\frac{\lambda}{1-\alpha} w(z)+\frac{n \alpha}{1-\alpha}\left[\lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t+a_{n+1} z^{n}\right]}{1-n a_{n+1} z^{n}-n \lambda \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t} \neq-i T, \quad \text { for all } T \in \mathbb{R} \text { and } z \in \Delta,
$$

which can be rewritten as
$\lambda\left[\frac{w(z)+n(\alpha-i(1-\alpha) T) \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t}{(1-\alpha)(1+i T)+n(\alpha-i T(1-\alpha)) a_{n+1} z^{n}}\right] \neq-1, \quad$ for all $T \in \mathbb{R}$ and $z \in \Delta$.
If we let

$$
M=\sup _{z \in \Delta, w \in \mathcal{B}_{n}, T \in \mathbb{R}}\left|\frac{w(z)+n(\alpha-i(1-\alpha) T) \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t}{(1-\alpha)(1+i T)+n(\alpha-i T(1-\alpha)) a_{n+1} z^{n}}\right|
$$

then, in view of the rotation invariance property of the space \mathcal{B}_{n}, we obtain that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad \text { if } \lambda M \leq 1
$$

This observation shows that it suffices to find M. Since $|w(z)| \leq|z|^{n+1}$ for $z \in \Delta$, we first we notice that

$$
M \leq \sup _{T \in \mathbb{R}}\left\{\frac{1+n \sqrt{\alpha^{2}+(1-\alpha)^{2} T^{2}}}{\left|(1-\alpha) \sqrt{1+T^{2}}-n b \sqrt{\alpha^{2}+(1-\alpha)^{2} T^{2}}\right|}\right\},
$$

where, for convenience, we use the notation $b=\left|a_{n+1}\right|$. Define $\phi:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\phi(x)=\frac{1+n \sqrt{\alpha^{2}+(1-\alpha)^{2} x}}{(1-\alpha) \sqrt{1+x}-n b \sqrt{\alpha^{2}+(1-\alpha)^{2} x}} . \tag{5.4}
\end{equation*}
$$

First we observe that the denominator in the expression of $\phi(x)$ is positive for all $x \in[0, \infty)$ provided $0 \leq \alpha<1 /(1+n b)$ and $0 \leq b \leq 1 / n$.

Further, it is a simple exercise to see that

$$
\phi^{\prime}(x)=\frac{(1-\alpha) N(x)}{2\left[(1-\alpha) \sqrt{1+x}-n b \sqrt{\alpha^{2}+(1-\alpha)^{2} x}\right]^{2} \sqrt{1+x} \sqrt{\alpha^{2}+(1-\alpha)^{2} x}}
$$

where

$$
N(x)=n(1-2 \alpha)-\sqrt{\alpha^{2}+(1-\alpha)^{2} x}+n b(1-\alpha) \sqrt{1+x} .
$$

Case (I): Let $b=0$. Then, we have

$$
\phi^{\prime}(x)=\frac{n(1-2 \alpha)-\sqrt{\alpha^{2}+(1-\alpha)^{2} x}}{2(1-\alpha) \sqrt{(1+x)^{3}} \sqrt{\alpha^{2}+(1-\alpha)^{2} x}} .
$$

For $\alpha \geq \frac{n}{2 n+1}$, we note that $\phi^{\prime}(x) \leq 0$ for all $x \geq 0$ and therefore,

$$
\phi(x) \leq \phi(0)=\frac{1+n \alpha}{1-\alpha}
$$

If $0 \leq \alpha<n /(2 n+1)$, then

$$
x_{0}=\frac{n^{2}(1-2 \alpha)^{2}-\alpha^{2}}{(1-\alpha)^{2}}
$$

is the only critical point and that $\phi^{\prime \prime}\left(x_{0}\right)<0$. This observation shows that, for $0<\alpha<n /(2 n+1), \phi$ attains its maximum value at x_{0} so that

$$
\phi\left(x_{0}\right)=\sqrt{\frac{1+n^{2}(1-2 \alpha)}{1-2 \alpha}}
$$

This gives essentially a direct proof for Corollary 5.1.
Case (II): Now we consider the case $b \neq 0$. In this case, the proofs run into several subcases. Firstly, we consider $1 / 2 \leq \alpha<1 /(1+n b)$. It follows that

$$
N(x) \leq n(1-2 \alpha) \leq 0,
$$

because

$$
n b(1-\alpha) \sqrt{1+x} \leq \sqrt{\alpha^{2}+(1-\alpha)^{2} x}
$$

Indeed, the last inequality follows from the fact that $n b \leq 1$,

$$
0 \geq(1-\alpha)^{2}-\alpha^{2}=1-2 \alpha \geq n^{2} b^{2}(1-\alpha)^{2}-\alpha^{2}
$$

and

$$
x(1-\alpha)^{2}\left(1-n^{2} b^{2}\right) \geq n^{2} b^{2}(1-\alpha)^{2}-\alpha^{2} .
$$

Thus, $\phi^{\prime}(x) \leq 0$ for all $x \geq 0$ whenever $1 / 2 \leq \alpha<1 /(1+n b)$. Next, we consider the case

$$
\frac{n(b+1)}{n(b+2)+1} \leq \alpha<1 / 2
$$

In this case, it suffices to compute

$$
N^{\prime}(x)=-\frac{(1-\alpha)^{2}}{2 \sqrt{\alpha^{2}+(1-\alpha)^{2} x}}+\frac{n b(1-\alpha)}{2 \sqrt{1+x}}
$$

and note that $N^{\prime}(x) \leq 0$ holds for $x \geq 0$ if and only if

$$
x(1-\alpha)^{2}\left(1-n^{2} b^{2}\right) \geq n^{2} b^{2} \alpha^{2}-(1-\alpha)^{2}
$$

Since $\alpha<1 / 2$ implies that

$$
0>2 \alpha-1=\alpha^{2}-(1-\alpha)^{2} \geq n^{2} b^{2} \alpha^{2}-(1-\alpha)^{2}
$$

the function $N(x)$ is decreasing for $x \geq 0$. Therefore, for $\frac{n(b+1)}{n(b+2)+1} \leq \alpha<1 / 2$, we have

$$
N(x) \leq N(0)=n(b+1)-\alpha(2 n+n b+1) \leq 0 \quad \text { for } x \geq 0
$$

The above observation shows that $\phi(x)$ defined by (5.4) is a decreasing function on $[0, \infty)$ whenever $\frac{n(b+1)}{n(b+2)+1} \leq \alpha<\frac{1}{1+n b}$. In particular,

$$
\phi(x) \leq \phi(0)=\frac{1+n \alpha}{1-(1+n b) \alpha} \quad \text { for } \quad \frac{n(b+1)}{n(b+2)+1} \leq \alpha<\frac{1}{1+n b} .
$$

Case (III): Assume $b \neq 0$ and $0 \leq \alpha<\frac{n(b+1)}{n(b+2)+1}$. We make the substitution

$$
t=\frac{1}{\sqrt{\alpha^{2}+(1-\alpha)^{2} x}}
$$

and note that

$$
\sup _{x \in[0, \infty)} \phi(x)=\sup _{t \in(0,1 / \alpha]} \psi(t)
$$

where $\phi(x)$ becomes

$$
\psi(t)=\frac{n+t}{\sqrt{1+(1-2 \alpha) t^{2}}-n b}
$$

with the above substitution. Now we compute

$$
\psi^{\prime}(t)=\frac{R(t)}{\left[\sqrt{1+(1-2 \alpha) t^{2}}-n b\right]^{2} \sqrt{1+(1-2 \alpha) t^{2}}}
$$

where

$$
R(t)=1-n(1-2 \alpha) t-n b \sqrt{1+(1-2 \alpha) t^{2}}
$$

Since $R(t)$ decreases,

$$
R(0)=1-n b \geq 0>R(1 / \alpha)=\frac{n(2+b)+1}{\alpha}\left[\alpha-\frac{n(1+b)}{n(b+2)+1}\right]
$$

$R(t) \neq 0$ for $t>1 /(n(1-2 \alpha))$, we get the estimate

$$
M \leq\{\psi(t): 0 \leq t \leq 1 /(n(1-2 \alpha)), R(t)=0\}=\psi(s)
$$

where

$$
s=\frac{-(1-2 \alpha)+b \sqrt{(1-2 \alpha)\left(n^{2}+1-2 \alpha n^{2}-n^{2} b^{2}\right)}}{n(1-2 \alpha)\left(b^{2}-1+2 \alpha\right)}
$$

A simple calculation shows that $f \in \mathcal{S}^{*}(\alpha)$ whenever

$$
\lambda \leq \frac{1}{\psi(s)}=\frac{b \sqrt{(1-2 \alpha)\left(1+n^{2}\left(1-2 \alpha-b^{2}\right)\right)}-(1-2 \alpha)}{b-\sqrt{(1-2 \alpha)\left(1+n^{2}\left(1-2 \alpha-b^{2}\right)\right)}}
$$

which, by multiplying both the numerator and the denominator by the quantity

$$
b+\sqrt{(1-2 \alpha)\left(1+n^{2}\left(1-2 \alpha-b^{2}\right)\right)}
$$

is seen to be equivalent to

$$
\lambda \leq \frac{1}{\psi(s)}=\frac{\sqrt{(1-2 \alpha)\left(1+n^{2}\left(1-2 \alpha-b^{2}\right)\right)}-n^{2} b(1-2 \alpha)}{1+n^{2}(1-2 \alpha)}
$$

for $0 \leq \alpha<\frac{n(b+1)}{n(b+2)+1}$. This completes the proof.

6. Integral transforms

In this section we consider the following integral transform $I(f)$ of $f \in \mathcal{A}$ defined by

$$
\begin{equation*}
[I(f)](z)=F(z)=z\left[\frac{c+1-n}{z^{c+1-n}} \int_{0}^{z}\left(\frac{t}{f(t)}\right)^{n} t^{c-n} d t\right]^{1 / n}, \quad c+1-n>0 \tag{6.1}
\end{equation*}
$$

When $c=n=1,(6.1)$ becomes

$$
\int_{0}^{z} \frac{t}{f(t)} d t
$$

which is similar to Alexander transform. Also, $I(f)$ is similar to Bernadi transformation when $n=1$ and $c>0$.
Theorem 6.1. Let $f \in \mathcal{U}_{n}(\lambda)$ for some $\lambda>0$ and $n \geq 1$. For $c+1-n>0$, $F=I(f)$ be defined by (6.1). Then $F \in \mathcal{S}_{\alpha}^{*}$ whenever $\left|a_{n+1}\right|, c, \lambda$ are related by
(6.2) $0<\lambda \leq \frac{c+2}{(c+1-n)(c+1)}\left[\frac{(1-\alpha)(c+1)-n(2-\alpha)(c+1-n)\left|a_{n+1}\right|}{1+(2-\alpha) n}\right]$.

Proof. From (6.2) we observe that

$$
\left|a_{n+1}\right|<\left(\frac{c+1}{n(c+1-n)}\right)\left(\frac{1-\alpha}{2-\alpha}\right)
$$

By (6.1), we see that

$$
(c+1-n)\left(\frac{F(z)}{z}\right)^{n}+z \frac{d}{d z}\left(\frac{F(z)}{z}\right)^{n}=(c+1-n)\left(\frac{z}{f(z)}\right)^{n}
$$

It is a simple exercise to show that

$$
\begin{gathered}
\frac{1}{n(c+1-n)}\left[(c-n)(n+1)\left(\frac{F(z)}{z}\right)^{n}-(c-2 n) \frac{d}{d z}\left(z\left(\frac{F(z)}{z}\right)^{n}\right)\right. \\
\left.-z \frac{d^{2}}{d z^{2}}\left(z\left(\frac{F(z)}{z}\right)^{n}\right)\right]=\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)
\end{gathered}
$$

If we set

$$
\begin{equation*}
P(z)=z\left(\frac{F(z)}{z}\right)^{n} \tag{6.3}
\end{equation*}
$$

then, from the last equation and the assumption $f \in \mathcal{U}_{n}(\lambda)$, it follows that $P(z)$ satisfies the second order differential equation

$$
\begin{equation*}
\left(\frac{(c-n)(n+1)}{n(c+1-n)}\right) \frac{P(z)}{z}-\frac{(c-2 n) P^{\prime}(z)}{n(c+1-n)}-\frac{z P^{\prime \prime}(z)}{n(c+1-n)}=1+\lambda w(z) \tag{6.4}
\end{equation*}
$$

where $w \in \mathcal{B}_{n}$. If we let $P(z)=z+\sum_{k=n+1}^{\infty} c_{k} z^{k}$ and $w(z)=\sum_{k=n+1}^{\infty} w_{k} z^{k}$ in (6.4), then, by equating the coefficients of z^{n}, we get the representations

$$
\begin{equation*}
\frac{P(z)}{z}=1+c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(1-t^{c+1}\right) d t \tag{6.5}
\end{equation*}
$$

and
(6.6) $P^{\prime}(z)=1+(n+1) c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(n+1+(c-n) t^{c+1}\right) d t$ where

$$
\begin{equation*}
c_{n+1}=-\frac{n(c+1-n)}{c+1} a_{n+1} . \tag{6.7}
\end{equation*}
$$

In view of the representation

$$
\left(\frac{z}{f(z)}\right)^{n+1} f^{\prime}(z)=\left(\frac{z}{f(z)}\right)^{n}-\frac{1}{n} z\left\{\left(\frac{z}{f(z)}\right)^{n}\right\}^{\prime}=1+\lambda w(z) \quad\left(w \in \mathcal{B}_{n}\right)
$$

it follows that (see Section 2)

$$
\left(\frac{z}{f(z)}\right)^{n}=1-n a_{n+1} z^{n}-\lambda n \int_{0}^{1} \frac{w(t z)}{t^{n+1}} d t
$$

From (6.3), we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}-1=\frac{1}{n}\left(\frac{z P^{\prime}(z)}{P(z)}-1\right) . \tag{6.8}
\end{equation*}
$$

Using (6.5), (6.6) and (6.8), we find that

$$
\begin{aligned}
& \frac{z F^{\prime}(z)}{F(z)}-1 \\
& =\frac{1}{n}\left[-1+\frac{1+(n+1) c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(n+1+(c-n) t^{c+1}\right) d t}{1+c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(1-t^{c+1}\right) d t}\right] \\
& =\frac{1}{n}\left[\frac{n c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(n+(c+1-n) t^{c+1}\right) d t}{1+c_{n+1} z^{n}-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1} \frac{w(t z)}{t^{n+1}}\left(1-t^{c+1}\right) d t}\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|\frac{z F^{\prime}(z)}{F(z)}-1\right| & <\frac{\left|c_{n+1}\right|+\frac{\lambda(c+1-n)}{c+1} \int_{0}^{1}\left(n+(c+1-n) t^{c+1}\right) d t}{1-\left|c_{n+1}\right|-\frac{\lambda n(c+1-n)}{c+1} \int_{0}^{1}\left(1-t^{c+1}\right) d t} \\
& =\frac{(c+1-n)\left[\frac{n\left|a_{n+1}\right|}{c+1}+\frac{\lambda(n+1)}{c+2}\right]}{1-n(c+1-n)\left[\frac{\left|a_{n+1}\right|}{c+1}+\frac{\lambda}{c+2}\right]} \leq 1-\alpha, \quad \text { by (6.2) and (6.7). }
\end{aligned}
$$

This completes the proof.
If we let $n=1$ in Theorem 6.1, then we have the following
Corollary 6.1. Let $f(z)=z+a_{2} z^{2}+\cdots \in \mathcal{U}(\lambda)$ for some $\lambda>0$. If $c>0$ and $\alpha<1$, then $F(z)$ defined in (6.1) is in S_{α}^{*} whenever c, λ are related by

$$
\begin{equation*}
0<\lambda \leq \frac{c+2}{c(c+1)}\left[\frac{(1-\alpha)(c+1)-(2-\alpha) c\left|a_{2}\right|}{3-\alpha}\right] . \tag{6.9}
\end{equation*}
$$

From (6.9), we note that

$$
\left|a_{2}\right|<\left(\frac{c+1}{c}\right)\left(\frac{1-\alpha}{2-\alpha}\right) .
$$

Corollary 6.1 was obtained recently by Ponnusamy et al. in [12]. We end the paper with the following conjecture which we are unable to handle at present.

Conjecture. The results of Theorems 3.1, 3.2 and 6.1 are all sharp.

References

[1] I. E. Bazilevič, On a case of integrability in quadratures of the Löewner-Kufarev equation, Mat. Sb. 37(79) (1955), 471-476.
[2] D. Brannan and W. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443.
[3] P. L. Duren, Univalent Functions (Grundlehren der mathematischen Wissenschaften 659, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
[4] A. W. Goodman, Univalent Functions, Vol. I \& II, Mariner Publ. Co. Tampa, Florida 1983.
[5] M. Obradović, A class of univalent functions, Hokkaido Math. J. 27 (1998), 329-315.
[6] M. Obradović and S. Ponnusamy, New criteria and distortion theorems for univalent functions, Complex Variables: Theory and Appl. 44 (2001), 173-191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).
[7] M. Obradović, S. Ponnusamy, V. Singh and P. Vasundhra, Univalency, starlikeness and convexity applied to certain classes of rational functions, Analysis (Munich) 22(3) (2002), 225242.
[8] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2)(1972), 392-394.
[9] S. Ponnusamy, Pólya Schoenberg conjecture by Carathéodory functions, J. London Math. Soc. (2)51(1995), 93-104.
[10] S. Ponnusamy and P. Sahoo, Geometric properties of certain linear integral transforms Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 95-108
[11] S. Ponnusamy and V. Singh, Convolution properties of some classes analytic functions, $Z a-$ piski Nauchnych Seminarov POMI 226 (1996), 138-154.
[12] S. Ponnusamy, V. Singh and P. Vasundhra, Starlikeness and convexity of an integral transform, Integral Transforms Spec. Funct. 15(3) (2004), 267-280.
[13] S. Ponnusamy and P. Vasundhra, Criteria for univalence, starlikeness and convexity, Ann. Polon. Math. 85 (2005), 121-133
[14] S. Ponnusamy and P. Vasundhra, Univalent functions with missing Taylor coefficients, Hokkaido Math. J. 33 (2004), 341-355.
[15] St. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.

