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Abstract. The notion of (intersection preserving, global) expansions of subal-

gebras and filters in lattice implication algebras is introduced. Also the notion
of σ-primary filters in lattice implication algebras is discussed. The concept of

residual division is defined, and related properties are investigated. We show

that the homomorphic and inverse image of σ-primary filter are also σ-primary.
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1. Introduction

In the field of many-valued logic, lattice-valued logic plays an important role for
two aspects: One is that it extends the chain-type truth-value field of some well-
known presented logic [1] to some relatively general lattices. The other is that
the incompletely comparable property of truth value characterized by general lat-
tice can more efficiently reflect the uncertainty of people’s thinking, judging and
decision. Hence, lattice-valued logic is becoming a research field which strongly
influences the development of Algebraic Logic, Computer Science and Artificial In-
telligence Technology. Therefore Goguen [2], Pavelka [12] and Novak [11] researched
on this lattice-valued logic formal systems. Moreover, in order to establish a logic
system with truth value in a relatively general lattice, in 1990, during the study
of the project “The Study of Abstract Fuzzy Logic” granted by National Natu-
ral Science Foundation in China, Xu established the lattice implication algebra by
combining lattice and implication algebra, and investigated many useful structures
[9, 10, 14, 15, 16]. We note that lattice implication algebras are isomorphic to
MV -algebras. Lattice implication algebra provided the foundation to establish the
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corresponding logic system from the algebraic viewpoint. For the general develop-
ment of lattice implication algebras, the filter theory plays an important role (see
[3, 4, 5, 6, 7, 8, 16].) In this paper, we introduce the notion of (intersection pre-
serving, global) expansions of subalgebras and filters in lattice implication algebras,
and the notion of σ-primary filters in lattice implication algebras. We also define
the notion of residual division, and investigates related properties. We show that
the homomorphic image and inverse image of σ-primary filter are also σ-primary.

2. Preliminaries

We give herein the basic notions on lattice implication algebras. For further infor-
mation, we refer the readers to [14, 15, 16, 17].

By a lattice implication algebra we mean a bounded lattice (L,∨,∧, 0, 1) with
order-reversing involution “′” and a binary operation “→” satisfying the following
axioms:

(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) x → y = y′ → x′,
(I4) x → y = y → x = 1 ⇒ x = y,
(I5) (x → y) → y = (y → x) → x,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z),

for all x, y, z ∈ L. In a lattice implication algebra, we can define a partial ordering
≤ by x ≤ y if and only if x → y = 1. A subset S of a lattice implication algebra L
is called a subalgebra of L if it satisfies

• 0 ∈ S,
• (∀x, y ∈ S) (x → y ∈ S).

A subset F of a lattice implication algebra L is called a filter of L if it satisfies

• 1 ∈ F,
• (∀x ∈ F ) (∀y ∈ L) (x → y ∈ F ⇒ y ∈ F ).

A proper filter F of a lattice implication algebra L is said to be prime if it satisfies

• (∀a, b ∈ L) (a ∨ b ∈ F ⇒ a ∈ F or b ∈ F ).

3. Expansions of subalgebras and filters

In what follows let L denote a lattice implication algebra unless otherwise specified.

Definition 3.1. Let O(L) be a set of objects in L, that is, a family of subsets of
L. An expansion of objects in L is defined to be a function σ : O(L) → O(L) such
that

(o1) (∀G ∈ O(L)) (G ⊆ σ(G)).

(o2) (∀G, H ∈ O(L)) (G ⊆ H ⇒ σ(G) ⊆ σ(H)).
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Let S(L) (resp., F(L)) denote the set of all subalgebras (resp., filters) of L. If
O(L) = S(L) (resp., O(L) = F(L)), we say that σ is an expansion of subalgebras
(resp., filters).

Example 3.1. (1) The function σ0 : S(L) → S(L) (resp., σ0 : F(L) → F(L))
defined by σ0(G) = G for all G ∈ S(L) (resp., F(L)) is an expansion of subalgebras
(resp., filters) in L.

(2) The function ν that assigns the largest subalgebra (resp., filter) L to each
subalgebra (resp., filter) of L is an expansion of subalgebras (resp., filters) in L.

(3) For each filter F of L, let

M(F ) = ∩{M | F ⊆ M, M is a maximal filter of L}.
Then M is an expansion of filters in L.

(4) Let F ∈ F(L). For each a ∈ L, the set

a−1F := {x ∈ L | a ∨ x ∈ F}
is a filter of L containing F, and if F and G are filters of L such that F ⊆ G
then a−1F ⊆ a−1G (see [6]). Hence the function σa : F(L) → F(L) given by
σa(F ) = a−1F for all F ∈ F(L) is an expansion of filters in L.

Definition 3.2. Let σ be an expansion of filters in L. Then a filter G of L is said
to be σ-primary if

(∀a, b ∈ L) (a ∨ b ∈ G, a /∈ G ⇒ b ∈ σ(G)).

Note that a filter G of L is σ0-primary if and only if it is a prime filter of L,
where σ0 is the function in Example 3.1(1).

Theorem 3.1. If σ and δ are expansions of filters in L such that σ(G) ⊆ δ(G) for
every G ∈ F(L), then every σ-primary filter is also δ-primary.

Proof. Let F be a σ-primary filter of L and let a, b ∈ L be such that a ∨ b ∈ F
and a /∈ F. Then b ∈ σ(F ) ⊆ δ(F ) by assumption. Hence F is a δ-primary filter of
L. �

Corollary 3.1. Let σ be an expansion of filters in L. Then every prime filter of L
is σ-primary.

Proof. Let G be a prime filter of L. Then G is σ0-primary, and σ0(G) = G ⊆ σ(G).
It follows from Theorem 3.1 that G is a σ-primary filter of L. �

Theorem 3.2. Let α and β be expansions of subalgebras (resp., filters) in L. Let
σ : S(L) → S(L) (resp., σ : F(L) → F(L)) be a function defined by σ(G) =
α(G)∩β(G) for all G ∈ S(L) (resp., F(L)). Then σ is an expansion of subalgebras
(resp., filters) in L.

Proof. For every G ∈ S(L) (resp., F(L)), we have G ⊆ α(G) and G ⊆ β(G) by
(o1), and so G ⊆ α(G)∩β(G) = σ(G). Let G, H ∈ S(L) (resp., F(L)) be such that
G ⊆ H. Then α(G) ⊆ α(H) and β(G) ⊆ β(H) by (o2), which imply that

σ(G) = α(G) ∩ β(G) ⊆ α(H) ∩ β(H) = σ(H).

Therefore σ is an expansion of subalgebras (resp., filters) in L. �
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Generally, the intersection of expansions of subalgebras (resp., filters) is an ex-
pansion of subalgebras (resp., filters).

Theorem 3.3. Let σ be an expansion of filters in L. If {Gi | i ∈ D} is a directed
collection of σ-primary filters of L where D is an index set, then the filter G :=⋃
i∈D

Gi is σ-primary.

Proof. Let a, b ∈ L be such that a ∨ b ∈ G and a /∈ G. Then there exists Gi such
that a ∨ b ∈ Gi and a /∈ Gi. Since Gi is σ-primary and Gi ⊆ G, it follows that
b ∈ σ(Gi) ⊆ σ(G) so that G is σ-primary. �

Theorem 3.4. Let σ be an expansion of filters in L. If P is a σ-primary filter of
L, then

(∀F,G ∈ F(L)) (F ∨G ⊆ P, F * P ⇒ G ⊆ σ(P )),
where F ∨G = {x ∨ y | x ∈ F, y ∈ G}.
Proof. Assume that P is a σ-primary filter of L and let F,G ∈ F(L) be such that
F ∨ G ⊆ P and F * P. Suppose that G * σ(P ). Then there exist a ∈ F \ P and
b ∈ G \ σ(P ), which imply that a ∨ b ∈ F ∨ G ⊆ P. But a /∈ P and b /∈ σ(P ).
This contradicts the assumption that P is σ-primary. Consequently, the result is
valid. �

Theorem 3.5. If σ is an expansion of filters in L, then the function Eσ : F(L) →
F(L) defined by

Eσ(G) := ∩{H ∈ F(L) | G ⊆ H, and H is σ-primary}
for all G ∈ F(L) is an expansion of filters in L.

Proof. Clearly, G ⊆ Eσ(G) for all G ∈ F(L). Let F,G ∈ F(L) be such that F ⊆ G.
Then

Eσ(F ) = ∩{H ∈ F(L) | F ⊆ H and H is σ-primary}
⊆ ∩{H ∈ F(L) | G ⊆ H and H is σ-primary}
= Eσ(G).

Hence Eσ is an expansion of filters in L. �

For any filters P and Q of L, the residual division of P and Q is defined to be
the filter

P : Q =
⋂

x∈Q

x−1P = {y ∈ L | x ∨ y ∈ P for all x ∈ Q}.

Theorem 3.6. Let σ be an expansion of filters in L and let P be a σ-primary filter
of L. Then

(i) if F is a filter of L which is not contained in σ(P ), then P : F = P.
(ii) if G is any filter of L, then P : G is σ-primary.

Proof. (i) Obviously, P ⊆ P : F. Also we have F ∨ (P : F ) ⊆ P by the definition
of P : F. Since F * σ(P ), it follows from Theorem 3.4 that P : F ⊆ P. Therefore
P : F = P.

(ii) Let a, b ∈ L be such that a ∨ b ∈ P : G and a /∈ P : G. Then a ∨ x /∈ P for
some x ∈ G. But (a ∨ x) ∨ b = (a ∨ b) ∨ x ∈ P, and so b ∈ σ(P ) ⊆ σ(P : G). Thus
P : G is σ-primary. This completes the proof. �
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A mapping f : Y → L of lattice implication algebras is called an implication
homomorphism if it satisfies

• (∀x, y ∈ Y ) f(x → y) = f(x) → f(y).

If an implication homomorphism f : Y → L of lattice implication algebras satisfies
the further conditions:

• (∀x, y ∈ Y ) f(x ∨ y) = f(x) ∨ f(y),
• (∀x, y ∈ Y ) f(x ∧ y) = f(x) ∧ f(y),
• (∀x ∈ Y ) f(x′) = f(x)′,

then we say that f is a homomorphism of lattice implication algebras. Note that f
is a homomorphism of lattice implication algebras if and only if f is an implication
homomorphism and f(x′) = f(x)′ for all x ∈ Y (see [13]).

Definition 3.3. Let σ be an expansion of filters. Then
(i) σ is said to be intersection preserving if it satisfies:

(∀F,G ∈ F(L)) (σ(F ∩G) = σ(F ) ∩ σ(G)),

(ii) σ is said to be global if for each homomorphism f : Y → L of lattice
implication algebras, the following holds:

(∀F ∈ F(L)) (σ(f−1(F )) = f−1(σ(F ))).

Example 3.2. (1) The expansion of filters σ0 : F(L) → F(L) defined by σ0(G) = G
for all G ∈ F(L) is both intersection preserving and global.

(2) The expansion of filters

σa : F(L) → F(L), F 7→ a−1F

in Example 3.1(4) is intersection preserving. Because, for every F,G ∈ F(L) we
have

σa(F ∩G) = a−1(F ∩G) = a−1F ∩ a−1G = σa(F ) ∩ σa(G).

Theorem 3.7. Let σ be an expansion of filters which is intersection preserving.
If Q1, Q2, · · · , Qn are σ-primary filters of L and P = σ(Qi) for all i, then Q =⋂n

i=1 Qi is σ-primary.

Proof. Let a, b ∈ L be such that a ∨ b ∈ Q and a /∈ Q. Then a /∈ Qk for some
k ∈ {1, 2, · · · , n}. But a ∨ b ∈ Q ⊆ Qk and Qk is σ-primary, which imply that
b ∈ σ(Qk). Now

σ(Q) = σ(
n⋂

i=1

Qi) =
n⋂

i=1

σ(Qi) = P = σ(Qk),

and so b ∈ σ(Q). Therefore Q is σ-primary. �

Let f : Y → L be a homomorphism of lattice implication algebras. Note that if
F is a filter of L, then f−1(F ) is a filter of Y, and that if f is surjective and G is a
filter of Y then f(G) is a filter of L.

Theorem 3.8. Let σ be a global expansion of filters and let f : Y → L be a
homomorphism of lattice implication algebras. If F is a σ-primary filter of L, then
f−1(F ) is a σ-primary filter of Y .
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Proof. Let a, b ∈ Y be such that a ∨ b ∈ f−1(F ) and a /∈ f−1(F ). Then

f(a) ∨ f(b) = f(a ∨ b) ∈ f(f−1(F )) ⊆ F

and f(a) /∈ F. Since F is σ-primary, it follows that f(b) ∈ σ(F ) so that b ∈
f−1(σ(F )) = σ(f−1(F )). Hence f−1(F ) is σ-primary. �

Lemma 3.1. Let f : Y → L be a homomorphism of lattice implication algebras.
If G is a filter of Y that contains the dual kernel of f, denoted by Dkerf, then
f−1(f(G)) = G.

Proof. Clearly G ⊆ f−1(f(G)). Now let y ∈ f−1(f(G)). Then f(y) ∈ f(G), and so
there exists x ∈ G such that f(y) = f(x). Hence f(y → x) = f(y) → f(x) = 1,
which implies that y → x ∈ Dkerf ⊆ G. Since G is a filter containing x, it follows
that y ∈ G so that f−1(f(G)) ⊆ G. Therefore f−1(f(G)) = G. �

Theorem 3.9. Let f : Y → L be a surjective homomorphism of lattice implication
algebras and let G be a filter of Y that contains Dkerf. Then G is σ-primary if and
only if f(G) is a σ-primary filter of L, where σ is a global expansion of filters.

Proof. Sufficiency follows from Theorem 3.8 and Lemma 3.1. Suppose that G is σ-
primary. Let a, b ∈ L be such that a∨ b ∈ f(G) and a /∈ f(G). Since f is surjective,
we have f(x) = a and f(y) = b for some x, y ∈ Y. Then

f(x ∨ y) = f(x) ∨ f(y) = a ∨ b ∈ f(G),

which implies x ∨ y ∈ f−1(f(G)) = G. Now f(x) = a /∈ f(G) implies x /∈ G. Since
G is σ-primary, it follows that y ∈ σ(G) so that b = f(y) ∈ f(σ(G)). Using Lemma
3.1 and the fact that σ is global, we get

σ(G) = σ(f−1(f(G))) = f−1(σ(f(G))),

and so f(σ(G)) = f(f−1(σ(f(G)))) = σ(f(G)) by the surjectivity of f. Therefore
f(G) is σ-primary. This completes the proof.

�

4. Conclusions

Combining lattice and implication algebra, Xu established the concept of lattice
implication algebra which is a new logical algebraic system. The theory of MV -
algebras, developed by Chang, first appeared in 1958. MV -algebras were devel-
oped to provide an algebraic proof of the completeness theorem for  Lukasiewicz
infinite-valued propositional logic. We note that lattice implication algebras and
MV -algebras are isomorphic. The aim of this paper is to introduce the notion of
(intersection preserving, global) expansions of subalgebras and filters in lattice im-
plication algebras, and the notion of σ-primary filters in lattice implication algebras.
We also define the notion of residual division, and investigates related properties.
We show that the homomorphic image and inverse image of σ-primary filter are also
σ-primary. Based on this idea and results, our future work will focus on applying
such notions to MV -algebras, BL-algebras, R0-algebras, and arbitrary residuated
lattice etc.
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