Semi θ -Continuity in Intuitionistic Fuzzy Topological Spaces

I.M. HANAFY, A.M. ABD EL-AZIZ AND T.M. SALMAN

Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish, Egypt ihanafy@hotmail.com, tarek00_salman@hotmail.com

Abstract. This paper is devoted to the study of intuitionistic fuzzy topological spaces with specific attention to the strong forms of intuitionistic fuzzy continuity. Here we introduce intuitionistic fuzzy semi θ -continuity and intuitionistic fuzzy semi θ -open(closed) functions. Besides many properties and basic results, results related to the product of functions and the graph of functions are obtained.

2000 Mathematics Subject Classification: 54A99, 54C99 and 54E99

Key words and phrases: Intuitionistic fuzzy set, Intuitionistic fuzzy topological space, Intuitionistic fuzzy semi $\theta\text{-}continuity.}$

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [9], and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets. On the other hand, Coker [2] introduced the notions of intuitionistic fuzzy topological spaces, fuzzy continuity and some other related concepts. In this paper, we introduce the concept of semi θ -continuity in intuitionistic fuzzy topological spaces. This type of functions have been characterized and investigated in light of notions of quasi-coincident [5] and θ -neighbourhood [8]. For definitions and results not explained in this paper, we refer to the papers [1, 2, 5, 7], assuming them to be well known. The words "neighbourhood", "continuous", "quasi-coincident", "not quasi-coincident" and "irresolute" will be abbreviated as respectively "nbd", "cont.", "q", " \tilde{q} " and "i".

2. Preliminaries

First, we present the fundamental definitions (see [2]).

Definition 2.1. [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS, for short) U is an object having the form $U = \{\langle x, \mu_U(x), \gamma_U(x) \rangle : x \in X\}$ where the functions $\mu_U : X \to I$ and $\gamma_U : X \to I$ denote respectively the degree of membership (namely $\mu_U(x)$) and the degree of nonmembership (namely $\gamma_U(x)$) of each element $x \in X$ to the set U, and $0 \le \mu_U(x) + \gamma_U(x) \le 1$ for each $x \in X$.

Received: April 5, 2005; Revised: June 6, 2005.

The reader may consult [2, 3, 5] to see several types of relations and operations on IFS's, intuitionistic fuzzy points (IFP's, for short) and some properties of images and preimages of IFS's.

Definition 2.2. [2] An intuitionistic fuzzy topology (IFT, for short) on a nonempty set X is a family Ψ of IFS's in X containing 0, 1 and closed under finite infima and arbitrary suprema. In this case the pair (X, Ψ) is called an intuitionistic fuzzy topological space (IFTS, for short) and each IFS in Ψ is known as an intuitionistic fuzzy open set (IFOS, for short) in X. The complement \overline{U} of an IFOS U in an IFTS (X, Ψ) is called an intuitionistic fuzzy closed set (IFCS, for short) in X.

Definition 2.3. [7] Let X, Y be nonempty sets and $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$, $V = \langle y, \mu_V(y), \gamma_V(y) \rangle$ IFS's of X and Y, respectively. Then $U \times V$ is an IFS of $X \times Y$ defined by:

$$(U \times V)(x, y) = \langle (x, y), \min(\mu_U(x), \mu_V(y)), \max(\gamma_U(x), \gamma_V(y)) \rangle$$

Definition 2.4. [7] Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$. The product $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is defined by:

$$(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2)) \ \forall (x_1, x_2) \in X_1 \times X_2.$$

Definition 2.5. [7] Let $f : X \to Y$ be a function. The graph $g : X \to X \times Y$ of f is defined by: $g(x) = (x, f(x)) \ \forall x \in X$.

Lemma 2.1. [7] Let $f_i : X_i \to Y_i (i = 1, 2)$ be functions and U, V IFS's of Y_1, Y_2 , respectively, then

$$(f_1 \times f_2)^{-1}(U \times V) = f_1^{-1}(U) \times f_2^{-1}(V).$$

Definition 2.6. [7] Let $(X, \Psi), (Y, \Phi)$ be IFTS's and $A \in \Psi, B \in \Phi$. We say that (X, Ψ) is product related to (Y, Φ) if for any IFS's U of X and V of Y, whenever $(\overline{A} \not\ge U \text{ and } \overline{B} \not\ge V) \Rightarrow (\overline{A} \times 1 \cup 1 \times \overline{B} \ge U \times V)$, there exist $A_1 \in \Psi, B_1 \in \Phi$ such that $\overline{A_1} \ge U$ or $\overline{B_1} \ge V$ and $\overline{A_1} \times 1 \cup 1 \times \overline{B_1} = \overline{A} \times 1 \cup 1 \times \overline{B}$.

Theorem 2.1. [7] Let (X, Ψ) and (Y, Φ) be IFTS's such that X is product related to Y. Then for IFS's U of X and V of Y we have:

- (i) $\operatorname{cl}(U \times V) = \operatorname{cl}(U) \times \operatorname{cl}(V);$
- (*ii*) $\operatorname{int}(U \times V) = \operatorname{int}(U) \times \operatorname{int}(V)$.

Definition 2.7. Let U be an IFS of an IFTS X. Then

- (i) U is said to be an intuitionistic fuzzy semi open(semi closed) set [6](IFSOS (IFSCS), for short) if $U \leq cl(int(U))$ (int(cl(U)) $\leq U$).
- (ii) The semi-closure of U is denoted and defined by :

$$cl_s(U) = \wedge \{K : K \text{ is } IFSCS \text{ in } X \text{ and } U \leq K \}.$$

- (iii) The semi-interior of U is denoted and defined by :
 - $\operatorname{int}_{s}(U) = \bigvee \{ G : G \text{ is } IFSOS \text{ in } X \text{ and } G \leq U \}.$

Definition 2.8. An IFS U of an IFTS X is called

- (i) $\varepsilon nbd \ [3](\varepsilon \theta nbd)$ of an IFP c(a, b), if there exists an IFOS (IF θOS) G in X such that $c(a, b) \in G \leq U$.
- (ii) $\varepsilon q nbd \ [8](\varepsilon sq nbd)$ of an IFP c(a, b), if there exists an IFOS (IFSOS) G in X such that $c(a, b)qG \leq U$.
- (iii) $\varepsilon \theta q nbd$ [8] of an IFP c(a, b), if there exists an $\varepsilon q nbd$ G of c(a, b) such that $cl(G) \ \tilde{q} \ \overline{U}$.

The family of all ε – nbd (resp. $\varepsilon\theta$ – nbd, εq – nbd, εsq – nbd, $\varepsilon\theta q$ – nbd) of an IFP c(a, b) will be denoted by $N_{\varepsilon}(resp. N_{\varepsilon}^{\theta}, N_{\varepsilon}^{q}, N_{\varepsilon}^{sq}, N_{\varepsilon}^{\theta q})(c(a, b))$.

Definition 2.9. [8] An IFP c(a, b) is said to be intuitionistic fuzzy θ -cluster point (IF θ -cluster point, for short) of an IFS U iff for each $A \in N^q_{\varepsilon}(c(a, b))$, $cl(A) \neq U$.

The set of all $IF\theta$ -cluster points of U is called the intuitionistic fuzzy θ -closure of U and denoted by $cl_{\theta}(U)$. An IFS U will be called $IF\theta$ -closed (IF θ CS, for short) iff $U = cl_{\theta}(U)$. The complement of an $IF\theta$ -closed set is $IF\theta$ -open (IF θ OS, for short). The θ -interior of U is denoted and defined by $int_{\theta}(U) = 1 - cl_{\theta}(1 - U)$.

Definition 2.10. Let (X, Ψ) and (Y, Φ) be two IFTS's. A function $f : X \to Y$ is said to be:

- (i) IF cont. [2](IF semi-cont.(IFS-cont., for short) [6]) if the preimage of each IFOS in Y is IFOS(IFSOS) in X.
- (ii) IFi (IF super i) function if the preimage of each IFSOS in Y is IFSOS (IFOS) in X.
- (iii) IF-qθ(resp. IFstr-θ [8], IF faintly, IFλθ [8]) cont. if the preimage of each IFθOS (resp. IFOS, IFθOS, IFλOS) of Y is IFθOS (resp. IFθOS, IFθOS) in X.
- (iv) IF open (resp. IF closed, IF semiclosed, IF str- θ open, IF semiopen, IF faintly-open, IF faintly semiopen, IF $\lambda \theta$ -open) if the image of each IFOS (resp. IFCS, IFCS, IFOS, IFOS, IF θ OS, IF θ OS, IF λ OS) of X is IFOS (resp. IFCS, IFSCS, IF θ OS, IFSOS, IFOS, IFSOS, IF θ OS) in Y.

Definition 2.11. An IFTS (X, Ψ) is called :

- (i) IF compact [2] (resp. IF almost compact [4]) if for every IF open cover $\{U_j : j \in J\}$ of X, there exists a finite subfamily $J_{\circ} \subset J$ such that $X = \bigvee\{U_j : j \in J_{\circ}\}$ (resp. $X = \bigvee\{\operatorname{cl}(U_j) : j \in J_{\circ}\}$).
- (ii) IF semi-compact if for every IF semiopen cover $\{U_j : j \in J\}$ of X, there exists a finite subfamily $J_o \subset J$ such that $X = \lor \{U_j : j \in J_o\}$.
- (iii) IFT₂ [2] iff for every IFP's c(a,b), d(m,n) in X and $c \neq d$, there exist $G = \langle x, \mu_G(x), \gamma_G(x) \rangle$, $H = \langle x, \mu_H(x), \gamma_H(x) \rangle \in \Psi$ with $\mu_G(c) = 1$, $\gamma_G(c) = 0$, $\mu_H(d) = 1$, $\gamma_H(d) = 0$ and $G \wedge H = 0$.

3. Intuitionistic fuzzy semi θ -continuity

Definition 3.1. A function $f : (X, \Psi) \to (Y, \Phi)$ is said to be intuitionistic fuzzy semi θ -cont. (IFS θ -cont., for short), if for each IFP c(a, b) in X and $V \in N_{\varepsilon}^{sq}$ (f(c(a, b))), there exists $U \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $f(U) \leq V$.

Theorem 3.1. Let $f : (X, \Psi) \to (Y, \Phi)$ be a function. Then the following are equivalent:

- (i) f is an IFS θ -cont..
- (ii) $f^{-1}(V)$ is an IF θOS in X, for each IFSOS V in Y.
- (iii) $f^{-1}(H)$ is an IF θ CS in X, for each IFSCS H in Y.
- (iv) $\operatorname{cl}_{\theta}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}_{s}(V))$, for each IFS V in Y.
- (v) $f^{-1}(\operatorname{int}_s(G)) \leq \operatorname{int}_{\theta}(f^{-1}(G)), \text{ for each IFS } G \text{ in } Y.$

Proof. $(i) \Rightarrow (ii)$: Let V be an *IFSOS* in Y and c(a, b) be *IFP* in X such that $c(a, b)qf^{-1}(V)$. Since f is *IFS* θ cont., there exists $U \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $f(U) \leq V$. Then $c(a, b)qU \leq f^{-1}f(U) \leq f^{-1}(V)$ which shows that $f^{-1}(V) \in N_{\varepsilon}^{\theta q}(c(a, b))$ and then is an *IF* θOS of X.

 $(ii) \Rightarrow (iii)$: By taking the complement.

 $(iii) \Rightarrow (iv)$: Let V be an IFS in Y Since $V \leq \operatorname{cl}_s(V)$, then $f^{-1}(V) \leq f^{-1}(\operatorname{cl}_s(V))$. Using (iii), $f^{-1}(\operatorname{cl}_s(V))$ is an IF θOS in X. Thus $\operatorname{cl}_\theta(f^{-1}(V)) \leq \operatorname{cl}_\theta(f^{-1}(\operatorname{cl}_s(V))) = f^{-1}(\operatorname{cl}_s(V))$.

 $\begin{aligned} (iv) &\Rightarrow (v): \operatorname{Using}(iv), \operatorname{cl}_{\theta}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}_{s}(V)), \operatorname{then} \overline{\operatorname{cl}_{\theta}(f^{-1}(V))} \geq \overline{f^{-1}(\operatorname{cl}_{s}(V))}. \\ \text{Hence} \quad \operatorname{int}_{\theta}(\overline{f^{-1}(V)}) \geq f^{-1}(\overline{\operatorname{cl}_{s}(V)}). \quad \text{Thus} \ f^{-1}(\operatorname{int}_{s}(\overline{V})) \leq \operatorname{int}_{\theta}(f^{-1}(\overline{V})). \\ \text{Put} \\ G &= \overline{V}, \ \operatorname{then} \ f^{-1}(\operatorname{int}_{s}(G)) \leq \operatorname{int}_{\theta}(f^{-1}(G)). \end{aligned}$

 $(v) \Rightarrow (i)$: Let V be an *IFSOS* in Y. Then $\operatorname{int}_s(V) = V$. Using $(v), f^{-1}(V) \leq \operatorname{int}_{\theta}(f^{-1}(V))$. Hence $f^{-1}(V) = \operatorname{int}_{\theta}(f^{-1}(V))$ i.e. $f^{-1}(V)$ is an *IF* θ OS in X. Let c(a, b) be any *IFP* in $f^{-1}(V)$. Then $c(a, b)qf^{-1}(V)$ implies $f(c(a, b))qff^{-1}(V) \leq V$. Thus for any *IFP* c(a, b) and each $V \in N_{\varepsilon}^{sq}(f(c(a, b)))$, there exists $U = f^{-1}(V) \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $f(U) \leq V$. Thus f is *IFS* θ -cont.

Theorem 3.2. Let f be a bijective function from an $IFTS(X, \Psi)$ into an $IFTS(Y, \Phi)$. Then f is an $IFS\theta$ -cont. iff $int_s(f(U)) \leq f(int_{\theta}(U))$, for each $IFS \ U$ of X.

Proof. (\Rightarrow :): Let f be an $IFS\theta$ cont. function and U be an IFS in X. Hence $f^{-1}(\operatorname{int}_s(f(U)))$ is an $IF\theta OS$ in X. Since f is injective function and using Theorem 3.1(v), we have: $f^{-1}(\operatorname{int}_s(f(U))) \leq \operatorname{int}_{\theta}(f^{-1}(f(U))) = \operatorname{int}_{\theta}(U)$. Since f is surjective, $ff^{-1}(\operatorname{int}_s(f(U))) \leq f(\operatorname{int}_{\theta}(U))$ i.e. $\operatorname{int}_s(f(U)) \leq f(\operatorname{int}_{\theta}(U))$.

(\Leftarrow :): Let V be an IFSOS in Y. Then $V = \operatorname{int}_s(V)$. Using the hypothesis, we have: $V = \operatorname{int}_s(V) = \operatorname{int}_s(ff^{-1}(V)) \leq f(\operatorname{int}_{\theta}(f^{-1}(V)))$, which implies that $f^{-1}(V) \leq f^{-1}f(\operatorname{int}_{\theta}(f^{-1}(V)))$. From the fact that f is injective, we have: $f^{-1}(V) \leq \operatorname{int}_{\theta}(f^{-1}(V))$. Hence $f^{-1}(V) = \operatorname{int}_{\theta}(f^{-1}(V))$ i.e. $f^{-1}(V)$ is an IF θ OS in X. Thus f is an IFS θ -cont..

Theorem 3.3. Let $f : (X, \Psi) \to (Y, \Phi)$ be a bijective function. Then f is an $IFS\theta$ -cont. iff $f(cl_{\theta}(U)) \leq cl_s(f(U))$, for each $IFS \ U$ of X.

Proof. Similar to the proof of Theorem 3.2.

Lemma 3.1. Every IFS θ -cont. function is IF $\lambda\theta$ -cont.

Proof. From the fact that every $IF\lambda OS$ is IFSOS.

Remark 3.1. From the above discussion, one can illustrate the following implications: $IFS\theta$ -cont. $\Longrightarrow IF\lambda\theta$ -cont. $\Longrightarrow IF$ -cont.

The converse of the above implications need not be true in general, as shown in the following example and remark.

Example 3.1. Let X = [0, 1] and consider the IFS's $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$ and $V = \langle x, \mu_V(x), \gamma_V(x) \rangle$ as follows: $\mu_U(x) = \frac{3}{4}$, for all $x \in I$; $\gamma_U(x) = \frac{1}{3} \forall x \in I$ and $\mu_V(x) = \frac{2}{3}$, for all $x \in I$; $\gamma_V(x) = \frac{1}{4} \forall x \in I$.

Now, the families $\Psi = \{0, \underline{1}, U, \overline{U}\}$ and $\Phi = \{0, \underline{1}, U, \}$ are IFTS's on X. If we define the identity function $f: (X, \Psi) \to (Y, \Phi)$, then f is an $IFstr\theta$ -cont. function since $f^{-1}(U) = U$ is an $IF\theta OS$ in (X, Ψ) . But f is not $IF\lambda\theta$ -cont. (Indeed, in $(X, \Psi), V \leq \operatorname{int}(\operatorname{cl}(\operatorname{int}(V))) = 1$, then V is an $IF\lambda OS$ in (X, Ψ) . We notice that $f^{-1}(V) = V$ is not $IF\theta OS$ in (X, Ψ) because there exists an IFP $c(\frac{1}{2}, \frac{1}{4})$ in $(X, \Psi), c(\frac{1}{2}, \frac{1}{4})qV$ and only $\underline{1}, U \in N_{\varepsilon}^{\varepsilon}(c(\frac{1}{2}, \frac{1}{4}))$ but $c(\frac{1}{2}, \frac{1}{4})qcl(U) = U \leq V$.

Remark 3.2. From the above Example it is obvious that:

- (i) $IFstr\theta$ -cont. $\neq \Rightarrow$ $IFS\theta$ -cont.
- (ii) IF-cont. $\neq \rightarrow IF\lambda\theta$ -cont.
- (iii) IF-cont. $\not\Longrightarrow$ $IFS\theta$ -cont.

Definition 3.2. Let X,Y be non empty sets and c(a,b), d(m,n) IFP's of X,Y, respectively.

(i) $c(a,b) \times d(m,n)$ is an IFP of $X \times Y$ defined by :

$$(c(a,b) \times d(m,n))(x,y) = \langle (x,y), \min(a,m), \max(b,n) \rangle$$

(ii) Let $U = \langle x, \mu_U, \gamma_U \rangle$ and $V = \langle y, \mu_V, \gamma_V \rangle$ be IFS's of X and Y, respectively. Then, $(c(a,b), d(m,n))(x, y)q(U \times V)(x, y)$ iff $a > \gamma_U(c)$ and $m > \gamma_V(d)$ or $b < \mu_U(c)$ and $n < \mu_V(d)$.

Lemma 3.2. Let c(a,b), d(m,n) be IFP's in X and $U = \langle x, \mu_U, \gamma_U \rangle$ and $V = \langle y, \mu_V, \gamma_V \rangle$ be IFS's in X then the following implication hold:

$$c(a,b)qU$$
 and $d(m,n)qV \Rightarrow (c(a,b),d(m,n))q(U \times V)$

Proof. Since c(a,b)qU and d(m,n)qV. Using [5], we have $a > \gamma_U(c)$ or $b < \mu_U(c)$ and $m > \gamma_V(d)$ or $n < \mu_V(d)$. Hence using Definition 3.2, we have:

$$(c(a,b) \times d(m,n))(x,y) = \langle (x,y), \min(a,m), \max(b,n) \rangle$$

and

$$(U \times V)(x, y) = \langle (x, y), \min(\mu_U(x), \mu_V(y)), \max(\gamma_U(x), \gamma_V(y)) \rangle.$$

Since $a > \gamma_U(c)$ and $m > \gamma_V(d)$ or $b < \mu_U(c)$ and $n < \mu_V(d)$. Hence using Definition 3.2, $(c(a,b), d(m,n))q(U \times V)$.

Lemma 3.3. Let X, Y be IFTS's such that X is product related to Y. Then the product $U \times V$ of $IF\theta OS U$ of X and $IF\theta OS V$ of Y is an $IF\theta OS$ of $X \times Y$.

Proof. Let c(a,b) and d(m,n) are IFP's in X and Y respectively, such that c(a,b)qU and d(m,n)qV. Since U and V are $IF\theta OS's$, there exists IFOS's G and H in X and Y respectively, such that $c(a,b)qcl(G) \leq U$ and $d(m,n)qcl(H) \leq V$. Using Lemma 3.2 and Theorem 2.1, we have:

$$(c(a,b),d(m,n))q(\operatorname{cl}(G)\times\operatorname{cl}(H))=\operatorname{cl}(G\times H)\leq U\times V$$

Hence $U \times V$ is an $IF\theta OS$.

Theorem 3.4. Let X_1, X_2, Y_1 and Y_2 are IFTS's such that X_1 is product related to X_2 and $f_1: X_1 \to Y_1, f_2: X_2 \to Y_2$. Then the product $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ of $IFS\theta$ -cont. functions f_1 and f_2 is an $IFS\theta$ -cont.

Proof. Let $G = \lor(U_i \times V_j)$ be an *IFSOS* of $Y_1 \times Y_2$, where U_i 's and V_j 's are *IFSOS's* of Y_1 and Y_2 respectively. Using [3, Corollary 2.10(e)] and Lemma 2.1, we have:

$$(f_1 \times f_2)^{-1}(G) = (f_1 \times f_2)^{-1}(\vee(U_i \times V_j))$$

= $\vee(f_1 \times f_2)^{-1}(U_i \times V_j)$
= $\vee(f_1^{-1}(U_i) \times f_2^{-1}(V_j)).$

Since $f_1^{-1}(U_i)$ and $f_2^{-1}(V_j)$ are $IF\theta OS's$ of X and Y respectively. Hence by Lemma 3.3, $f_1^{-1}(U_i) \times f_2^{-1}(V_j)$ is an $IF\theta OS$. So, $\lor (f_1^{-1}(U_i) \times f_2^{-1}(V_j))$ is an $IF\theta OS$. Hence $f_1 \times f_2$ is an $IFS\theta$ -cont.

Theorem 3.5. A function $f : (X, \Psi) \to (Y, \Phi)$ is an IFS θ -cont. if the graph function $g : X \to X \times Y$ is an IFS θ -cont..

Proof. Let g be an *IFS* θ -cont. function and c(a, b) be any *IFP* in X. If $V \in N_{\varepsilon}^{sq}(f(c(a, b)))$, then $X \times V \in N_{\varepsilon}^{sq}(g(c(a, b)))$ in $X \times Y$. Since g is *IFS* θ -cont., there exists $U \in N_{\varepsilon}^{\theta}(c(a, b))$ such that $g(U) \leq X \times V$. This implies that $f(U) \leq V$. Thus f is *IFS* θ -cont..

4. Compositions and some preservation results

Theorem 4.1. If $f : X \to Y$ is an IFS θ -cont. and $g : Y \to Z$ is an IFi function, then $g \circ f : X \to Z$ is an IFS θ -cont. function.

Proof. Straightforward.

Corollary 4.1. The composition of two $IFS\theta$ -cont. functions is an $IFS\theta$ -cont. function.

Theorem 4.2. The following hold for functions $f: X \to Y$ and $g: Y \to Z$:

- (i) If f is an IFS θ -cont. and g is an IFS-cont., then $g \circ f : X \to Z$ is an IFstr- θ cont. function.
- (ii) If f is an IFq θ -cont. and g is an IFS θ -cont., then $g \circ f : X \to Z$ is an IFS θ -cont. function.
- (iii) If f is an IF faintly cont. and g is an IFS θ -cont., then $g \circ f : X \to Z$ is an IF super i function.

(iv) If f is an IFS θ -cont. and g is an IFcont., then $g \circ f : X \to Z$ is an IFS θ -cont. function.

Proof. Straightforward.

Theorem 4.3. Let X, Y and Z are IFTS's. If $f : X \to Y$ is an IF faintly semiopen and IFS θ -cont. surjection function and $g : Y \to Z$ is a function such that $g \circ f$ is an IFS θ -cont., hence g is IFS-cont..

Proof. Let V be an *IFOS* in Z, hence V is an *IFSOS* [since every *IFOS* is *IFSOS*]. Since $g \circ f$ is an *IFS* θ -cont., then $(g \circ f)^{-1}(V)$ is an *IF* θ OS in X. Since f is an *IFfaintly open* surjection, hence $f((g \circ f)^{-1}(V)) = f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is an *IFSOS* in Y. Thus g is *IFS*-cont..

Theorem 4.4. Let $f: X \to \prod_{j \in J} X_j$ be IFS θ -cont. function and let $f_j: X \to X_j$, for each $j \in J$, defined by $f_j(c(a, b)) = c_j(a_j, b_j)$ if $f(c(a, b)) = c_j(a_j, b_j)$. Then the function f_j is an IFS θ -cont., for each $j \in J$.

Proof. Let P_j denote the projection of $\prod_{j \in J} X_j$ onto X_j . Then obviously $f_j = P_j \circ f$ for each $j \in J$. Since f is an $IFS\theta$ -cont., then each f_j is so by Theorem 4.2(iv). \Box

Definition 4.1. An IFTS (X, Ψ) is said to be an IF θT_2 iff for every IFP's c(a,b), d(m,n) in X and $c \neq d$, there exist IF $\theta OS's$ $G = \langle x, \mu_G(x), \gamma_G(x) \rangle$, $H = \langle x, \mu_H(x), \gamma_G(x) \rangle$.

 $\begin{aligned} \gamma_H(x)\rangle &\in \Psi \text{ with} \\ \mu_G(c) &= 1 \ , \qquad \gamma_G(c) = 0 \ , \\ \mu_H(d) &= 1 \ , \qquad \gamma_H(d) = 0 \quad and \quad G \wedge H = 0. \end{aligned}$

Remark 4.1. From Definition 4.6 and Definition 2.11(iii), it is clear that:

 $IF\theta T_2S \Rightarrow IFT_2S.$

Theorem 4.5. Let $f : (X, \Psi) \to (Y, \Phi)$ be an injective and IFS θ -cont. function. If (Y, Φ) is an IFT₂S, then (X, Ψ) is an IF θ T₂S.

Proof. Let c(a, b), d(m, n) be IFP's in X and $c \neq d$. By injective f, $f(c) \neq f(d)$ and by the IFT_2 property of Y, there exist IFOS's $G = \langle y, \mu_G, \gamma_G \rangle$, $H = \langle y, \mu_H, \gamma_H \rangle$ of Φ with $\mu_G(f(c)) = 1$, $\gamma_G(f(c)) = 0$, $\mu_H(f(d)) = 1$, $\gamma_H(f(d)) = 0$ and $G \wedge H = 0$. Since f is an $IFS\theta$ -cont., then

$$f^{-1}(G) = \langle x, f^{-1}(\mu_G), f^{-1}(\gamma_G) \rangle, \ f^{-1}(H) = \langle x, f^{-1}(\mu_H), f^{-1}(\gamma_H) \rangle$$

are $N_{\varepsilon}^{\theta}(c(a,b))$ and $N_{\varepsilon}^{\theta}(d(m,n))$, respectively such that

$$f^{-1}(\mu_G)(c(a,b)) = \mu_G(f(c)) = 1, \ f^{-1}(\gamma_G) \ c(a,b) = \gamma_G(f(c)) = 0,$$

 $f^{-1}(\mu_H)(d(m,n)) = \mu_H(f(d)) = 1, \quad f^{-1}(\gamma_H)(d(m,n)) = \gamma_H(f(d)) = 0$

and

$$f^{-1}(G) \wedge f^{-1}(H) = f^{-1}(G \wedge H) = f^{-1}(\underset{\sim}{0}) = \underset{\sim}{0}$$

Hence (X, Ψ) is an $IF\theta T_2S$.

Corollary 4.2. Let $f : (X, \Psi) \to (Y, \Phi)$ be an injective and IFS θ -cont. function. If (Y, Φ) is an IFT₂S, then (X, Ψ) is so.

Definition 4.2. An IFTS (X, Ψ) is said to be IF θ S iff the collection of all IF θ OS's of X forms a base for the IFT Ψ of X.

Lemma 4.1. If an IFTS (X, Ψ) is an IF θ S, then for each IFP c(a, b) in X and each $U \in N_{\varepsilon}^{\theta q}(c(a, b))$, there is $V \in N_{\varepsilon}^{\theta q}(c(a, b))$ such that $V \leq U$.

Proof. Let c(a, b) be an IFP in X and $U \in N_{\varepsilon}^{\theta q}(c(a, b))$. Since X is $IF\theta S$, $U = \bigvee_{j \in J} A_j$, where for each $j \in J$, $A_j = \langle x, \mu_{A_j}, \gamma_{A_j} \rangle$ are some $IF\theta OS$'s in X. We claim that for some j, $A_j \in N_{\varepsilon}^{\theta q}(c(a, b))$. If not, i.e. $c(a, b) \ \tilde{q}A_j$ for all $j \in J$. Then $a < \gamma_{A_j}$ or $b > \mu_{A_j}$ for all $j \in J$. Then $a < \wedge \gamma_{A_j}$ or $b > \vee \mu_{A_j}$, so that $c(a, b) \ \tilde{q} \ \downarrow_j \in J$ which is a contraduction. Hence for some $j_{\circ} \in J$, $A_{j_{\circ}} =$

 $\langle x, \mu_{A_{j\circ}}, \gamma_{A_{j\circ}} \rangle \in N_{\varepsilon}^{\theta q}(c(a, b)).$ Also $\mu_{A_{j\circ}} < \lor \mu_{A_j}, \ \gamma_{A_{j\circ}} > \land \gamma_{A_j}.$ Hence $A_{j\circ} \leq U.$ Putting $V = A_{j\circ}$, we have $V \leq U.$

Theorem 4.6. If $f : (X, \Psi) \to (Y, \Phi)$ is an IF super *i* function and X is an IF θS , then f is an IFS θ -cont..

Proof. Let c(a,b) be an IFP in X and $V \in N^{Sq}_{\varepsilon}(f(c(a,b)))$. Then $f^{-1}(V) \in N^q_{\varepsilon}(c(a,b))$ since f is an *IF super i* function. Also, since X is *IF* θS and by Lemma 4.1., there is $U \in N^{\theta q}_{\varepsilon}(c(a,b))$ such that $U \leq f^{-1}(V)$ and so $f(U) \leq V$. Hence f is an *IFS* θ -cont..

Theorem 4.7. Every $IFS\theta$ -cont. image of an IF compact space is an IF semicompact.

Proof. Let $f: X \to Y$ be an $IFS\theta$ -cont. of an IF compact space X onto an IFTSY. Let $\{U_j : j \in J\}$ be any IF semi open cover of Y. Then $\{f^{-1}(U_j) : j \in J\}$ is an $IF\theta$ open cover of X. Since X is an IF compact, then there exists a finite subcover $\{f^{-1}(U_j) : j = 1, ..., n\}$ of $\{f^{-1}(U_j) : j \in J\}$. It implies that $\{U_j : j = 1, ..., n\}$ is a finite subcover of $\{U_j : j \in J\}$. Hence Y is an IF semi-compact. \Box

Theorem 4.8. Every IFS θ -cont. image of an IFalmost compact space is an IFalmost compact.

Proof. Similar to the proof of Theorem 4.7.

5. Intuitionistic fuzzy semi θ -open(closed) functions

Definition 5.1. A function $f : (X, \Psi) \to (Y, \Phi)$ is said to be IFsemi θ -open (IFsemi θ -closed) (IFS θ -open(IFS θ -closed), for short) if f(U) is an IF θ OS (IF θ CS) of Y for each IFSOS (IFSCS) U of X.

Theorem 5.1. For a function $f : (X, \Psi) \to (Y, \Phi)$, the following are equivalent:

- (i) f is an IFS θ -open.
- (ii) For each IFS V of Y and each IFSCS U of X, when $f^{-1}(V) \leq U$, there is an IF θ CS H of Y with $V \leq H$ such that $f^{-1}(H) \leq U$.
- (iii) $f^{-1}(\operatorname{cl}_{\theta}(V)) \leq \operatorname{cl}_{s}(f^{-1}(V))$ for each IFS V of Y.

(iv) $f(\operatorname{int}_s(U)) \leq \operatorname{int}_{\theta}(f(U))$ for each IFS U of X.

Proof. $(i) \Rightarrow (ii)$: Suppose f is $IFS\theta$ -open and V be any IFS in Y. Let U is an IFSCS in X such that $f^{-1}(V) \leq U$. Let $H = \overline{f(\overline{U})}$. Then H is an $IF\theta CS H$ in Y and, $V \leq H$, we have:

$$f^{-1}(H) = f^{-1}(\overline{f(\overline{U})}) = \overline{f^{-1}f(\overline{U})} \le U.$$

(ii) \Rightarrow (i): Let *G* be an *IFSOS* in *X*, $V = \overline{f(G)}$ and $U = \overline{G}$. We obtain $f^{-1}(V) = f^{-1}(\overline{f(G)}) = \overline{f^{-1}f(G)} \leq \overline{G}$. By hypothesis, there exists an *IF* θCS *H* in *Y* with $V \leq H$ such that $f^{-1}(H) \leq U = \overline{G}$. Then $G \leq \overline{f^{-1}(H)} = f^{-1}(\overline{H})$. Hence, $f(G) \leq ff^{-1}(\overline{H}) \leq \overline{H}$. Also, since $V \leq H$, $f(G) = \overline{V} \geq \overline{H}$. Hence $f(G) = \overline{H}$ is an *IF* θOS in *Y* and hence *f* is *IFS* θ -open.

(ii) \Rightarrow (iii): Let V be an IFS in Y. Since $\operatorname{cl}_s(f^{-1}(V))$ is an *IFSCS* in X, with $f^{-1}(V) \leq \operatorname{cl}_s(f^{-1}(V))$. Then by (ii), there exists an IF θ CS H of Y with $V \leq H$ such that $f^{-1}(H) \leq \operatorname{cl}_s(f^{-1}(V))$. Since $V \leq H$, we have $f^{-1}(\operatorname{cl}_\theta(V)) \leq f^{-1}(\operatorname{cl}_\theta(H)) \leq f^{-1}(H) \leq \operatorname{cl}_s(f^{-1}(V))$.

(iii) \Rightarrow (iv): Easy by putting $V = \overline{f(U)}$ in (*iii*). (iv) \Rightarrow (i): Obvious.

Theorem 5.2. A function $f : (X, \sigma) \to (Y, \Phi)$ is said to be IFS θ -closed iff for each IFS V of Y and each IFSOS U of X, when $f^{-1}(V) \leq U$, there is an IF θ OS G of Y such that $V \leq G$ and $f^{-1}(G) \leq U$.

Proof. Analogous to the proof of Theorem 5.1.

Remark 5.1. For a function $f : (X, \Psi) \to (Y, \Phi)$, the following implications hold: $IFS\theta$ -open $\Longrightarrow IF\lambda\theta$ -open $\Longrightarrow IFstr\theta$ -open $\Longrightarrow IF$ -open

The converse of the above implications need not be true in general, as shown in the following example and remark.

Example 5.1. Let X = [0,1] and consider the IFS's $U = \langle x, \mu_U(x), \gamma_U(x) \rangle$ and $V = \langle x, \mu_V(x), \gamma_V(x) \rangle$ as follows: $\mu_U(x) = \frac{5}{6}$, $\forall x \in I$; $\gamma_U(x) = \frac{1}{5} \forall x \in I$. and $\mu_V(x) = \frac{4}{5}$, for all $x \in I$; $\gamma_V(x) = \frac{1}{6}$ for all $x \in I$.

Now, the family $\Psi = \{0, \underline{1}, U, \overline{U}\}$ and $\Phi = \{0, \underline{1}, U, \overline{U}\}$ is IFTS on X. If we define the identity function $f: (X, \Psi) \to (X, \Psi)$, then f is an $IFstr\theta$ -open function since U and \overline{U} are $IF\theta OS$ in (X, Ψ) . But f is not $IF\lambda\theta$ -open (Indeed, V is an $IF\lambda OS$ in (X, Ψ) and f(V) = V is not $IF\theta OS$ in (X, Ψ) .

Remark 5.2. From the above Example it is obvious that:

- (i) $IFstr\theta$ -open function $\not\Longrightarrow IFS\theta$ -open function.
- (ii) *IF-open* function $\not\Longrightarrow$ *IF* $\lambda\theta$ -open function.
- (iii) *IF-open* function $\not\Longrightarrow$ *IFS* θ -open function.

Theorem 5.3. The following hold for functions $f: X \to Y$ and $g: Y \to Z$:

- (i) The composition of two IFS θ -open functions is an IFS θ -open function.
- (ii) g is an IFS θ -open, if f is a bijective IFi and $g \circ f$ is IFS θ -open.

 \square

- (iii) If f is an IF semiopen and g is an IF str θ -open, then $g \circ f : X \to Z$ is an IF $S\theta$ -open.
- (iv) $g \circ f$ is IF open, If f is IFS θ -open and g is an IF faintly open.

Proof. Straightforward.

Theorem 5.4. Let $f : (X, \Psi) \to (Y, \Phi)$ be a function. Then the following are equivalent:

- (i) f is an IFS θ -open.
- (ii) f is an IFS θ -closed.
- (iii) f^{-1} is an IFS θ -cont.

Proof. $(i) \Rightarrow (ii)$: Let H be an *IFSCS* in X, then \overline{H} is an *IFSOS* in X. Since f is bijective and *IFSθ-open*, then $f(\overline{H}) = \overline{f(H)}$ is an *IFθOS* in Y and hence f(H) is an *IFθCS*. Therefore f is an *IFSθ-closed*.

 $(ii) \Rightarrow (iii)$: Let U be an IFSCS in X, by (ii), f(U) is an IF θ CS. Now $(f^{-1})^{-1}(U) = f(U)$ is an IF θ CS in Y, hence f^{-1} is an IFS θ -cont..

 $(iii) \Rightarrow (i)$: Let U be an IFSOS in X. Since f^{-1} is bijective and IFS θ -cont., then $f(U) = (f^{-1})^{-1}(U)$ is an IF θ OS in Y and hence f is an IFS θ -open.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
- [2] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [3] D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4(2) (1996), 749–764.
- [4] D. Coker and A. H. Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3(4) (1995), 899–909.
- [5] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (1995), 79-84.
- [6] H. Gurcay, D. Coker and A. H. Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5(2) (1997), 365–378.
- [7] I. M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Math. J. 53(4)(2003), 793–803.
- [8] I. M. Hanafy, A. M. Abd El Aziz and T. M. Salman, Intuitionistic fuzzy θ -closure operator, to appear.
- [9] L. A. Zadeh, Fuzzy sets, Infor. and Control 9 (1965), 338-353.

10