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Abstract. A 3-point implicit block method for solving system of first order
ordinary differential equations (ODEs) is proposed. This method approximates
the solutions of initial value problems at 3 points simultaneously using variable
step size. The stability of the method is also studied. The numerical results
show that the method is more efficient than the 3-point implicit block method
developed by Rosser [4] in terms of the total number of steps and execution
times.

2000 Mathematics Subject Classification: 65L06, 65L05

Key words and phrases: 3-point, implicit block method, ordinary differential
equations.

1. Introduction

This paper considers initial value problems (IVPs) for a system of first order ODEs
in the following form,

(1.1) y′ = f(x, y), y(a) = y0 a ≤ x ≤ b

where a and b are finite. Scientific and technological problems often lead to mathe-
matical modeling of real life applications such as the motion of projectiles or orbit-
ing bodies, population growth, chemical kinetics and economic growth. Differential
equations are often used to model the problems and most of time these equations
do not have analytic solutions. Hence, an appropriate numerical method is required
to solve the problems. Block methods for numerical solutions of first order ODEs
have been proposed by several researchers such as Milne [2], Rosser [4], Shampine
and Watts [5], Worland [7] and Omar [3]. Rosser [4] introduced the 3-point implicit
block method based on the integration formulae which is basically of the Newton-
Cotes type. The values of yn+1, yn+2 and yn+3 were approximated by integrating
(1.1) over the interval [xn, xn+1], [xn, xn+2] and [xn, xn+3] respectively.
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Figure 1. 3-point implicit block method

In this paper, we attempt to derive 3-point implicit block method based on
Newton backward divided difference formulae. Unlike Rosser, we approximate yn+1,
yn+2 and yn+3 by integrating (1.1) over the interval [xn, xn+1], [xn+1, xn+2] and
[xn+2, xn+3] respectively.

2. Derivation of 3-point implicit block method

In 3-point implicit block method, the interval [a, b] is divided into a series of blocks
with each block containing 3 points (refer to Figure 1). The following strategy is
employed to calculate the solutions at each block. The solution at the point xn,
which is the end point of K− 1 block, is used to calculate the solutions of K block.
Similarly, the solution at the end point of K block, which is at xn+3, is used to
calculate the solutions of K + 1 block. The same process applied for calculating
the next blocks until the end point x = b is reached.

To approximate yn+1, takes xn+1 = xn + h and integrate (1.1) gives
∫ xn+1

xn

y′dx =
∫ xn+1

xn

f(x, y)dx

which is equivalent to

(2.1) y (xn+1) = y (xn) +

xn+1∫

xn

f (x, y) dx.

Define Pn+3 (x) as the interpolation polynomial which interpolates f(x, y) in (2.1)
at the set of points {xn, xn+1, xn+2, xn+3} as follows

Pn+3 (x) =
k∑

m=0

(−1)m

( −s
m

)
∇mfn+3

where

s =
x− xn+3

h
and k = 3.

By replacing dx = h ds and changing the limit of integration gives

(2.2) y (xn+1) = y (xn) + h

k∑
m=0

σm∇mfn+3
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where

σm = (−1)m

−2∫

−3

( −s
m

)
ds.

By solving (2.2) will produce the formulae of the first point as follows

(2.3) yn+1 = yn +
h

24
(fn+3 − 5fn+2 + 19fn+1 + 9fn)).

Now taking xn+2 = xn+1 + h in equation (1.1), replacing dx = h ds and changing
the limit of integration from −2 to −1 gives,

(2.4) y (xn+2) = y (xn+1) + h

k∑
m=0

γm∇mfn+3

where

γm = (−1)m

−1∫

−2

( −s
m

)
ds.

Again by solving (2.4) will give the formulae for the second point as follows

(2.5) yn+2 = yn+1 +
h

24
(−fn+3 + 13fn+2 + 13fn+1 − fn).

Now, taking xn+3 = xn+2 + h in (1.1), replacing dx = h ds and changing the limit
of integration from −1 to 0 gives

y (xn+3) = y (xn+2) + h

k∑
m=0

δm∇mfn+3

where

(2.6) δm = (−1)m

0∫

−1

( −s
m

)
ds.

Solving (2.6) will give the formulae for the third point as follows

(2.7) yn+3 = yn+2 +
h

24
(9fn+3 + 19fn+2 − 5fn+1 + fn)

3. Implementation of 3-point implicit block method

The values of yn+1, yn+2 and yn+3 in (2.3), (2.5) and (2.7) will be approximated us-
ing the predictor-corrector schemes. If r corrections are needed, then the sequence
of computations at any mesh point is (PE)(C0E) . . . (CrE) where P and C indicate
the application of the predictor and corrector formulae respectively and E indicate
the evaluation of the function f .

The predictor equations:

P : yp
n+m,0 = yc

n + mhf c
n, m = 1, 2, 3,(3.1)

E : fp
n+m,0 = f(xn+m, yp

n+m,0).
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The corrector equations: For r = 0,

yc
n+1,1 =yc

n +
h

24
(fp

n+3,0 − 5fp
n+2,0 + 19fp

n+1,0 + 9f c
n)(3.2)

C0 : yc
n+2,1 =yp

n+1,0 +
h

24
(−fp

n+3,0 + 13fp
n+2,0 + 13fp

n+1,0 − f c
n)(3.3)

yc
n+3,1 =yp

n+2,0 +
h

24
(9fp

n+3,0 + 19fp
n+2,0 − 5fp

n+1,0 + f c
n)(3.4)

E : f c
n+m,1=f(xn+m, yc

n+m,1).

For r = 1, 2, 3,

yc
n+1,r+1 =yc

n +
h

24
(f c

n+3,r − 5f c
n+2,r + 19fc

n+1,r + 9f c
n)(3.5)

Cr : yc
n+2,r+1 =yc

n+1,r +
h

24
(−f c

n+3,r + 13f c
n+2,r + 13f c

n+1,r − f c
n)(3.6)

yc
n+3,r+1 =yc

n+2,r +
h

24
(9f c

n+3,r + 19f c
n+2,r − 5f c

n+1,r + f c
n)(3.7)

E : f c
n+m,r+1=f(xn+m, yc

n+m,r+1)(3.8)

Define (3.1) as the initial approximation and each fp
n+m,0 is an approximation of

order O (h). Since fp
n+m,0 are multiplied by the coefficients of order h in (3.2), (3.3)

and (3.4), it turns out that yc
n+m,r+1 will be an approximation of order O

(
h2

)
. At

r = 2, it would simulate method of order O
(
h4

)
and continue iterating until r =

3 can improves the accuracy but still within the same order. In the program, we
only allowed the iteration up to r = 3 and the iteration can be terminate before
the maximum r if the convergence test has satisfied,

(3.9)
∥∥yc

n+3,r+1 − yc
n+3,r

∥∥ < 0.1× TOLERANCE.

4. 3-point implicit block method in half Gauss Seidel

In (3.2)–(3.7), the approach is similar to the Jacobi iteration. At r = 0, the ap-
proximate value of yp

n+1,0 in (3.3) and yp
n+2,0 in (3.4) are from the predictor values.

When r = 1, 2, 3, the approximate value of yc
n+1,r in (3.6) and yc

n+2,r in (3.7) is from
the previous iteration and the order is one less. Hence, we replace the algorithm as
follows, For r = 0,

yc
n+2,r+1 = yc

n+1,r+1 +
h

24
(−fp

n+3,r + 13fp
n+2,r + 13fp

n+1,r − f c
n)(4.1)

yc
n+3,r+1 = yc

n+2,r+1 +
h

24
(9fp

n+3,r + 19fp
n+2,r − 5fp

n+1,r + f c
n)(4.2)

For r = 1, 2, 3,

yc
n+2,r+1 = yc

n+1,r+1 +
h

24
(−fc

n+3,r + 13f c
n+2,r + 13f c

n+1,r − f c
n)(4.3)

yc
n+3,r+1 = yc

n+2,r+1 +
h

24
(9f c

n+3,r + 19f c
n+2,r − 5fc

n+1,r + f c
n)(4.4)



3-Point Implicit Block Method for Solving Ordinary Differential Equations 27

Figure 2. Stability Region for 3PZ at r = 0

In (4.1) and (4.3), the estimated value of yc
n+1,r+1 is from the same iteration to

replace yp
n+1,r in (3.3) and yc

n+1,r in (3.6). The same strategy follows in (4.2) and
(4.4), taking the value of yc

n+2,r+1 to replace yp
n+2,r in (3.4) and yc

n+2,r in (3.7). This
strategy is again known as the Gauss Seidel style. We observed that the numerical
results are much better.

5. Stability region

The stability of the 3-point implicit block method derived in the previous section
on a linear first order problem when the method is applied to the test equation

(5.1) y′ = f = λy.

The formulae of the 3-point implicit block method are given by (3.1)–(3.7). For
r = 0, substitute fp

n+1,0, fp
n+2,0 and fp

n+3,0 from (3.1) into the right hand side
of (3.2), (3.3) and (3.4). When r = 1, substitute f c

n+1,1, f c
n+2,1 and f c

n+3,1 into
the right hand side of (3.5)–(3.7) and the process continues. The characteristics
polynomial of the 3-point implicit block method at r = 0, 1, 2 is as follows:
At r = 0,

(5.2) t3 − (1 + 3h +
9
2
h

2
)t2 = 0

At r = 1,

(5.3) t3 − (1 + 3h +
9
2
h

2
+

9
2
h

3
)t2 = 0

At r = 2,

(5.4) t3 − (1 + 3h +
9
2
h

2
+

9
2
h

3
+

51
16

h
4
)t2 = 0

where h = hλ and the stability region is shown in Figure 2, 3 and 4.

The stability region of 3PZ is inside the boundary of the circle. At r = 0, the
corrector equations are dependent on values taken from the predictor equations
which are explicit formulae. But as the r increases, the corrector values have
dominated the corrector equations which are implicit formulae. Therefore, it is
observed from Figure 2 to 4 that the stability region is larger as the number of
iteration increased.
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Figure 3. Stability Region for 3PZ at r = 1

Figure 4. Stability Region for 3PZ at r = 2

6. Tested problems

The following problems were tested on the DYNIX/ptx operating system:

Problem 6.1. y′ = −y y (0) = 1, [0, 20] Exact Solution: y(x) = e−x.
Source: Artificial Problem

Problem 6.2. y′ = y y (0) = 1, [0, 20] Exact Solution: y(x) = ex.
Source: Artificial Problem

Problem 6.3. y′1 = −Ay1 − By2 y′2 = By1 − Ay2, A = 1, B =
√

3, y1 (0) = 1,
y2 (0) = 0, [0, 20] Exact Solution: y1(x) = e−Ax cos Bx. y2(x) = e−Ax sin Bx.

Source: Tam [6].

Problem 6.4. y′1 = y2, y′2 = 2y2−y1, y1 (0) = 0, y2 (0) = 1, [0, 20] Exact Solution:
y1 (x) = xex, y2 (x) = (1 + x)ex,

Source: Bronson [1].

7. Numerical results

The following notations are used in the tables:
TOL Tolerance
MTD Method employed
TS Total steps taken
FS Total failure step
MAXE Magnitude of the maximum error of the computed solution
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AVERR Average error
FCN Total function calls
TIME The execution time taken in microseconds
3PZ Implementation of the 3 point implicit block method using Jacobi iteration
3PR Implementation of the 3 point implicit block method by Rosser [4] using

Jacobi iteration
3PZhG Implementation of the 3 point implicit block method in half

Gauss Seidel iteration
RTIME The ratio execution times of 3PZhG to the 3PR and 3PZ

The true solution is required in order to calculate the maximum error. It is defined
as follows: Let

(ei)t =
∣∣∣∣
(yi)t − (y (xi))t

A + B (y (xi))t

∣∣∣∣

where the notation (y)t is the t th component of y. A=1, B=0 corresponds to the
absolute error test, A=1, B=1 corresponds to mixed error test and finally A=0,
B=1 corresponds to relative error test. The maximum error and average error are
defined as follows:

MAXE = max
1≤i≤SSTEP

(
max

1≤i≤N
(ei)t

)

and

AV ERR =

SSTEP∑
i=1

N∑
t=1

(ei)t

(P ) (N) (SSTEP )

where N is the number of equations in the system, SSTEP is the number of suc-
cessful steps and P is the number of point. For Problems 2 and 4, the relative error
test is used. The absolute and mixed error test is for Problem 1 and 3 respectively.
At each step of integration, a test for checking the end of the interval is made. If
b denotes the end of the interval then if x + 3h ≥ b then h = (b−x)

3 , otherwise h
remain as calculated. The technique above helped to reach the end point of the
interval. After the successful convergence test of [3.5], local errors estimate Est at
xn+3 will be performed to control the error for the block.

We compare the absolute difference of the corrector formula derived of order k
and a similar corrector formula of order k − 1. Therefore, we obtain

(7.1) Est =
∣∣∣∣

h

24
(fn+3 − 3fn+2 + 3fn+1 − fn)

∣∣∣∣
The value Est is compared with the prescribed tolerance TOL and the step is
accepted if

Est < TOL

and rejected otherwise. The step size prediction in the next step is given by

h = fac× hold ×
(

TOL

Estk

) 1
p

,
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and if (h > 2× hold) then
h = 2× hold,

where fac is a safety factor and hold is the step size from previous block. The
safety factor used in the program was 0.5 because from computational tested it had
reduced the number of steps rejected. The error controls for all the methods are at
the third point in the block because in general it had given us better results.

The tables below show the numerical results for the four given problems when
solved using the method obtained from the previous section compare with the 3-
point implicit block method in Rosser [4].

Table 1. Comparison between the 3PZ, 3PR and 3PZhG methods for solving Problem 1.

TOL MTD TS FS MAXE AVERR FNC TIME RT IME

10−2
3PZ
3PR

3PZhG

45
20
16

2
1
1

7.05966(-5)
3.72960(-5)
6.38350(-5)

1.55040(-5)
9.38930(-6)
1.70620(-5)

676
301
241

2381
944
741

2.52
1.27
1.00

10−4
3PZ
3PR

3PZhG

170
49
38

3
1
1

1.77719(-6)
3.59617(-7)
7.55105(-7)

5.42886(-7)
9.92531(-8)
1.76192(-7)

2551
736
571

8739
2321
1766

4.95
1.31
1.00

10−6
3PZ
3PR

3PZhG

654
126
101

4
1
1

6.22500(-8)
4.94290(-9)
4.94290(-9)

2.46430(-8)
1.30479(-9)
1.82891(-9)

9811
1891
1516

33726
6010
4715

7.15
1.27
1.00

10−8
3PZ
3PR

3PZhG

2362
339
274

5
1
1

2.40197(-9)
8.84362(-11)
8.84362(-11)

1.32897(-9)
2.15738(-11)
2.77222(-11)

35431
5086
4111

121909
16170
12857

9.48
1.26
1.00

10−10
3PZ
3PR

3PZhG

7323
1412
750

6
2
1

3.18638(-10)
1.09967(-13)
1.87599(-12)

1.42314(-10)
3.33205(-14)
5.25147(-13)

109846
21181
11251

377951
67312
35162

10.75
1.91
1.00

Table 2. Comparison between the 3PZ, 3PR and 3PZhG methods for solving Problem 2.

TOL MTD TS FS MAXE AVERR FNC TIME RT IME

10−2
3PZ
3PR

3PZhG

79
40
40

2
1
1

3.29774(-4)
5.36207(-4)
5.36207(-4)

1.59790(-4)
2.71766(-4)
2.71766(-4)

1186
601
601

3870
1892
1816

2.13
1.04
1.00

10−4
3PZ
3PR

3PZhG

390
98
98

3
1
1

6.85574(-5)
4.20484(-6)
4.20484(-6)

3.42863(-5)
2.10176(-6)
2.10176(-6)

5851
1471
1471

19201
4542
4437

4.33
1.02
1.00

10−6
3PZ
3PR

3PZhG

1946
244
244

4
1
1

3.16305(-6)
3.28661(-8)
3.28661(-8)

1.58112(-6)
1.65205(-8)
1.65205(-8)

29191
3661
3661

95991
11246
11057

8.68
1.02
1.00

10−8
3PZ
3PR

3PZhG

9761
611
611

5
1
1

1.28837(-7)
2.42991(-9)
2.42991(-9)

6.44181(-8)
1.21766(-9)
1.21766(-9)

146416
9166
9166

481690
28225
27612

17.44
1.02
1.00

10−10
3PZ
3PR

3PZhG

49036
3066
1533

6
2
1

5.13356(-9)
6.39593(-12)
7.83933(-11)

2.56472(-9)
2.95087(-12)
3.91244(-11)

735541
45991
22996

2423761
142476
69420

34.91
2.05
1.00

Table 3. Comparison between the 3PZ, 3PR and 3PZhG methods for solving Problem 3

TOL MTD TS FS MAXE AVERR FNC TIME RT IME

10−2
3PZ
3PR

3PZhG

89
40
35

3
3
4

1.22292(-4)
1.83581(-4)
2.39153(-4)

1.81607(-5)
1.42535(-5)
3.15568(-5)

1336
601
526

19162
8215
7016

2.73
1.17
1.00

10−4
3PZ
3PR

3PZhG

355
92
80

4
2
3

3.32710(-6)
5.68483(-7)
4.21205(-6)

6.25342(-7)
1.14458(-7)
2.19494(-7)

5326
1381
1201

76727
19170
16400

4.68
1.17
1.00
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10−6
3PZ
3PR
3PZhG

1404
246
210

5
2
2

1.22241(-7)
7.68707(-9)
7.68707(-9)

2.90040(-8)
1.45027(-9)
1.81533(-9)

21061
3691
3151

304080
51440
43430

7.00
1.18
1.00

10−8
3PZ
3PR
3PZhG

5252
663
574

6
2
2

4.77307(-9)
1.51342(-10)
1.51341(-10)

1.50056(-9)
2.51263(-11)
2.95748(-11)

78781
9946
8611

1137380
138867
118872

9.57
1.17
1.00

10−10
3PZ
3PR
3PZhG

17424
2768
1594

7
3
2

4.02189(-10)
2.07639(-13)
3.45373(-12)

1.13529(-10)
4.13279(-14)
5.89717(-13)

261361
41521
23911

3772739
580038
330439

11.42
1.76
1.00

Table 4. Comparison between the 3PZ, 3PR and 3PZhG methods for solving Problem 4.

TOL MTD TS FS MAXE AVERR FNC TIME RT IME

10−2
3PZ
3PR

3PZhG

312
79
79

4
2
2

1.16502(-4)
2.05071(-5)
2.05071(-5)

6.40396(-5)
1.22404(-5)
1.22404(-5)

4681
1186
1186

27523
6365
6187

4.45
1.03
1.00

10−4
3PZ
3PR

3PZhG

3099
196
196

6
2
2

1.45165(-6)
1.80050(-7)
1.80050(-7)

8.05481(-7)
3.92279(-9)
3.92279(-9)

46486
2941
2941

274484
15789
15360

17.87
1.03
1.00

10−6
3PZ
3PR

3PZhG

26539
974
755

8
3
3

2.75066(-8)
5.47812(-10)
3.24182(-9)

8.46964(-9)
3.18843(-10)
6.86935(-10)

398086
14611
11326

2352855
78579
59279

39.69
1.33
1.00

10−8
3PZ
3PR
3PZhG

80471
4882
2442

10
4
3

2.30879(-9)
2.75961(-12)
1.72488(-11)

1.19783(-9)
1.30553(-12)
9.68842(-12)

1207066
73231
36631

7141630
394674
192203

37.16
2.05
1.00

10−10
3PZ
3PR
3PZhG

213245
12257
6130

13
4
3

3.53662(-10)
3.11456(-12)
1.62828(-12)

1.54355(-10)
9.92319(-13)
6.94792(-13)

3198676
183856
91951

18907864
990858
482847

39.16
2.05
1.00

8. Comment on the results and conclusion

In all tested problems, method 3PZ turns out very inefficient and costly in terms of
total number of steps and execution time especially when tested for finer tolerances.
The ratio execution times show that the 3PZhG is more efficient than 3PR in terms
of total steps and execution time. The maximum error of 3PZhG is comparable or
one decimal places less than 3PR and is still within the given tolerances. The ratios
of the execution time for 3PZhG compared to 3PZ and 3PR are greater than 1 in
all tested problems. Therefore, method 3PZhG is more efficient than method 3PR
and 3PZ in terms of the total number of steps and execution times as the tolerance
getting smaller.
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