BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Rare α -Continuity

SAEID JAFARI Department of Mathematics and Physics, Roskilde University Postbox 260, 4000 Roskilde, Denmark sjafari@ruc.dk

Abstract. Popa [16] introduced the notion of rare continuity. In this paper, we introduce a new class of functions called rare α -continuous functions and investigate some of its fundamental properties. These functions are generalizations of both rare continuous and weak α -continuous functions [14].

2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05

Key words and phrases: rare set, $\alpha\text{-open},$ rarely $\alpha\text{-continuous},$ rarely almost compact.

1. Introduction

Popa [16] introduced the notion of rare continuity as a generalization of weak continuity [6] which has been further investigated by Long and Herrington [8] and the present author [2, 3] Noiri [14] introduced and investigated weakly α -continuity as a generalization of weak continuity. He also introduced and investigated almost α continuity [15] and showed that this type of continuity is a generalization of both α -continuity [12] and almost continuity [1]. Noiri showed that almost α -continuity is equivalent with almost feeble continuity [9].

The purpose of the present paper is to introduce the concept of rare α -continuity in topological spaces as a generalization of rare continuity and weak α -continuity. We investigate several properties of rarely α -continuous functions. It turns out that rare α -continuity implies both rare quasi continuity and rare precontinuity. The notion of $I.\alpha$ -continuity is also introduced which is weaker than α -continuity and stronger than rare α -continuity. It is shown that when the codomain of a function is regular, then the notions of rare α -continuity and $I.\alpha$ -continuity are equivalent.

2. Main results

Throughout this paper, X and Y are topological spaces. Recall that a rare set is a set R such that $Int(R) = \emptyset$. A nowhere dense set is a set R with $Int(Cl(R)) = \emptyset$

Received: May 26, 2004; Revised: January 4, 2005.

Dedicated to Professor Takashi Noiri on the occasion of his retirement.

S. Jafari

if $\operatorname{Cl}(R)$ is codense. Mashhour et al. [11] introduced the notion of preopen sets: A set A in X is called preopen if $A \subset \operatorname{Int}(\operatorname{Cl}(A))$. The complement of a preopen set is called preclosed [11]. A set A in X is called semi-open [7] if there exists an open set such that $U \subset A \subset \operatorname{Cl}(U)$. Levine [7, Theorem 1] proved that A is semi-open if and only if $A \subset \operatorname{Cl}(\operatorname{Int}(A))$. The complement of a semi-open set is called semi-closed. A set A in X is called α -open [13] if $A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A)))$. The complement of all α -closed sets containing A is called the α -closure of A and is denoted by $\alpha \operatorname{Cl}(A)$. The subset A is α -closed if and only if $A = \alpha \operatorname{Cl}(A)$. The α -interior of A, denoted by $\alpha \operatorname{Int}(A)$, is defined by the union of all α -open sets will be denoted by PO(X) (resp. SO(X) and $\alpha(X)$). We set $PO(X, x) = \{U \mid x \in U \in PO(X)\}$, $SO(X, x) = \{U \mid x \in U \in SO(X)\}$ and $\alpha(X, x) = \{U \mid x \in U \in \alpha(X)\}$.

Definition 2.1. A function $f : X \to Y$ is called α -continuous [12] (resp. almost α -continuous [15], weakly α -continuous [14]) if for each $x \in X$ and each open set G containing f(x), there exists $U \in \alpha(X, x)$ such that $f(U) \subset G$ (resp. $f(U) \subset$ Int(Cl(G)), $f(U) \subset$ Cl(G)).

Definition 2.2. A function $f: X \to Y$ is called rarely α -continuous (resp. rarely continuous [16], rarely precontinuous [4] and rarely quasi continuous [17]) if for each $x \in X$ and each open set $G \subset Y$ containing f(x), there exist a rare set R_G with $G \cap \operatorname{Cl}(R_G) = \emptyset$ and $U \in \alpha(X, x)$ (resp. an open set $U \subset X$ containing x, $U \in PO(X, x)$ and $U \in SO(X, x)$) such that $f(U) \subset G \cup R_G$.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{c\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity function. Then f is rarely α -continuous.

Theorem 2.1. The following statements are equivalent for a function $f: X \to Y$:

- (1) The function f is rarely α -continuous at $x \in X$.
- (2) For each open set G containing f(x), there exists a rare set R_G with $G \cap \operatorname{Cl}(R_G) = \emptyset$ such that $x \in \alpha \operatorname{Int}(f^{-1}(G \cup R_G))$.
- (3) For each open set G containing f(x), there exists a rare set R_G with $\operatorname{Cl}(G) \cap R_G = \emptyset$ such that $x \in \alpha \operatorname{Int}(f^{-1}(\operatorname{Cl}(G) \cup R_G))$.
- (4) For each regular open set G containing f(x), there exists a rare set R_G with $G \cap R_G = \emptyset$ such that $x \in \alpha \operatorname{Int}(f^{-1}(G \cup R_G))$.
- (5) For each open set G containing f(x), there exists $U \in \alpha(X, x)$ such that $\operatorname{Int}[f(U) \cap (Y \setminus G)] = \emptyset$.
- (6) For each open set G containing f(x), there exists $U \in \alpha(X, x)$ such that $\operatorname{Int}[f(U)] \subset \operatorname{Cl}(G)$.

Proof. Similar to [17, Theorem 3.1].

Theorem 2.2. A function $f : X \to Y$ is rarely α -continuous if and only if $f^{-1}(G) \subset \alpha \operatorname{Int}[f^{-1}(G \cup R_G)]$ for every open set G in Y, where R_G is a rare set with $G \cap \operatorname{Cl}(R_G) = \emptyset$.

Proof. It is an immediate consequence of the above theorem.

Definition 2.3. A function $f : X \to Y$ is $I.\alpha$ -continuous at $x \in X$ if for each open set $G \in Y$ containing f(x), there exists an α -open set $U \subset X$ containing x such that $Int[f(U)] \subset G$.

If f has this property at each point $x \in X$, then we say that f is I. α -continuous on X.

Example 2.2. Let $X = Y = \{a, b, c\}$ and $\tau = \sigma = \{X, \emptyset, \{a\}\}$. Then a function $f: X \to Y$ defined by f(a) = f(b) = a and f(c) = c is $I.\alpha$ -continuous.

Remark 2.1. It should be noted that $I.\alpha$ -continuity is weaker than α -continuity and stronger than rare α -continuity.

Theorem 2.3. Let Y be a regular space. Then the function $f : X \to Y$ is I. α continuous on X if and only if f is rarely α -continuous on X.

Proof. "Necessity". It is evident.

"Sufficiency". Let f be rarely α -continuous on X. Suppose that $f(x) \in G$, where G is an open set in Y and $x \in X$. By the regularity of Y, there exists an open set G_1 in Y such that $f(x) \in G_1$ and $\operatorname{Cl}(G_1) \subset G$. Since f is rarely α -continuous, then there exists $U \in \alpha(X, x)$ such that $\operatorname{Int}[f(U)] \subset \operatorname{Cl}(G_1)$. This implies that $\operatorname{Int}[f(U)] \subset G$, which means that f is $I.\alpha$ -continuous on X.

Theorem 2.4. If $f : X \to Y$ is rarely precontinuous and rarely quasi continuous, then f is rarely α -continuous.

Proof. It follows from the well-known fact that $\alpha(X) = SO(X) \cap PO(X)$.

Remark 2.2. It should be noted that rare α -continuity is weaker than both rare continuity and weak α -continuity and stronger than both rare precontinuity and rare quasi continuity.

Definition 2.4. A function $f : X \to Y$ is called pre- α -open if for every $U \in \alpha(X)$, $f(U) \in \alpha(Y)$.

Theorem 2.5. If a function $f : X \to Y$ is a pre- α -open rarely α -continuous, then f is almost α -continuous.

Proof. Suppose that $x \in X$ and G is any open set of Y containing f(x). Since f is rarely α -continuous at x, then there exists $U \in \alpha(X, x)$ such that $\operatorname{Int}[f(U)] \subset \operatorname{Cl}(G)$. Since f is pre- α -open, we have $f(U) \in \alpha(Y)$. This implies that $f(U) \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(f(U)))) \subset \operatorname{Int}(\operatorname{Cl}(G))$. Hence f is almost α -continuous. \Box

We say that a function $f:X\to Y$ is $r.\alpha\text{-open}$ if the image of an $\alpha\text{-open}$ set is open.

Theorem 2.6. Let $f : X \to Y$ be an $r.\alpha$ -open rarely α -continuous function. Then f is weakly α -continuous.

Proof. It is an immediate consequence of Theorem 2.5.

Theorem 2.7. If $f: X \to Y$ is rarely α -continuous function, then the graph function $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for every x in X is rarely α continuous.

S. Jafari

Proof. Suppose that $x \in X$ and W is any open set containing g(x). It follows that there exists open sets U and V in X and Y, respectively, such that $(x, f(x)) \in$ $U \times V \subset W$. Since f is rarely α -continuous, there exists $G \in \alpha(X, x)$ such that $\operatorname{Int}[f(G)] \subset \operatorname{Cl}(V)$. Let $E = U \cap G$. It follows that $E \in \alpha(X, x)$ and we have $\operatorname{Int}[g(E)] \subset \operatorname{Int}(U \times f(G)) \subset U \times \operatorname{Cl}(V) \subset \operatorname{Cl}(W)$. Therefore, g is rarely α continuous.

Recall that a topological space X is called α -compact [10] if every cover of X by α -open sets has a finite subcover.

Definition 2.5. Let $A = \{G_i\}$ be a class of subsets of X. By rarely union sets [2] of A we mean $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is a rare set such that each of $\{G_i \cap \text{Cl}(R_{G_i})\}$ is empty.

Definition 2.6. A space X is called rarely almost compact [2] if each open cover has a finite subfamily whose rarely union sets cover the space.

Theorem 2.8. Let $f : X \to Y$ be rarely α -continuous and K be an α -compact set in X. Then f(K) is a rarely almost compact subset of Y.

Proof. Its proof is similar to the proof of [2, Theorem 4.1].

Lemma 2.1. [8] If $g: Y \to Z$ is continuous and one-to-one, then g preserves rare sets.

Theorem 2.9. If $f : X \to Y$ is rarely α -continuous surjection and $g : Y \to Z$ is continuous and one-to-one, the $g \circ f : X \to Z$ is rarely α -continuous.

Proof. Suppose that $x \in X$ and $(gf)(x) \in V$, where V is an open set in Z. By hypothesis, g is continuous, therefore there exists an open set $G \subset Y$ containing f(x) such that $g(G) \subset V$. Since f is rarely α -continuous, there exists a rare set R_G with $G \cap \operatorname{Cl}(R_G) = \emptyset$ and an α -open set U containing x such that $f(U) \subset G \cup R_G$. It follows from Lemma 2.1 that $g(R_G)$ is a rare set in Z. Since R_G is a subset of $Y \setminus G$ and g is injective, we have $\operatorname{Cl}(g(R_G)) \cap V = \emptyset$. This implies that $gf(U) \subset V \cup g(R_G)$. Hence the result.

Theorem 2.10. Let $f: X \to Y$ be pre- α -open and $g: Y \to Z$ a function such that $g \circ f: X \to Z$ is rarely α -continuous. Then g is rarely α -continuous.

Proof. Let $y \in Y$ and $x \in X$ such that f(x) = y. Let G be an open set containing (gf)(x). Then there exists a rare set R_G with $G \cap \operatorname{Cl}(R_G) = \emptyset$ and an α -open set U containing x such that $(f)(U) \subset G \cup R_G$. But f(U) is an α -open set containing f(x) = y such that $g(f(U)) = (gf)(U) \subset G \cup R_G$. This shows that g is rarely α -continuous at y.

Theorem 2.11. If $f : X \to Y$ is rarely α -continuous and for each point $x \in X$ and each open set $G \subset Y$ containing f(x), $f^{-1}(\operatorname{Cl}(R_G))$ is a closed set in X, then f is α -continuous.

Proof. Similar to [17, Theorem 3.2].

Acknowledgment. The author wishes to thank Prof. V. Popa from Department of Mathematics, University of Bacău, Romania for valuable comments on an earlier version of this paper.

Rare α -Continuity

References

- [1] T. Husain, Almost continuous mapping, Prace Mat. 10 (1966), 1–7.
- [2] S. Jafari, A note on rarely continuous functions, Univ. Bacâu. Stud. Cerc. St. Ser. Mat. 5 (1995), 29–34.
- [3] S. Jafari, On some properties of rarely continuous functions, Univ. Bacâu. Stud. Cerc. St. Ser. Mat. 7 (1997), 65–73.
- [4] S. Jafari, On rarely precontinuous functions, Far East J. Math. Sci. (FJMS) (2000), Special Volume, Part III, 305–314.
- [5] S. Jafari, On rare θ-continuous functions, Far East J. Math. Sci. (FJMS) 6(3) (1998), 447–458.
 [6] N. Levine, Decomposition of continuity in topological spaces, Amer. Math. Monthly (60) (1961), 44–46.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly (70) (1963), 36–41.
- [8] P. E. Long and L. L. Herrington, Properties of rarely continuous functions, *Glasnik Mat.* 17(37) (1982), 147–153.
- [9] S. N. Maheshwari, Chae Gyu-Ihn and P. C. Jain, Almost feebly continuous functions, Ulsan Inst. Tech. Rep. 13 (1982), 195–197.
- [10] S. N. Maheshwari and S. S. Thakur, On α-compact spaces, Bull. Inst. Acad. Sinica 13 (1985), 341–347.
- [11] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, A note on semi-continuity and precontinuity, *Indian J. Pure Appl. Math.* 13(10) (1982), 1119–1123.
- [12] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta. Math. Hungar. 41 (1983), 213–218.
- [13] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970
- [14] T. Noiri, Weakly α -continuous functions, Internat. J. Math. Math. Sci. **10**(3) (1987), 483–490.
- [15] T. Noiri, Almost α-continuous functions, Kyungpook Math. J. 28(1) (1988), 71–77.
- [16] V. Popa, Sur certain decomposition de la continuite' dans les espaces topologiques, Glasnik Mat. Setr III. 14(34) (1979), 359–362.
- [17] V. Popa and T. Noiri, Some properties of rarely quasicontinuous functions, An. Univ. Timişoara Ser. Ştiinţ. Mat. 29(1) (1991), 65–71.
- [18] V. Popa, Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 31(79)(2) (1987), 163–168.