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Abstract. The notion of (intersection preserving, global) expansions of subal-
gebras and filters in lattice implication algebras is introduced. Also the notion
of o-primary filters in lattice implication algebras is discussed. The concept of
residual division is defined, and related properties are investigated. We show
that the homomorphic and inverse image of o-primary filter are also o-primary.
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1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role for
two aspects: One is that it extends the chain-type truth-value field of some well-
known presented logic [1] to some relatively general lattices. The other is that
the incompletely comparable property of truth value characterized by general lat-
tice can more efficiently reflect the uncertainty of people’s thinking, judging and
decision. Hence, lattice-valued logic is becoming a research field which strongly
influences the development of Algebraic Logic, Computer Science and Artificial In-
telligence Technology. Therefore Goguen [2], Pavelka [12] and Novak [11] researched
on this lattice-valued logic formal systems. Moreover, in order to establish a logic
system with truth value in a relatively general lattice, in 1990, during the study
of the project “The Study of Abstract Fuzzy Logic” granted by National Natu-
ral Science Foundation in China, Xu established the lattice implication algebra by
combining lattice and implication algebra, and investigated many useful structures
[9, 10, 14, 15, 16]. We note that lattice implication algebras are isomorphic to
MV -algebras. Lattice implication algebra provided the foundation to establish the
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corresponding logic system from the algebraic viewpoint. For the general develop-
ment of lattice implication algebras, the filter theory plays an important role (see
[3, 4, 5, 6, 7, 8, 16].) In this paper, we introduce the notion of (intersection pre-
serving, global) expansions of subalgebras and filters in lattice implication algebras,
and the notion of o-primary filters in lattice implication algebras. We also define
the notion of residual division, and investigates related properties. We show that
the homomorphic image and inverse image of o-primary filter are also o-primary.

2. Preliminaries

We give herein the basic notions on lattice implication algebras. For further infor-
mation, we refer the readers to [14, 15, 16, 17].

By a lattice implication algebra we mean a bounded lattice (L, V,A,0,1) with
order-reversing involution “/’ and a binary operation “—” satisfying the following

I) z2—=(y—2)=y— (v — 2),
(12) 2 -z =1,

13) 2 »y=y9y — 2,

(4) 2 »y=y—z=1=x=y,
I5) (z —y) my=(y—2)—uw,
(L1) (zVy) = z=(z—2)A(y— 2),
(L2) (zAy) = z=(z—2)V(y— 2),

for all z,y,z € L. In a lattice implication algebra, we can define a partial ordering
< by <y if and only if x — y = 1. A subset S of a lattice implication algebra L
is called a subalgebra of L if it satisfies

e 0€ S,
o (Vz,yeS) (x —yeb9).

A subset F' of a lattice implication algebra L is called a filter of L if it satisfies

e lcF|
e VxeF)(Vyel)(z—yeF = yecF).

A proper filter F of a lattice implication algebra L is said to be prime if it satisfies

e Va,be L) (aVbeF = a€F or beF).

3. Expansions of subalgebras and filters

In what follows let L denote a lattice implication algebra unless otherwise specified.

Definition 3.1. Let O(L) be a set of objects in L, that is, a family of subsets of
L. An expansion of objects in L is defined to be a function o : O(L) — O(L) such
that

(01) (VG € O(L)) (G C o(G)).
(02) (VG,H € (L)) (G C H = o(G) C o(H)).
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Let S(L) (resp., §(L)) denote the set of all subalgebras (resp., filters) of L. If
O(L) = &(L) (resp., O(L) = F(L)), we say that o is an expansion of subalgebras
(resp., filters).
Example 3.1. (1) The function o : &(L) — &(L) (resp., o¢ : F(L) — F(L))
defined by 0¢(G) = G for all G € &(L) (resp., F(L)) is an expansion of subalgebras
(resp., filters) in L.

(2) The function v that assigns the largest subalgebra (resp., filter) L to each

subalgebra (resp., filter) of L is an expansion of subalgebras (resp., filters) in L.
(3) For each filter F of L, let

M(F)=n{M | F C M, M is a maximal filter of L}.
Then 90 is an expansion of filters in L.
(4) Let F € §(L). For each a € L, the set
a'F:={zxcL|avacF}
is a filter of L containing F, and if F and G are filters of L such that FF C G
then a 'F C a7 'G (see [6]). Hence the function o, : §(L) — F(L) given by
0o(F) =a 'F for all F € (L) is an expansion of filters in L.

Definition 3.2. Let o be an expansion of filters in L. Then a filter G of L is said
to be o-primary if

(Ma,be L)(aVbe G, a¢ G = beo(G)).

Note that a filter G of L is og-primary if and only if it is a prime filter of L,
where o is the function in Example 3.1(1).

Theorem 3.1. If o and § are expansions of filters in L such that o(G) C 0(G) for
every G € §(L), then every o-primary filter is also d-primary.

Proof. Let F' be a o-primary filter of L and let a,b € L be such that aVb € F
and a ¢ F. Then b € o(F) C 6(F) by assumption. Hence F' is a d-primary filter of
L. U

Corollary 3.1. Let o be an expansion of filters in L. Then every prime filter of L
18 o-primary.
Proof. Let G be a prime filter of L. Then G is o¢-primary, and o¢(G) = G C o(G).
It follows from Theorem 3.1 that G is a o-primary filter of L. O
Theorem 3.2. Let « and (8 be expansions of subalgebras (resp., filters) in L. Let
o: 6(L) - &(L) (resp., o0 : F(L) — F(L)) be a function defined by o(G) =
a(G)NB(G) for all G € &(L) (resp., F(L)). Then o is an expansion of subalgebras
(vesp., filters) in L.
Proof. For every G € G(L) (resp., §(L)), we have G C a(G) and G C B(G) by
(ol), and so G C a(G)NB(G) = o(G). Let G, H € &(L) (resp., F(L)) be such that
G C H. Then a(G) C a(H) and B(G) C B(H) by (02), which imply that

o(G) = a(G) N B(G) C a(H) N B(H) = o(H).

Therefore o is an expansion of subalgebras (resp., filters) in L. O
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Generally, the intersection of expansions of subalgebras (resp., filters) is an ex-
pansion of subalgebras (resp., filters).

Theorem 3.3. Let o be an expansion of filters in L. If {G; | i € D} is a directed
collection of o-primary filters of L where D is an index set, then the filter G :=
U G is o-primary.

ieD

Proof. Let a,b € L be such that a Vb € G and a ¢ G. Then there exists G; such
that a Vb € G; and a ¢ G;. Since G; is o-primary and G; C G, it follows that
beo(G;) Co(QG) so that G is o-primary. O

Theorem 3.4. Let o be an expansion of filters in L. If P is a o-primary filter of
L, then

(VF,GeJF(L)(FVGCP F¢P = GCoa(P)),
where FNG={xVy|xze€F, yeG}.
Proof. Assume that P is a o-primary filter of L and let F,G € F(L) be such that
FVGC P and F ¢ P. Suppose that G ¢ o(P). Then there exist a € F \ P and
b € G\ o(P), which imply that aVb € FVG C P. But a ¢ P and b ¢ o(P).

This contradicts the assumption that P is o-primary. Consequently, the result is
valid. O

Theorem 3.5. If o is an expansion of filters in L, then the function E, : §(L) —
(L) defined by

E,(G):=n{H € F(L) | GC H, and H is o-primary}
for all G € F(L) is an expansion of filters in L.

Proof. Clearly, G C E,(G) for all G € §(L). Let F,G € F(L) be such that F' C G.
Then

E,(F) = N{HeF(L)|F CH and H is o-primary}
C N{H€3F(L)|GCH and H is o-primary}
= E,(G).
Hence E, is an expansion of filters in L. (]

For any filters P and @ of L, the residual division of P and @ is defined to be
the filter
P:Q=()a'P={yeL|avyePforalzecqQ}
T€EQ

Theorem 3.6. Let o be an expansion of filters in L and let P be a o-primary filter
of L. Then

(i) if F is a filter of L which is not contained in o(P), then P : F = P.

(ii) if G is any filter of L, then P : G is o-primary.

Proof. (i) Obviously, P C P : F. Also we have F' vV (P : F') C P by the definition
of P: F. Since F Q o(P), it follows from Theorem 3.4 that P : F' C P. Therefore
P:F=P

(ii) Let a,b € L be such that avVb € P: G and a ¢ P: G. Then aV x ¢ P for
some z € G.But (avVa)Vb=(aVb)Vze P andsobe og(P)C o(P:G). Thus
P : G is o-primary. This completes the proof. O
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A mapping f : Y — L of lattice implication algebras is called an implication
homomorphism if it satisfies

o (Vo,yeY) f(z —y) = flz) — f(y)

If an implication homomorphism f : Y — L of lattice implication algebras satisfies
the further conditions:

o (Vo,yeY) flavy) = [flx)V [f(y),
o (Vo,y€Y) flzny) =fz)Afy),
o (Vxe?Y) f(a!) = f(z),
then we say that f is a homomorphism of lattice implication algebras. Note that f

is a homomorphism of lattice implication algebras if and only if f is an implication
homomorphism and f(z') = f(z) for all z € Y (see [13]).

Definition 3.3. Let o be an expansion of filters. Then
(i) o is said to be intersection preserving if it satisfies:

(VF,GeF(L))(c(FNG)=0(F)No(Q@)),

(ii) o is said to be global if for each homomorphism f :'Y — L of lattice
implication algebras, the following holds:

(VE € §(L)) (o(fH(F)) = (o ().
Example 3.2. (1) The expansion of filters oq : (L) — F(L) defined by oo(G) = G
for all G € F(L) is both intersection preserving and global.
(2) The expansion of filters
0o §(L) = F(L), Frsa™'F

in Example 3.1(4) is intersection preserving. Because, for every F,G € F(L) we
have
0(FNG)=a ' (FNG)=a"'FNa'G=0.(F)Na.(G).
Theorem 3.7. Let o be an expansion of filters which is intersection preserving.
If Q1,Q2, -+ ,Qy are o-primary filters of L and P = o(Q;) for all i, then Q =
Ni_, Qi is o-primary.
Proof. Let a,b € L be such that a Vb € Q and a ¢ Q. Then a ¢ @y, for some
ke {1,2,---,n}. But aVb € Q C Qr and Qy is o-primary, which imply that
b€ o(Qk). Now
0(@Q) =o([)Q:) =) o(Q) = P=0(Qr),
i=1 i=1

and so b € 0(Q). Therefore Q is o-primary. O

Let f:Y — L be a homomorphism of lattice implication algebras. Note that if
F is a filter of L, then f~1(F) is a filter of Y, and that if f is surjective and G is a
filter of Y then f(G) is a filter of L.

Theorem 3.8. Let o be a global expansion of filters and let f :' Y — L be a
homomorphism of lattice implication algebras. If F' is a o-primary filter of L, then
fUF) is a o-primary filter of Y.
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Proof. Let a,b €Y be such that aVb € f~'(F) and a ¢ f~(F). Then

fl@) Vv f(b)=flavb) e fF(fTH(F)CF

and f(a) ¢ F. Since F' is o-primary, it follows that f(b) € o(F) so that b €
Y o(F)) =o(f Y(F)). Hence f~1(F) is o-primary. O

Lemma 3.1. Let f : Y — L be a homomorphism of lattice implication algebras.
If G is a filter of Y that contains the dual kernel of f, denoted by Dkerf, then

F7HAG) =G

Proof. Clearly G C f~1(f(G)). Now let y € f~1(f(GQ)). Then f(y) € f(G), and so
there exists © € G such that f(y) = f(z). Hence f(y — z) = f(y) — f(x) =1,
which implies that y — = € Dkerf C G. Since G is a filter containing z, it follows
that y € G so that f~1(f(GQ)) C G. Therefore f~1(f(G)) = G. O

Theorem 3.9. Let f:Y — L be a surjective homomorphism of lattice implication
algebras and let G be a filter of Y that contains Dkerf. Then G is o-primary if and
only if f(G) is a o-primary filter of L, where o is a global expansion of filters.

Proof. Sufficiency follows from Theorem 3.8 and Lemma 3.1. Suppose that G is o-
primary. Let a,b € L be such that aVb € f(G) and a ¢ f(G). Since f is surjective,
we have f(z) = a and f(y) = b for some z,y € Y. Then

flzvy) = f(x)V fly) =aVbe f(G),

which implies z Vy € f~1(f(G)) = G. Now f(z) = a ¢ f(G) implies = ¢ G. Since
G is o-primary, it follows that y € o(G) so that b = f(y) € f(o(G)). Using Lemma
3.1 and the fact that o is global, we get

a(G) = a(f7H(f(Q)) = fFH(a(£(@)))
and so f(0(Q)) = f(f1o(f(@)))) = a(f(G)) by the surjectivity of f. Therefore
f(G) is o-primary. This completes the proof.
O

4. Conclusions

Combining lattice and implication algebra, Xu established the concept of lattice
implication algebra which is a new logical algebraic system. The theory of MV-
algebras, developed by Chang, first appeared in 1958. MV-algebras were devel-
oped to provide an algebraic proof of the completeness theorem for Lukasiewicz
infinite-valued propositional logic. We note that lattice implication algebras and
MYV -algebras are isomorphic. The aim of this paper is to introduce the notion of
(intersection preserving, global) expansions of subalgebras and filters in lattice im-
plication algebras, and the notion of o-primary filters in lattice implication algebras.
We also define the notion of residual division, and investigates related properties.
We show that the homomorphic image and inverse image of o-primary filter are also
o-primary. Based on this idea and results, our future work will focus on applying
such notions to MV -algebras, BL-algebras, Ry-algebras, and arbitrary residuated
lattice etc.
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