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Abstract. Necessary and sufficient conditions for the product of range sym-
metric matrices of rank r to be range symmetric in Minkowski space M is
derived. Also equivalent conditions for the product of two range symmetric
block matrices to be range symmetric are established. As an application we
have shown that a block matrix in Minkowski space can be expressed as a
product of range symmetric matrices in M.
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1. Introduction

Throughout we shall deal with C™*™, the space of n X n complex matrices. Let
C™ be the space of complex n-tuples, we shall index the components of a complex
vector in C™ from 0 to n — 1, that is u = (ug,u1,ue,...up—1). Let G be the

Minkowski metric tensor defined by Gu = (ug, —u1, —us, ..., —uy—1). Clearly the
Minkowski metric matrix
(1.1) G:H 0 },GzG*&deﬂzIn.

—in—-1

In [8], Minkowski inner product on C” is defined by (u,v) = [u,Gv], where
[.,.] denotes the conventional Hilbert(unitary) space inner product. A space with
Minkowski inner product is called a Minkowski space and denoted as M. For
AeCm ™ gy € C™, by using (1.1),

(1.2) (Az,y) = [Az, Gy] = [z, A*Gy)]

= [z,G(GA*G)y] = [z, GA™y] = (z, A™y)
where A~ = GA*G. The matrix A~ is called the Minkowski adjoint of A in M
(A* is usual hermitian adjoint of A ). Naturally, we call a matrix A € C**"
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M-symmetric in M if A = A~. From the definition A~ = GA*G we have the
following equivalence: A is M-symmetric < AG is hermitian < GA is hermitian.
For A € C™*", rk(A), N(A), and R(A) are respectively the rank of A, null space
of A and range space of A. By a generalized inverse of A we mean a solution of
the equation AXA = A and is denoted as A(Y). A{1} is the set of all generalized
inverses of A . Throughout I refers to identity matrix of appropriate order unless
otherwise specified.

Definition 1.1. |2, Definition 1, p.7] For A € C™*", A% is the Moore-Penrose
inverse of A if AATA = A, ATAAT = At AAT and AT A are Hermitian. The
Minkowski inverse of A, analogous to Moore-Penrose inverse of A is introduced and
its existence is discussed in [5].

Definition 1.2. [5 Definition 4, p.2] For A € C™*" A® js the Minkowski inverse
of Aif AADA = A, ABAA® = A, AA® and AP A are M-symmetric.

Theorem 1.1. [5, Theorem 1, p.4] For A € C™*", A® exists in M < 1k(A) =
rk(AA™) =rk(A™~A).

Theorem 1.2. [7l Lemma 3.3, p.143] Let A and B be matrices in M. Then
N(A") C N(B*) & N(A™) C N(B").

Theorem 1.3. [4, Lemma 1, p.193] For A, B,C € C™*", the following are equiv-
alent:

(1) CAWB is invariant for every A € onem,
(2) N(A) C N(C’) and N(A*) C N(B*) 8. C = CAVA and B = AAMB for
every A € A{1}.

Theorem 1.4. [7l Lemma 2.3, p.139] For Ay, Ay € C"*"(A145)~ = AT AY and
(A7)" = Ai.

A matrix A € C™*" is said to be range symmetric in unitary space (or) equiva-
lently A is said to be EP if N(A) = N(A*) (or AAT = AT A) [2, p.163]]. For further
properties of EP matrices one may refer [1,2, 4 and 9]. In [6] the concept of range
symmetric matrix in M is introduced and developed analogous to that of EP ma-
trices. A matrix A € C™*™ said to be range symmetric in M < N(A) = N(A™).
In the sequel we shall make use of the following results.

Theorem 1.5. [0l Theorem 2.2, p.47] For A € C"*", the following are equivalent:

() A is range symmetric in M
GA is EP

R(A) = R(A7)
A~ = HA = AK for some non-singular matrices H and K.
R

ii)
iii)
(iv) N(A*)— N(AG)
:
i) R(A") = R(GA)
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2. Product of range symmetric matrices in M

In this section we have obtained necessary and sufficient conditions for the product
of two range symmetric matrices of rank r to be range symmetric in M. Later we
have extended the result to block matrices in M.

Theorem 2.1. Let A and B be range symmetric matrices of rank r in M and AB
be of rank r. Then AB is range symmetric in M if and only if R(A) = R(B).

Proof. Let A and B be range symmetric matrices of rank r in M. Let AB be of
rank r and R(A) = R(B). We prove that AB is range symmetric in M. Clearly
R(AB) C R(A). Since rk(AB) = rk(A) = r, it follows that R(AB) = R(A). Also
R(AB)~ C R(B™) = R(B) and rk(AB)~ = rk(AB) = rk(A) = 1k(B) = r. This
implies R(AB)~ = R(B). Since R(A) = R(B), if follows that R(AB) = R(AB)".
Hence AB is range symmetric in M.

Conversely, AB is range symmetric in M implies R(AB)~ = R(AB). R(AB) C
R(A) and rk(AB) = rk(A) = r implies R(AB) = R(A). R(AB)~ C R(B™) =
R(B). Thus R(A) = R(B). O

Hence forth we are concerned with n x n matrices M partitioned in the form

A B
C D

It is well known that in [3] M of the form satisfies N(A) C N(C), N(A*) C
N(B*) and D = CA*B.

(2.1) M = [ ] withrk(M) = rk(4) = r

Definition 2.1. [4 Lemma 1.2, p.193] Let
A B }

M:[C D

be an n x n matriz. The Schur complement of A in M, denoted by M/A is defined
as D — CAM B, where AY) is a generalized inverse of A.

Theorem 2.2. Let M be of the form , then M is range symmetric in M < A
is range symmetric in M and CAT = —G1(ATB)™, where Gy is the Minkowski
metric tensor of order as that of A.

Proof. Since A is range symmetric in M and CA™ = —G1(A*B)~, by Theorem 1.5
(ii), G1A is EP and (G1A)" = ATG;. Hence G1A(G1A)T = (G1A)TG1A. Since
Gf =Gy, GIAATG, = ATG1G1A. By (1.1) for Gy, we have

(2.2) GLAATGy = AT A.

Since k(M) = rk(A) = r, we have N(A) C N(C), N(A~) C N(B~) and Schur
complement of A in M is zero. By Theorem 1.3, we have C = CATA, B= AA™B
and D = CA'B.

Let us consider the matrices

I 0 I A*B A0
P{CA"‘ I}’ Q{o I ] and L{o 0]’
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where P, () are non-singular. Now

7 01[A 01[I A*B
PLO=1 ca+ JHO oHo 1]

[ A Aa*B

= | cata catn

14 B

=lc D

=M
and by using CAT = —G1(A*B)~, we have

Q™ =GQ'G

-1 —OIH<A+IB>* ?H% —Of]

T I 0
| -G (ATB) T
[ 1 o0
Tl oAt T

Since A is range symmetric in M, L is range symmetric in M. We claim M is range
symmetric in M, that is N(M) = N(M"~). Since M = PLP~,z € N(M) & Mz =
0& PLPYx =04 Ly=0 [wherey=P~z] < LYy =0 [by N(L)=N(L")]
& PLY"PYz =0 M~z =0< 2 € N(M"~). Thus N(M) = N(M") and hence
M is range symmetric in M.

Conversely, let us assume that M is range symmetric in M. Since M = PLQ,
one choice of M) is

MW = Q! [ ’? 8 ]Pl.

Since M is range symmetric in M, we have N(M) = N(M"). By using Theorem
1.2, and Theorem 1.3 we get M~ = M~M® M. By using (1.2), we have GM*G =
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GM*GM™M M and by using (1.1),
M* = M*GMY MG

:M*GQ—l[ A ]P [ 8]@6’
o [ 41 3

ol ][54 31 ]
ol ol

| AT O Gy 0 ATA ATB Gi 0
~ | B* D* 0 -I 0 0 0o -1
| A*G1ATAG, —-A*G1ATB
~ | B*G1ATAG, -B*G1ATB
Equating the corresponding blocks, we get
A = A*G1ATAG, = G1A*G, = GIA*G1ATA = A~ = AVAT A,
By Theorem 1.3, it follows that N(A) C N(A™~) and rk(A) = rk(A™~). Hence
N(A) = N(A™) and therefore A is range symmetric in M. Also
C*r = —A*G1A+B = GlC*Gl = —GlA*GlAJrBGl = (0~ = —ANA+BG1.

Taking Minkowski adjoint, and by using G = G; and Theorem 1.4, we get C =
—G1(ATB)~A. Now

CAT = -G, )~
= -G1(ATB)~G1 AT AG,
)~VG1(ATA)*Gy  [By using (2.2)]
ATB)~ (AT A)~
=-G(ATAATB)~ [By using Theorem 1.4]

This completes the proof. U

Lemma 2.1. Let M be of the form (2.1) be range symmetric in M, then A is
range symmetric in M and there exists an r X (n — r) matriz X such that

A AX

~-G1X A -G X AX

where Gy is the Minkowski metric tensor of order as that of A.

(2.3) M =

Proof. Since M is of the form (2.1) by using Theorem 1.2 and Theorem 1.3, M
satisfy N(4) ¢ N(C), N(A~) € N(B~) and D = CATB. Hence there exist
(n —r) x r matrix Y and n x (n — r) matrix X such that C =Y A and B = AX.
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Since A is range symmetric in M by using Theorem 1.5(ii). G;A is EPr, again by
using (2.2) we have AAT = G1ATAG,, CAT = -G, (AT B)™, and
YAAT = -G (ATAX)™

= -G X~ (ATA)~ [By using Theorem 1.4]

= -G1X~G1(ATA)*G, [By using (1.2)]

= -G1X~G1ATAG,

=-G1X~AAT  [By using (2.2)]

Therefore YA = —G1X~A = C and D = CATB = —G1X~AATAX =
—G1X~AX. Thus

[ abn o]

T —GiX A -G X AX |-

Theorem 2.3. Let

A B F U
M—[C D}andL—{H K]

be range symmetric matrices in M both of the form (2.1) and ML of rank r, then
the following are equivalent:

(i) ML is range symmetric in M.
(i) AF is range symmetric in M and CAT = HF*
(iii) AF is range symmetric in M and AYB = FTU
Proof. Since M and L are of the form (2.1) by Lemma 2.1 there exist r x (n —r)
matrices X and Y such that

M A AX WL F FY
T @, XA —oxTAx | YR T Loy F —oYTFY |

Now
ML — [ A AX F FY
o | —G1X A -G X AX -GiY'F -GY FY
_ Al - XG1Y)F A(l - XG1Y )FY
o | ~G1 X A(I - XGY )F -G X AX(I—-XGY FY
B [ AZF AZFY
- | —G1 X AZF —-G1X AZFY

where Z = I — XG1Y"™. Clearly
N(AZF)C N(-G1X~AZF) = N(G1X~AZF), N(AZF)~ C N(AZFY)~
and the Schur complement of AZF in ML is zero. For
ML/AZF = —~G1 X~ AZFY + G X~ (AZF)(AZF)TAZFY
= -G XTAZFY + G1XTAZFY = 0.
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Hence tk(AZF) = 1k(ML) = r. Thus ML is also of the form (2.1). Since M and
L are range symmetric in M by Theorem 2.2 and Lemma 2.1, A and F' are range
symmetric in M. Now

—G1(ATAX)™ = —G1 X~ (ATA)~  [By Theorem 1.4]
=-G1X~G1(ATA)*G;  [By using 1.2]
=-G1X~G1ATAG,
= -G X~AA"T [By using 2.2]

Similarly it can be proved that —G Y~FF* = —G{(FTFY)~. We now claim
AZF is range symmetric in M. N(F) C N(AZF), and tk(AZF) = rk(F) = r,
hence it follows N(F) = N(AZF). Also N(A™) C N(AZF)~ and rk(AZF)~ =
tk(AZF) = tk(A) = r = rk(F),N(A) = N(A~) = N(AZF)~ = N(F). Thus
N(AZF)= N(AZF)~ and hence AZF is range symmetric in M. By Theorem 1.5
(ii), G1AZF in EPr and by using (2.2) we have

(2.4) G1AZF(AZF)YGy = (AZF)YAZF
By using (2.4) for
N(AZF)=N(F), N(AZF)~ = N(A~) = N(4)
we get
AZF(AZF)t = FFT = G1(AZF)YAZFG, and
(AZF)YYAZF = ATA = G1AATG,.
Since H = —G1Y~F and C = —G1 X~ A, we have
HFt = -G,Y~FF™* [ by (2.5)]
=-G1Y~G1AZF(AZF)"
= -G1Y~G(AZF)YAZFG,
= -G\ Y~[(AZF)TAZF)~
= —G1[(AZF)*AZFY]™.

(2.5)

Similarly by using (2.5), we have
CAY = —-G1X~AZF(AZF)*.
Therefore
(2.6) CAY = HF* & —G1 X~ AZF(AZF)" = —G1[(AZF)* AZFY]™.

Now the proof runs as follows: M L is range symmetric in M < AZF is range
symmetric in M and GiX~AZF(AZF)" = —G1[(AZF)YAZFY]~ & AZF is
range symmetric in M and CAT = HF " [By using (2.6)] & N(AZF) = N(AZF)~
and CAT = HFt & N(F) = N(A)~ = N(A) and CAT = HFt & AF is
range symmetric in M and CAT = HF™ [By using Theorem 2.1] & AF is range
symmetric in M and A*B = F*U [By Theorem 2.2]. O
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3. Factorization

In this section a set of conditions under which a matrix can be expressed as product
of range symmetric matrices in m are derived.

Definition 3.1. A matrix A € C™*" is said to be unitary in unitary space if and
only if AA* =A*A=1.

Lemma 3.1. [9, Theorem 1] Let A € Cr"*" be EPr matriz, then there exist a
unitary matriz U such that

_TT* _T* Dl 0
A_UDU—U[O o}a

where Dy is v X r non-singular.

Lemma 3.2. Let A € C™*"™, A is range symmetric in M if and only if

D 0 ~
er[2 0]

where D is r X r matriz and tk(D) = r and P is unitary.

Proof. By Theorem 1.5 (ii), the matrix A is range symmetric in M < AG is EP.
By Lemma 3.1, this holds if and only if

AGzU[%lO}W

0
or
_ Dy 0] .
A_U{ 0 O]UG
or
_ Gl 0 Dl 0 *
A
where G1 is r X r or
_ Gi1D; 0 "
amva] 0P Vv

Thus the matrix A is range symmetric in M if and only if

D 0 ~
a=r[2 0]

where P = UG, P~ =GU~ =U*G and D = G1D; is r X r non-singular. O

Lemma 3.3. Let A and B be range symmetric matrices in M of rank r. Then
N(A) = N(B) if and only if N(PAP~) = N(PBP"~) where P is unitary.
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Proof. Let A and B be range symmetric matrices in M. Assume N(A) = N(B).
Then x € N(PAP~) PAP~x =0 AP~z =0 Ay = 0 where y = P72z y € N(A4) =

N(B)By = 0 BP~z = 0 PBP~xz = 0 2 € N(PBP™). Thus N(A) N(B)
N(PAP~)= N(PBP™).
The proof the converse is similar and hence omitted. O

Theorem 3.1. Let M be of the form (2.1) be range symmetric in M. Then M
can be written as a product of range symmetric matrices in M.

Proof. Since M is of the form (2.1) and M is range symmetric in M, by Lemma
2.1, A is range symmetric in M and

M:[ A AX ]

W XTA oW XTAX

Since M is range symmetric in M by Theorem 1.5(ii), GM in EPr, where

GM — Gi 0 A AX _ G1A G1AX
- 0o -I —G1X A -G X AX | T | GiX A G1X AX |-
Consider
P G1AATG, GLAATGL X
__X*GlAA+G1 X*G1AATGL X |’
[ Gia o
St
0= [ AtTA ATAX
7_X*A+A X*ATAX |-

By using (1.1),

* *

pe_ | (GIAATGY) (X GLAATGY)
(G1AA*G1X)  (X*G1AATG1X)
Gi(AAY) Gy Gy (AAT) GiX
| X*Gy (AAT) Gy X*Gy (AAN) Gi X

[ GlAATGL  GAATGIX | _

| X*GLAATG, X*GLAATGX | T

Similarly @* = @ can be proved. Thus P = P* and Q = Q* and therefore P, Q) are
EPr. Since A is range symmetric by Theorem 1.5(iii) G1 A is EPr and hence L is
EPr.
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Now
PLQ

[ G1AATGy G1AATG1 X GiA 0 AT A ATAX
X*G1AATG, X*G1AATG1X 0 0 X*ATA X*ATAX
_ G1AATG1G1A 0 ] [ AT A ATAX }

X*G1AATG1G1A 0 X*ATA X*ATAX
G A 0}{ AT A ATAX ]

X*GiA 0 || X*ATA X*AtAX

[ GiAAtA  GLAATAX
X*GLAATA X*GLAATAX

[ GhA GLAX

X*GiA X*GAX

[ 4 AX
—Gh XA G XTAX

= GM.

By using (1.1), M = GPLQ = (GP)(LG)(GQ). Since P, Q, L and EPr, by Theorem
1.5 (ii) and (iii), it follow that GP, LG, GQ are range symmetric M. Thus a range
symmetric matrix M in M is expressed as a product of range symmetric matrices

in

A
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