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Abstract. Let An be the class of all analytic functions f of the form

f(z) = z +
∞X

k=n+1

akzk, z ∈ ∆,

where n ∈ N is fixed. For λ > 0 and α < 1, define

Un(λ) =

(
f ∈ An :

˛̨̨̨
˛
„

z

f(z)

«n+1

f ′(z)− 1

˛̨̨̨
˛ < λ, z ∈ ∆

)
and

S∗α =


f ∈ S∗(α) :

˛̨̨̨
zf ′(z)

f(z)
− 1

˛̨̨̨
< 1− α, z ∈ ∆

ff
.

In this paper, we find suitable conditions on λ and α so that Un(λ) is included in

Sα and S∗(α). Here Sα and S∗(α) denote the usual classes of strongly starlike

and starlike of order α, respectively. We determine necessary conditions so that
f ∈ Un(λ) implies that ˛̨̨̨

zf ′(z)

f(z)
−

1

2β

˛̨̨̨
<

1

2β
, z ∈ ∆,

or ˛̨̨̨
1 +

zf ′′(z)

f ′(z)
−

1

2β

˛̨̨̨
<

1

2β
, |z| < r,

where r = r(λ, n) will be specified. For c + 1− n > 0, define

[I(f)](z) = F (z) = z

»
c + 1− n

zc+1−n

Z z

0

„
t

f(t)

«n

tc−n dt

–1/n

.

We also find conditions on λ, α and c so that I(Un(λ)) ⊂ S∗α.
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1. Introduction and preliminaries

Let H denote the class of analytic functions in the unit disc ∆ = {z ∈ C : |z| < 1}
and A denote the class of all functions f in H such that f(0) = 0 = f ′(0)− 1. Let
S = {f ∈ A : f is univalent in ∆ } and (see [3])

S∗ = {f ∈ A : f(∆) is starlike } ≡
{
f ∈ S : Re

zf ′(z)
f(z)

> 0, z ∈ ∆
}
.

Also, we let S∗(α), α < 1, to be the family of starlike functions of order α. It is
well-known that f ∈ S∗(α) iff Re (zf ′(z)/f(z)) > α for z ∈ ∆; S∗(α) ( S∗ for
0 < α < 1. For 0 < α ≤ 1, a function f ∈ A is called strongly starlike of order α iff
f satisfies the condition

zf ′(z)
f(z)

≺
(

1 + z

1− z

)α

, z ∈ ∆,

where ≺ denotes the usual subordination (see [3]). The class of all strongly starlike
functions of order α is denoted by Sα. Clearly, S1 ≡ S∗ and if 0 < α < 1, then the
class Sα is completely contained in the class of all bounded starlike functions [2].
For µ < 0, define

B(µ) =

{
f ∈ A : Re

(
f ′(z)

(
z

f(z)

)µ+1
)
> 0, z ∈ ∆

}
.

It is shown in [1] that B(µ) is a subclasses of the class of Bazilveič functions that is
contained in the class S.

In [9], Ponnusamy has considered a subclass of B(µ) defined by

U(λ, µ) =

{
f ∈ A :

∣∣∣∣∣f ′(z)
(

z

f(z)

)µ+1

− 1

∣∣∣∣∣ < λ, z ∈ ∆

}
.

Clearly, U(λ, µ) is contained in S for µ < 0. In [9], Ponnusamy found conditions
on λ and µ < 0 so that U(λ, µ) is included in S∗ or other well-known subclasses
of S. On the other hand, Nunokawa and Ozaki [8] has shown that U(λ, 1) ≡ U(λ)
is also included in S for 0 < λ ≤ 1. It is important to observe that the Koebe
function z/(1 − z)2 belongs to U(1) but U(1) not included in S∗, see [6]. In view
of these observations, Ponnusamy and Vasundhra [13] found conditions on λ0 so
that U(λ) ⊆ S∗ for 0 < λ ≤ λ0. Further, it is interesting to find the analog of the
inclusion results (such as the containment theorems U(λ, µ) ⊂ S∗(α) for µ < 0) also
for the case 0 < µ < 1. For 0 < µ < 1, the class U(λ, µ) has been discussed by
Obradović [5].

Let An denote the class of all functions f ∈ A such that f has the form

f(z) = z +
∞∑

k=n+1

akz
k,

where n ∈ N is fixed. Clearly, A := A1. For f ∈ An such that f(z)/z 6= 0, we have(
z

f(z)

)µ+1

f ′(z) = 1 + (n− µ)an+1z
n + · · · ,
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and so, it is essential to consider two cases, namely µ ∈ (0, n) and µ = n, separately.
For µ ∈ (0, n) and λ > 0, the class Un(λ, µ) ≡ An ∩ U(λ, µ) has been discussed by
the authors in [10]. However, the case µ = n, which does produce a slightly different
implication, has not been discussed in [10]. For µ = n, the class Un(λ, µ) will be
denoted by Un(λ) for convenience. Thus it is now natural to raise the following
problem.

Problem. Find conditions on λ and α such that Un(λ) is included S∗(α) or Sα.

The main aim of this paper is to answer this problem in a more general form. For
the special case n = 1, this class has been studied by several authors [5, 6, 7, 12].

2. Basic properties of Un(λ)

By definition, each f ∈ Un(λ) can be written as

(2.1)
(

z

f(z)

)n+1

f ′(z) = 1 + λw(z) = 1 +An+1z
n+1 + · · · ,

for some w ∈ Bn. Here,

Bn = {w ∈ H : w(0) = w′(0) = · · · = w(n)(0) = 0, and |w(z)| < 1 for z ∈ ∆}
and throughout the paper an+1 is meant for f (n+1)(0)/(n+ 1)!. If we set

p(z) =
(

z

f(z)

)n

= 1− nan+1z
n + · · · ,

then p is analytic in ∆, p(0) = 1 and p(k)(0) = 0 for k = 1, 2, . . . , n − 1. Further,
(2.1) is seen to be equivalent to

p(z)− 1
n
zp′(z) = 1 + λw(z).

An algebraic computation implies that

(2.2) p(z) = 1− nan+1z
n − nλ

∫ 1

0

w(tz)
tn+1

dt.

As w(z) ∈ Bn, Schwarz’s lemma gives that |w(z)| ≤ |z|n+1 for z ∈ ∆ and therefore,

|p(z)− 1| ≤ n|z|n (|an+1|+ λ|z|) , z ∈ ∆,
which is

(2.3)
∣∣∣∣( z

f(z)

)n

− 1
∣∣∣∣ ≤ n|z|n (|an+1|+ λ|z|) , z ∈ ∆,

so that

(2.4) 1− n|z|n(|an+1|+ λ|z|) ≤ Re
(

z

f(z)

)n

≤ 1 + n|z|n(|an+1|+ λ|z|).

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of the
form

f(z) =
z(

1± n|an+1|zn + λnzn+1
)1/n

.
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3. Strongly starlikeness and convexity for functions in Un(λ)

We are now in a position to state our main results and their consequences. The
proof of these results will be given in Section 4.

Theorem 3.1. Let γ ∈ (0, 1], n ≥ 1 and

λ∗(γ, n) =
−n(n+ cos(γπ/2))|an+1|+ sin(γπ/2)

√
1 + n2(1− |an+1|2) + 2n cos(γπ/2)

1 + 2n cos(γπ/2) + n2
.

If f ∈ Un(λ), then f ∈ Sγ for 0 < λ ≤ λ∗(γ, n).

Theorem 3.1 for n = 1 is due to Obradović et al [7]. In the case γ = 1, Theorem
3.1 yields criteria for starlike functions.

Corollary 3.1. If f ∈ Un(λ) and 0 < λ ≤
−n2|an+1|+

√
1 + n2(1− |an+1|2)

1 + n2
, then

f ∈ S∗.

For n = 1, Corollary 3.1 yields

Corollary 3.2. If f ∈ U(λ), then f ∈ S∗ for 0 < λ ≤
−|a2|+

√
2− |a2|2

2
.

This corollary was stated as a conjecture in [6] but was settled later in [7]. The same
reasoning indicated in the proof of Theorem 3.1 helps to obtain the following result.

Theorem 3.2. Let f ∈ Un(λ) and λ∗(γ, n) be as in Theorem 3.1. Then, for
λ∗(γ, n) ≤ λ, f is strongly starlike in |z| < r(λ, γ, n), where r = r(λ, γ, n) is the
smallest positive root of the equation Eλ(n, r) = 0, where

Eλ(n, r) = λ2r2(n+1)
(
1 + n2 + 2n cos(γπ/2)

)
+ 2λn (n+ cos(γπ/2)) |an+1|r2n+1

+n2|an+1|2r2n − sin2(γπ/2).

In the case γ = 1, Theorem 3.2 yields

Corollary 3.3. If f ∈ Un(λ) and

−n2|an+1|+
√

1 + n2(1− |an+1|2)
1 + n2

< λ ≤ 1,

then f ∈ S∗ in |z| < r = r(λ, n), where r is the smallest root of

λ2(1 + n2)r2(n+1) + 2λn2|an+1|r2n+1 + n2|an+1|2r2n − 1 = 0.

For n = 1, Corollary 3.3 yields

Example 3.1. If f ∈ U(λ), then 1
rf(rz) ∈ S∗ for

−|a2|+
√

2− |a2|2
2

≤ λ ≤ 1,
where r is the smallest positive root of

2λ2r4 + 2λ|a2|r3 + |a2|2r2 − 1 = 0.
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Example 3.2. Suppose that f ∈ Un(λ) with an+1 = 0, and

λ0(γ, n) =
sin(πγ/2)√

1 + 2n cos(πγ/2) + n2
.

Then, by Theorems 3.1 and 3.2, we have the following:
(i) f ∈ Sγ whenever 0 < λ ≤ λ0 = λ0(γ, n)

(ii) f ∈ Sγ for |z| < r =
(
λ0(γ, n)

λ

)1/(n+1)

whenever λ0(γ, n) < λ ≤ 1.

In the following theorem, we consider similar results for certain subsets of the set
of all starlike functions. To do this, we define

S∗b (β) =
{
f ∈ S∗ :

∣∣∣∣zf ′(z)f(z)
− 1

2β

∣∣∣∣ < 1
2β
, z ∈ ∆

}
,

where 0 < β < 1.

Theorem 3.3. Let n ∈ N and λ ∈ (0, 1]. If f ∈ Un(λ), then for 0 < β < 1 we have∣∣∣∣zf ′(z)f(z)
− 1

2β

∣∣∣∣ < 1
2β

for |z| < r0 = r0(λ, n, β),

where r0 is the positive root of the equation

2λ(β + n)rn+1 + 2n|an+1|rn + |2β − 1| − 1 = 0.

For n = 1, Theorem 3.3 has been obtained by Obradović et al [7].

Theorem 3.4. Let n ∈ N and λ ∈ (0, 1]. If f ∈ Un(λ), then for 0 < β ≤ 1 we have∣∣∣∣1 +
zf ′′(z)
f ′(z)

− 1
2β

∣∣∣∣ < 1
2β

for |z| < rλ,n(β),

where r = rλ,n(β) is the smallest positive root of the equation

2βλ2nr2n+3 + 2βλn|an+1|r2n+2 + 2λ
(
βn2 + (β + 1)n+ β

)
rn+3(3.1)

+2 (βλ(λn− 1) + (βn+ 1)n|an+1|) rn+2 − 2λ
(
βn2 + (1 + β)n+ β − βn|an+1|

)
rn+1

−2 (βn+ 1)n|an+1|rn − (1− |2β − 1|) r2 − 2βλr − |2β − 1|+ 1 = 0.

In particular, r−1f(rz) ∈ K, where K denotes the class of all convex functions g,
i.e. zg′(z) belongs S∗.

If we choose β = 1/2, we obtain

Corollary 3.4. Let f ∈ Un(λ). Then∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1 for |z| < rλ,n(1/2),

where rλ,n(1/2) is the smallest positive root of the equation

λ2nr2n+3 + λn|an+1|r2n+2 + λ(n2 + 3n+ 1)rn+3 + [(n+ 2)n|an+1|+ λ(λn− 1)] rn+2

−λ
(
n2 + 3n− n|an+1|+ 1

)
rn+1 − (n+ 2)n|an+1|rn − r2 − λr + 1 = 0.
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Example 3.3. In particular, the last corollary gives the following:
f ∈ Un(1) with an+1 = 0 implies that∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1 for |z| < r1,n(1/2)

where r1,n(1/2) is the smallest positive root of the equation

nr2n+3 + (n2 + 3n+ 1)rn+3 + (n− 1)rn+2 − (n2 + 3n+ 1)rn+1 − r2 − r + 1 = 0.

4. Proofs of the main theorems

4.1. Proof of Theorem 3.1 . Suppose that f ∈ Un(λ) for some λ ∈
(0, 1] and n ∈ N. Then, by the definition of Un(λ), we have∣∣∣∣∣

(
z

f(z)

)n+1

f ′(z)− 1

∣∣∣∣∣ ≤ λ|z|n+1 < λ

and, by (2.3), we get∣∣∣∣( z

f(z)

)n

− 1
∣∣∣∣ ≤ n|z|n(|an+1|+ λ|z|) < n(|an+1|+ λ).

Therefore, it follows that

(4.2)

∣∣∣∣∣arg
(

z

f(z)

)n+1

f ′(z)

∣∣∣∣∣ < arcsin(λ)

and

(4.3)
∣∣∣∣arg

(
z

f(z)

)n∣∣∣∣ < arcsin(n(|an+1|+ λ)).

Using (4.2), (4.3) and the addition formula for the inverse of sine function, namely,

arcsin (x) + arcsin (y) = arcsin
[
x
√

1− y2 + y
√

1− x2
]
,

we find that∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ ≤

∣∣∣∣∣arg
(

z

f(z)

)n+1

f ′(z)

∣∣∣∣∣+
∣∣∣∣arg

(
z

f(z)

)n∣∣∣∣
< arcsin(λ) + arcsin (n(|an+1|+ λ))

= arcsin
[
λ
√

1− n2(|an+1|+ λ)2 + n(|an+1|+ λ)
√

1− λ2
]
.

Thus, f ∈ Sγ whenever λ ∈ (0, λ∗(γ, n)]. Here λ∗(γ, n) is the solution of the equation

φ(λ) = λ
√

1− n2(|an+1|+ λ)2 + n(|an+1|+ λ)
√

1− λ2 − sin
(πγ

2

)
= 0

which proves the Theorem. �
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4.4. Proof of Theorem 3.2 . Let f ∈ Un(λ). Following the proof of Theorem
3.1, we obtain that ∣∣∣∣∣arg

(
z

f(z)

)n+1

f ′(z)

∣∣∣∣∣ ≤ arcsin(λrn+1)

and ∣∣∣∣arg
(

z

f(z)

)n∣∣∣∣ ≤ arcsin (nrn(|an+1|+ λr)) .

Combining the last two inequalities, we get∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ ≤ arcsin
[
λrn+1

√
1− n2r2n(|an+1|+ λr)2

+nrn(|an+1|+ λr)
√

1− λ2r2(n+1)
]
.

By a simple calculation, we see that the right hand side of the last inequality is less
than or equal to πγ/2 provided that Eλ(n, r) ≤ 0, where Eλ(n, r) is as in Theorem
3.2. �

4.5. Proof of Theorem 3.3 . Let f ∈ Un(λ). Then, by the representations
(2.1) and (2.2), it follows that

(4.6)
zf ′(z)
f(z)

=
1 + λw(z)

1− nan+1zn − λn

∫ 1

0

w(tz)
tn+1

dt

,

where w ∈ Bn. We proceed with the method of proof of Theorem 1.9 in [7]. Accord-
ing to this,

∣∣∣∣zf ′(z)f(z)
− 1

2β

∣∣∣∣ =
1
2β


∣∣∣∣2β − 1 + nan+1z

n + 2βλw(z) + λn

∫ 1

0

w(tz)
tn+1

dt

∣∣∣∣∣∣∣∣1− nan+1zn − λn

∫ 1

0

w(tz)
tn+1

dt

∣∣∣∣


≤ 1

2β

[
|2β − 1|+ n|an+1| |z|n + (2β + n)λ|z|n+1

1− n|an+1| |z|n − λn|z|n+1

]
,

since |w(z)| ≤ |z|n+1. It is a simple exercise to see that the square bracketed term
in the last step is less than 1 provided

2λ(β + n)|z|n+1 + 2n|an+1| |z|n + |2β − 1| − 1 < 0.

Thus, it follows that ∣∣∣∣zf ′(z)f(z)
− 1

2β

∣∣∣∣ < 1
2β

for |z| < r0,
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where r0 is the positive root of the equation

2λ(β + n)rn+1 + 2n|an+1|rn + |2β − 1| − 1 = 0.

We complete the proof. �

4.7. Proof of Theorem 3.4 . Let f ∈ Un(λ). Then the logarithmic derivative
of the representation given by (2.1) yields that

1 +
zf ′′(z)
f ′(z)

= (n+ 1)
zf ′(z)
f(z)

− n+
λzw′(z)

1 + λw(z)
, w ∈ Bn.

In view of this equation and the representation (4.6), we see that

1+
zf ′′(z)
f ′(z)

− 1
2β

= (n+1)

 1 + λw(z)

1− nan+1zn − λn

∫ 1

0

w(tz)
tn+1

dt

−n+
λzw′(z)

1 + λw(z)
− 1

2β
.

Since w ∈ Bn, by the definition of Bn, we have |w(z)| ≤ |z|n+1. By the well-known
Schwarz-Pick lemma, we obtain that

|w′(z)| ≤ 1− |w(z)|2

1− |z|2
.

It follows that (as λ ≤ 1)∣∣∣∣ zw′(z)
1 + λw(z)

∣∣∣∣ ≤ |z|
1− λ|w(z)|

(
1− |w(z)|2

1− |z|2

)
≤ |z|(1 + |z|n+1)

1− |z|2
.

With the help of this inequality and the fact that |w(z)| ≤ |z|n+1, after some com-
putation, we get that ∣∣∣∣1 +

zf ′′(z)
f ′(z)

− 1
2β

∣∣∣∣ < 1
2β
Rn(λ, β, |z|),

where

Rn(λ, β, |z|) =
|2β − 1|+ (2βn+ 1)n|an+1| |z|n + λ[2β(n2 + n+ 1) + n]|z|n+1

1− n|an+1| |z|n − λn|z|n+1

+
2βλ|z|(1 + |z|n+1)

1− |z|2
.

It can be easily seen that the inequality Rn(λ, β, |z|) < 1 is equivalent to (3.1). The
desired conclusion follows. �
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5. Order of starlikeness for functions in Un(λ)

Theorem 5.1. If f ∈ Un(λ) and b = |an+1| ≤ 1/n, then f ∈ S∗(α) whenever
0 < λ ≤ λ0(α), where

λ0(α) =


√

(1− 2α)(1 + n2(1− 2α− b2))− n2b(1− 2α)
1 + n2(1− 2α)

if 0 ≤ α < α0(n, b),

1− α(1 + nb)
1 + nα

if α0(n, b) ≤ α <
1

1 + nb

with α0(n, b) = n(b+1)
n(b+2)+1 .

We observe that if we choose α = 0 in Theorem 5.1, then Corollary 3.1 follows.
Further, we believe that the order of starlikeness given above for functions in Un(λ)
is sharp although at present we do not have a concrete proof for our claim. However,
from Theorem 5.1, one can obtain a number of new results.

Corollary 5.1. If f ∈ Un(λ) with f (n+1)(0) = 0, then f ∈ S∗(α) whenever 0 < λ ≤
λ0(α), where

λ0(α) =


√

1− 2α
1 + n2(1− 2α)

if 0 ≤ α <
n

2n+ 1

1− α

1 + nα
if

n

2n+ 1
≤ α < 1.

The following corollary is an equivalent form of Corollary 5.1 which is some what
handy and is of independent interest in some special situations.

Corollary 5.2. If f ∈ Un(λ) with f (n+1)(0) = 0 and 0 < λ ≤ 1/
√
n2 + 1, then

f ∈ S∗(α), where

(5.1) α := α(λ) =


1− λ

1 + nλ
if 0 < λ ≤ 1/(n+ 1)

1− (1 + n2)λ2

2(1− n2λ2)
if 1/(n+ 1) < λ ≤ 1/

√
n2 + 1.

For n = 1, Theorem 5.1 is due to [13].

5.2. Proof of Theorem 5.1 . Suppose that f ∈ Un(λ). Then, we can write

(5.3) − 1
n
z

{(
z

f(z)

)n}′
+
(

z

f(z)

)n

=
(

z

f(z)

)n+1

f ′(z) = 1 + λw(z),

where w ∈ Bn. It follows that (see Section 2)(
z

f(z)

)n

= 1− nan+1z
n − nλ

∫ 1

0

w(tz)
tn+1

dt,
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and therefore, by (5.3), we see that

zf ′(z)
f(z)

=
1 + λw(z)

1− nan+1zn − nλ

∫ 1

0

w(tz)
tn+1

dt

.

Thus,

1
1− α

(
zf ′(z)
f(z)

− α

)
=

1 +
λ

1− α
w(z) +

nα

1− α

[
λ

∫ 1

0

w(tz)
tn+1

dt+ an+1z
n

]
1− nan+1zn − nλ

∫ 1

0

w(tz)
tn+1

dt

.

Now, Re
(
zf ′(z)
f(z)

)
> α is equivalent to the condition

1 +
λ

1− α
w(z) +

nα

1− α

[
λ

∫ 1

0

w(tz)
tn+1

dt+ an+1z
n

]
1− nan+1zn − nλ

∫ 1

0

w(tz)
tn+1

dt

6= −iT, for all T ∈ R and z ∈ ∆,

which can be rewritten as

λ

 w(z) + n(α− i(1− α)T )
∫ 1

0

w(tz)
tn+1

dt

(1− α)(1 + iT ) + n(α− iT (1− α))an+1zn

 6= −1, for all T ∈ R and z ∈ ∆.

If we let

M = sup
z∈∆, w∈Bn, T∈R

∣∣∣∣∣∣∣∣
w(z) + n(α− i(1− α)T )

∫ 1

0

w(tz)
tn+1

dt

(1− α)(1 + iT ) + n(α− iT (1− α))an+1zn

∣∣∣∣∣∣∣∣
then, in view of the rotation invariance property of the space Bn, we obtain that

Re
(
zf ′(z)
f(z)

)
> α if λM ≤ 1.

This observation shows that it suffices to find M . Since |w(z)| ≤ |z|n+1 for z ∈ ∆,
we first we notice that

M ≤ sup
T∈R

{
1 + n

√
α2 + (1− α)2T 2

|(1− α)
√

1 + T 2 − nb
√
α2 + (1− α)2T 2|

}
,

where, for convenience, we use the notation b = |an+1|. Define φ : [0,∞) → R by

(5.4) φ(x) =
1 + n

√
α2 + (1− α)2x

(1− α)
√

1 + x− nb
√
α2 + (1− α)2x

.
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First we observe that the denominator in the expression of φ(x) is positive for all
x ∈ [0,∞) provided 0 ≤ α < 1/(1 + nb) and 0 ≤ b ≤ 1/n.

Further, it is a simple exercise to see that

φ′(x) =
(1− α)N(x)

2
[
(1− α)

√
1 + x− nb

√
α2 + (1− α)2x

]2√
1 + x

√
α2 + (1− α)2x

where
N(x) = n(1− 2α)−

√
α2 + (1− α)2x+ nb(1− α)

√
1 + x.

Case (I): Let b = 0. Then, we have

φ′(x) =
n(1− 2α)−

√
α2 + (1− α)2x

2(1− α)
√

(1 + x)3
√
α2 + (1− α)2x

.

For α ≥ n

2n+ 1
, we note that φ′(x) ≤ 0 for all x ≥ 0 and therefore,

φ(x) ≤ φ(0) =
1 + nα

1− α
.

If 0 ≤ α < n/(2n+ 1), then

x0 =
n2(1− 2α)2 − α2

(1− α)2

is the only critical point and that φ′′(x0) < 0. This observation shows that, for
0 < α < n/(2n+ 1), φ attains its maximum value at x0 so that

φ(x0) =

√
1 + n2(1− 2α)

1− 2α
.

This gives essentially a direct proof for Corollary 5.1.

Case (II): Now we consider the case b 6= 0. In this case, the proofs run into several
subcases. Firstly, we consider 1/2 ≤ α < 1/(1 + nb). It follows that

N(x) ≤ n(1− 2α) ≤ 0,
because

nb(1− α)
√

1 + x ≤
√
α2 + (1− α)2x.

Indeed, the last inequality follows from the fact that nb ≤ 1,

0 ≥ (1− α)2 − α2 = 1− 2α ≥ n2b2(1− α)2 − α2,

and
x(1− α)2(1− n2b2) ≥ n2b2(1− α)2 − α2.

Thus, φ′(x) ≤ 0 for all x ≥ 0 whenever 1/2 ≤ α < 1/(1+nb). Next, we consider the
case

n(b+ 1)
n(b+ 2) + 1

≤ α < 1/2.
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In this case, it suffices to compute

N ′(x) = − (1− α)2

2
√
α2 + (1− α)2x

+
nb(1− α)
2
√

1 + x

and note that N ′(x) ≤ 0 holds for x ≥ 0 if and only if

x(1− α)2(1− n2b2) ≥ n2b2α2 − (1− α)2.

Since α < 1/2 implies that

0 > 2α− 1 = α2 − (1− α)2 ≥ n2b2α2 − (1− α)2,

the function N(x) is decreasing for x ≥ 0. Therefore, for
n(b+ 1)

n(b+ 2) + 1
≤ α < 1/2,

we have
N(x) ≤ N(0) = n(b+ 1)− α(2n+ nb+ 1) ≤ 0 for x ≥ 0.

The above observation shows that φ(x) defined by (5.4) is a decreasing function on

[0,∞) whenever
n(b+ 1)

n(b+ 2) + 1
≤ α <

1
1 + nb

. In particular,

φ(x) ≤ φ(0) =
1 + nα

1− (1 + nb)α
for

n(b+ 1)
n(b+ 2) + 1

≤ α <
1

1 + nb
.

Case (III): Assume b 6= 0 and 0 ≤ α <
n(b+ 1)

n(b+ 2) + 1
. We make the substitution

t =
1√

α2 + (1− α)2x

and note that
sup

x∈[0,∞)

φ(x) = sup
t∈(0,1/α]

ψ(t),

where φ(x) becomes

ψ(t) =
n+ t√

1 + (1− 2α)t2 − nb
,

with the above substitution. Now we compute

ψ′(t) =
R(t)[√

1 + (1− 2α)t2 − nb
]2√

1 + (1− 2α)t2
,

where
R(t) = 1− n(1− 2α)t− nb

√
1 + (1− 2α)t2.

Since R(t) decreases,

R(0) = 1− nb ≥ 0 > R(1/α) =
n(2 + b) + 1

α

[
α− n(1 + b)

n(b+ 2) + 1

]
,
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R(t) 6= 0 for t > 1/(n(1− 2α)), we get the estimate

M ≤ {ψ(t) : 0 ≤ t ≤ 1/(n(1− 2α)), R(t) = 0} = ψ(s),

where

s =
−(1− 2α) + b

√
(1− 2α)(n2 + 1− 2αn2 − n2b2)

n(1− 2α)(b2 − 1 + 2α)
.

A simple calculation shows that f ∈ S∗(α) whenever

λ ≤ 1
ψ(s)

=
b
√

(1− 2α)(1 + n2(1− 2α− b2))− (1− 2α)
b−

√
(1− 2α)(1 + n2(1− 2α− b2))

which, by multiplying both the numerator and the denominator by the quantity

b+
√

(1− 2α)(1 + n2(1− 2α− b2)),

is seen to be equivalent to

λ ≤ 1
ψ(s)

=

√
(1− 2α)(1 + n2(1− 2α− b2))− n2b(1− 2α)

1 + n2(1− 2α)

for 0 ≤ α <
n(b+ 1)

n(b+ 2) + 1
. This completes the proof. �

6. Integral transforms

In this section we consider the following integral transform I(f) of f ∈ A defined by

(6.1) [I(f)](z) = F (z) = z

[
c+ 1− n

zc+1−n

∫ z

0

(
t

f(t)

)n

tc−n dt

]1/n

, c+ 1− n > 0.

When c = n = 1, (6.1) becomes ∫ z

0

t

f(t)
dt

which is similar to Alexander transform. Also, I(f) is similar to Bernadi transfor-
mation when n = 1 and c > 0.

Theorem 6.1. Let f ∈ Un(λ) for some λ > 0 and n ≥ 1. For c + 1 − n > 0,
F = I(f) be defined by (6.1). Then F ∈ S∗α whenever |an+1|, c, λ are related by

(6.2) 0 < λ ≤ c+ 2
(c+ 1− n)(c+ 1)

[
(1− α)(c+ 1)− n(2− α)(c+ 1− n)|an+1|

1 + (2− α)n

]
.

Proof. From (6.2) we observe that

|an+1| <
(

c+ 1
n(c+ 1− n)

)(
1− α

2− α

)
.
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By (6.1), we see that

(c+ 1− n)
(
F (z)
z

)n

+ z
d

dz

(
F (z)
z

)n

= (c+ 1− n)
(

z

f(z)

)n

.

It is a simple exercise to show that

1
n(c+ 1− n)

[
(c− n)(n+ 1)

(
F (z)
z

)n

− (c− 2n)
d

dz

(
z

(
F (z)
z

)n)
−z d

2

dz2

(
z

(
F (z)
z

)n)]
=
(

z

f(z)

)n+1

f ′(z).

If we set

(6.3) P (z) = z

(
F (z)
z

)n

,

then, from the last equation and the assumption f ∈ Un(λ), it follows that P (z)
satisfies the second order differential equation

(6.4)
(

(c− n)(n+ 1)
n(c+ 1− n)

)
P (z)
z

− (c− 2n)P ′(z)
n(c+ 1− n)

− zP ′′(z)
n(c+ 1− n)

= 1 + λw(z)

where w ∈ Bn. If we let P (z) = z +
∑∞

k=n+1 ckz
k and w(z) =

∑∞
k=n+1 wkz

k in
(6.4), then, by equating the coefficients of zn, we get the representations

(6.5)
P (z)
z

= 1 + cn+1 z
n − λn(c+ 1− n)

c+ 1

∫ 1

0

w(tz)
tn+1

(1− tc+1) dt

and

(6.6) P ′(z) = 1 + (n+ 1)cn+1z
n − λn(c+ 1− n)

c+ 1

∫ 1

0

w(tz)
tn+1

(n+ 1 + (c− n)tc+1) dt

where

(6.7) cn+1 = −n(c+ 1− n)
c+ 1

an+1.

In view of the representation(
z

f(z)

)n+1

f ′(z) =
(

z

f(z)

)n

− 1
n
z

{(
z

f(z)

)n}′
= 1 + λw(z) (w ∈ Bn),

it follows that (see Section 2)(
z

f(z)

)n

= 1− nan+1 z
n − λn

∫ 1

0

w(tz)
tn+1

dt .

From (6.3), we have

(6.8)
zF ′(z)
F (z)

− 1 =
1
n

(
zP ′(z)
P (z)

− 1
)
.
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Using (6.5), (6.6) and (6.8), we find that

zF ′(z)
F (z)

− 1

=
1
n

−1 +
1 + (n+ 1)cn+1z

n − λn(c+ 1− n)
c+ 1

∫ 1

0

w(tz)
tn+1

(n+ 1 + (c− n)tc+1) dt

1 + cn+1zn − λn(c+ 1− n)
c+ 1

∫ 1

0

w(tz)
tn+1

(1− tc+1) dt



=
1
n

ncn+1z
n − λn(c+ 1− n)

c+ 1

∫ 1

0

w(tz)
tn+1

(n+ (c+ 1− n)tc+1) dt

1 + cn+1z
n − λn(c+ 1− n)

c+ 1

∫ 1

0

w(tz)
tn+1

(1− tc+1) dt


so that

∣∣∣∣zF ′(z)F (z)
− 1
∣∣∣∣ <

|cn+1|+
λ(c+ 1− n)

c+ 1

∫ 1

0

(n+ (c+ 1− n)tc+1) dt

1− |cn+1| −
λn(c+ 1− n)

c+ 1

∫ 1

0

(1− tc+1) dt

=
(c+ 1− n)

[
n|an+1|
c+ 1

+
λ(n+ 1)
c+ 2

]
1− n(c+ 1− n)

[
|an+1|
c+ 1

+
λ

c+ 2

] ≤ 1− α, by (6.2) and (6.7).

This completes the proof. �

If we let n = 1 in Theorem 6.1, then we have the following

Corollary 6.1. Let f(z) = z + a2z
2 + · · · ∈ U(λ) for some λ > 0. If c > 0 and

α < 1, then F (z) defined in (6.1) is in S∗α whenever c, λ are related by

(6.9) 0 < λ ≤ c+ 2
c(c+ 1)

[
(1− α)(c+ 1)− (2− α)c|a2|

3− α

]
.

From (6.9), we note that

|a2| <
(
c+ 1
c

)(
1− α

2− α

)
.

Corollary 6.1 was obtained recently by Ponnusamy et al. in [12]. We end the paper
with the following conjecture which we are unable to handle at present.

Conjecture. The results of Theorems 3.1, 3.2 and 6.1 are all sharp.



156 S. Ponnusamy and P. Sahoo

References
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