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Abstract. The object of the present paper is to discuss certain integral prop-

erties of a general class of polynomials and the H-function, proposed by Inayat-
Hussain which contain a certain class of Feynman integrals, the exact partition

of a Gaussian model in statistical mechanics and several other functions as its

particular cases. During the course of finding, we establish certain new double
integral relations pertaining to a product involving a general class of polyno-

mials and the H-function. These double integral relations are unified in nature
and act as a key formulae from which we can obtain as their special cases, dou-

ble integral relations concerning a large number of simpler special functions and

polynomials. For the sake of illustration, we record here some special cases of
our main results which are also new and of interest by themselves. The results

established here are basic in nature and are likely to find useful applications

in several fields notably electrical networks, probability theory and statistical
mechanics.
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1. Introduction

The conventional formulation may fail pertaining to the domain of quantum cosmol-
ogy but Feynman path integrals apply [5, 6]. Feynman path integrals reformulation
of quantum mechanics are more fundamental than the conventional formulation in
terms of operators. Feynman integrals are useful in the study and development
of simple and multiple variable hypergeometric series which in turn are useful in
statistical mechanics.

The H̄-function [5] is a new generalization of the well known Fox’s H -function
[3]. The H̄-function pertains the exact partition function of the Gaussian model in
statistical mechanics, functions useful in testing hypothesis and several others as its
special cases.
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The H̄-function will be defined and represented as follows [1]:

(1.1) H̄
M,N

P,Q
[z] = H̄

M,N

P,Q

[
z

∣∣∣(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj,βj)1,M ,(bj ;βj)M+1,Q

]
=

1
2πi

∫ i∞

−i∞

φ̄(ξ)zξdξ ,

where

(1.2) φ̄(ξ) =

M∏
j=1

Γ(bj − βjξ)
N∏

j=1

{Γ(1− aj + αjξ)}Aj

Q∏
j=M+1

{Γ(1− bj + βjξ)Bj

P∏
j=N+1

Γ(aj − αjξ)

which contains fractional powers of some of the gamma functions. Here, and through
out the paper aj (j = 1, . . ., P ) and bj (j = 1, . . ., Q) are complex parameters, aj ≥ 0
(j = 1, . . ., P ), Bj ≥ 0 (j = 1, . . ., Q) (not all zero simultaneously and the exponents
Aj(j = 1, . . ., N) and Bj(j = M + 1, . . ., Q) can take on non-integer values.

The contour in (1.1) is imaginary axis <(ξ) = 0. It is suitably indented in order
to avoid the singularities of the gamma functions and to keep those singularities
on appropriate sides. Again, for Aj (j = 1, . . ., N) not an integer, the poles of the
gamma functions of the numerator in (1.2) are converted to branch points. However,
a long as there is no coincidence of poles from any Γ(bj − βj ξ) (j = 1, . . .,M) and
Γ(1− aj + αj ξ) (j = 1, . . ., N) pair, the branch cuts can be chosen so that the path
of integration can be distorted in the useful manner. For the sake of brevity,

T =
M∑

j=1

βj +
N∑

j=1

Ajαj −
Q∑

j=M+1

Bjβj −
P∑

j=N+1

αj > 0 .

The general class of polynomial introduced by Srivastava [7]:

(1.3) Sm
n [x] =

[n/m]∑
k=0

(−n)mk

k!
An,kxk, n = 0, 1, 2, ...

2. Main results

We shall establish the following results:

(A)
∫ 1

0

∫ 1

0

(
1−x
1−xy y

)α (
1−y
1−xy

)β
1−xy

(1−x)(1−y)S
m
n

[
1−x
1−xy vy

]
. H̄ M,N

P,Q

[
1−y
1−xy v

]
dxdy

=
[n/m]∑
k=0

(−n)mkAn,k

k!
vkΓ(k + α)

(2.1) × H̄M,N+1
P+1,Q+1

[
(1−β:1),(aj,αj ;Aj)1,N ,

(bj,βj)1,M,(bj,βj :Bj)M+1,Q,

(aj,αj)N+1,P

(1−k−α−β:1)
|v

]
,

provided that

<[α + β + bj/βj ] > 0, |arg v| < 1
2
Tπ,
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m is an arbitrary positive integer and the coefficients An,k (n, k ≥ 0) are arbitrary
constants, real or complex.

Proof. We have

Sm
n

[
1− x

1− xy
vy

]
H̄M,N

P,Q

[
1− y

1− xy
v

]
=

[n/m]∑
k=0

(−n)mk

k!
An,k

(
1− x

1− xy
vy

)k 1
2πi

(2.2) ×
∫ i∞

−i∞

M∏
j=1

Γ(bj − βjξ)

Q∏
j=M+1

{Γ(1− bj + βjξ)}βj

N∏
j=1

{Γ(1− aj + αjξ)}Aj

P∏
j=N+1

Γ(aj − αjξ)

(
1− y

1− xy
v

)ξ

dξ

Multiplying both sides of (2.2) by[
1− x

1− xy
y

]α [
1− y

1− xy

]β [
1− xy

(1− x)(1− y)

]
and integrating with respect to x and y between 0 and 1 for both the variables and
making a use of a known result [2, p.145], we get the result (2.1) after a little sim-
plification.

(B)
∫∞

0

∫∞
0

φ(u + v)vβ−1
uα−1Sm

n [u]H̄M,N
P,Q [v]dudv

=
[n/m]∑
k=0

(−n)mk

k!
An,k Γ(k + α)

∫ ∞

0

φ(z)zα+β+k−1

(2.3) × H̄ M,N+1
P+1,Q+1

[
(1−β:1),(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj,βj)1,M ,(bj,βj ;Bj)M+1,Q;(1−k−α−β:1)
|z

]
dz,

provided that <(α+β+bj/βj) > 0, m is an arbitrary positive integer and coefficients
An,k(n, k ≥ 0) are arbitrary constants, real or complex. �

Proof. Using equations (1.1) and (1.3), we have

Sm
n [u]H̄M,N

P,Q [v] =
[n/m]∑
k=0

(−n)mk

k!
An,kuk 1

2πi

(2.4) ×
∫ i∞

−i∞

MQ
j=1

Γ(bj−βjξ)

QQ
j=M+1

{Γ(1−bj+βjξ)}Bj

NQ
j=1

{Γ(1−aj+αjξ)}Aj

PQ
j=N+1

Γ(aj−αjξ)

vξdξ .

Multiplying both sides (2.4) by φ(u + v)vβ−1uα−1 and integrating with respect to u
and v between 0 and ∞ for both the variables and appealing to a known result [2,
p.177], we easily arrive at the desired result.

Letting φ(z) = e−Pz in (2.3) we get the particular case after simplification.
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(C)
∫ 1

0

∫ 1

0
f(uv)(1− u)α−1(1− v)β−1

vαSm
n [v(1− u)]H̄M,N

P,Q [1− v]dudv

=
[n/m]∑
k=0

(−n)mk

k!
An,kΓ(k + 2)

∫ 1

0

f(z)(1− z)α+k−β−1

(2.5) × H̄ M,N+1
P+1,Q+1

[
(1−β:1),(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj,βj)1,M ,(bj,βj ;Bj)M+1,Q;(1−k−α−β:1)
|(1− z)

]
dz,

provided that <(α) > 0, <(β) > 0, m is an arbitrary positive integer and coefficients
An,k(n, k ≥ 0) are arbitrary constants, real or complex. �

Proof. Using equations (1.1) and (1.2), we have

Sm
n [v(1− u)]H̄M,N

P,Q [1− v] =
[n/m]∑
k=0

(−n)mk

k!
An,kvk(1− u)k 1

2πi

(2.6) ×
∫ i∞

−i∞

MQ
j=1

Γ(bj−βjξ)

QQ
j=M+1

{Γ(1−bj+βjξ)}Bj

NQ
j=1

{Γ(1−aj+αjξ)}Aj

PQ
j=N+1

Γ(aj−αjξ)

(1− v)ξ
dξ .

Multiplying both sides of (2.6) by f(uv)(1−u)α−1(1−v)β−1vα and integrating with
respect to u and v between 0 and 1 for both the variables and in view of the result
[2, p.243] and by further simplification, this establishes the result (2.5).

Letting f(z) = zβ−1 in (2.5), we get the particular result after simplification.

(D)
∫ 1

0

∫ 1

0

[
y(1−x)
(1−xy)

]α+σ [
1−y
1−xy

]β
1

(1−x) Sm
n

[
y(1−x)
1−xy

]
. H̄M,N

P,Q

[
vy(1−x)
1−xy

]
dxdy

=
[n/m]∑
k=0

(−n)mk

k!
An,k Γ(β + 1)

(2.7) × H̄ M,N+1
P+1,Q+1

[
(1−k−α−σ:1),(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj,βj)1,M ,(bj,βj ;Bj)M+1,Q;(−k−α−β−σ :1)
|v

]
,

provided that <(α + β + σ + bj/βj) > 0, |arg v| < 1
2Tπ, m is an arbitrary integer

and the coefficients An,k (n, k ≥ 0) are arbitrary constants, real or complex. �

Proof. We have

Sm
n

[
y(1− x)
1− xy

]
H̄M,N

P,Q

[
vy(1− x)
1− xy

]
=

[n/m]∑
k=0

(−n)mk

k!
An,k

[
y(1− x)
1− xy

]k 1
2πi

(2.8) ×
∫ i∞

−i∞

MQ
j=1

Γ(bj−βjξ)
NQ

j=1
{Γ(1−aj+αjξ)}Aj

QQ
j=M+1

{Γ(1−bj+βjξ)}Bj
PQ

j=N+1
Γ(aj−αjξ)

[
vy(1−x)
1−xy

]ξ

dξ .

Multiplying both sides of (2.8) by
[

y(1−x)
1−xy

]α+σ [
1−y
1−xy

]β
1

(1−x) and integrating with
respect to x and y between 0 and 1 for both the variables, we easily arrive at the
desired result (2.7). �
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3. Special cases

(1) By applying our results given in (2.1), (2.3), (2.5) and (2.7) to the case of Hermite
polynomial [8] and [9] and by setting

S2
n(x) → xn/2Hn

[
1

2
√

x

]
,

in which case m = 2, An,k = (−1)k, we have the following interesting consequences
of the main results.

(A.1)
∫ 1

0

∫ 1

0

(
1−x
1−xy y

) (
1−y
1−xy

)β
1−xy

(1−x)(1−y)

[
1−x
1−xy vy

]n
2

× Hn

 1

2
√

1−x
1−xy vy

 H̄M,N
P,Q

[
1− y

1− xy
v

]
dxdy

=
[n/2]∑
k=0

(−n)2k

k!
(−1)kvk Γ(k + α)

× H̄
M,N+1
P+1,Q+1

[
(1−β:1),(aj ;αj ;Aj)1,N ,

(bj ,βj)1,M ,(bj ,βj ,Bj)M+1,Q,

(aj,αj)N+1,P

(1−k−α−β:1)
|v

]
,

valid under the same conditions as obtainable from (2.1).

(A.2)
∫∞

0

∫∞
0

φ(u + v)vβ−1
uα+ n

2−1Hn

[
1

2
√

u

]
H̄M,N

P,Q [v]dudv

=
[n/2]∑
k=0

(−n)2k

k!
(−1)k

∫ ∞

0

φ(z)zα+b+k−1
√

k + α

× H̄M,N+1
P+1,Q+1

[
(1−β:1),(aj ;αj ;Aj)1,N ,(aj ,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ;Bj)M+1,Q;(1−k−α−β:1) | z
]
dz,

valid under the same conditions as required for (2.3).

(A.3)
∫ 1

0

∫ 1

0
f(uv)(1− u)α−1(1− v)β−1

vα+ n
2 (1− u)n/2

Hn

[
1

2
√

v(1− u)

]
H̄M,N

P,Q [1− v]dudv

=
[n/2]∑
k=0

(−n)2k

k!
(−1)kΓ(k + α)

∫ 1

0

f(z)(1− z)α+k−β−1

× H̄
M,N+1
P+1,Q+1

[
(1−β:1),(aj ;αj ;Aj)1,N ,(aj,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ;Bj)M+1,(1−k−α−β:1) |(1− z)
]
dz ,

valid under the same conditions as obtainable from (2.5).
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(A.4)
∫ 1

0

∫ 1

0

[
y(1−x)
(1−xy)

]α+σ [
1−y
1−xy

]β
1

(1−x)1−
n
2

yn/2

(1−xy)n/2

× Hn

 1

2
√

y(1−x)
1−xy

 H̄M,N
P,Q

[
vy(1− x)
1− xy

]
dxdy

=
[n/2]∑
k=0

(−n)2k

k!
(− 1)k Γ(β + 1)

× H M,N+1
P+1,Q+1

[
(1−k−α−σ:1),(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj,βj)1,M ,(bj,βj ;Bj)M+1,Q;(−k−α−β−σ :1)
|v

]
,

valid under the same conditions as obtainable from (2.7).

(2) For the Laguerre polynomials ([8] and [9]) setting S
′

n(x) → L
(α′)
n (x) in which

case m = 1, An,k =
(

n + α′

n

)
1

(α′+1)k′
the results (2.1), (2.3), (2.5) and (2.7)

reduce to the following formulae:

(B.1)
∫ 1

0

∫ 1

0

(
1−x
1−xy y

)α (
1−y
1−xy

)β (
1−xy

(1−x)(1−y)

)
L

(α′)
n

(
1−x
1−xy vy

)
× H̄

M,N
P,Q

[
1− y

1− xy
v

]
dxdy

=
n∑

k=0

(−n)k

k!

(
n + α′

n

)
1

(α′ + 1)k′
vkΓ(k + α)

× H̄
M,N+1
P+1,Q+1

[
(1−β:1),(aj ;αj ;Aj)1,N ,(aj,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ,Bj)M+1,(1−k−α−β:1) |v
]
,

valid under the same conditions as required for (2.1).

(B.2)
∫∞

0

∫∞
0

φ(u + v)vβ−1
uα−1L

(α′)
n (u)H̄M,N

P,Q [v]dudv

=
n∑

k=0

(−n)k

k!

(
n + α′

n

)
1

(α′ + 1)k′

∫ ∞

0

φ(z)zα+b+k−1 Γ(k + α)

× H̄
M,N+1
P+1,Q+1

[
(1−β:1),(aj,αj ;Aj)1,N ,(aj,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ;Bj)M+1,Q;(1−k−α−β:1) | z
]
dz ,

valid under the same conditions as required for (2.3).

(B.3)
∫ 1

0

∫ 1

0
f(uv)(1− u)α−1(1− v)β−1

vαL
(α′)
n [v(1− u)] H̄M,N

P,Q [1− v]dudv

=
n∑

k=0

(−n)k

k!

(
n + α′

n

)
1

(α′ + 1)k′
Γ(k + α)

∫ 1

0

f(z)(1− z)α+k−β−1

× H̄
M,N+1
P+1,Q+1

[
(1−β:1),(aj ;αj ;Aj)1,N ,(aj,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ; Bj)M+1,Q,(1−k−α−β:1) |(1− z)
]
dz ,
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valid under the same conditions as required for (2.5).

(B.4)
∫ 1

0

∫ 1

0

[
y(1−x)
(1−xy)

]α+σ [
1−y
1−xy

]β
1

(1−x)L
α′

n

[
y(1−x)
1−xy

]
. H̄M,N

P,Q

[
vy(1−x)
1−xy

]
dxdy

=
n∑

k=0

(−n)k

k!

(
n + α′

n

)
1

(α′ + 1)k′
Γ(β + 1)

× H̄
M,N+1
P+1,Q+1

[
(1−k−α−σ:1),(aj ;αj ;Aj)1,N ,(aj,αj)N+1,P

(bj ,βj)1,M ,(bj ,βj ;Bj)M+1,Q;(−k−α−β−σ:1) |(v)
]
,

valid under the same conditions as obtainable from (2.7).
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