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Abstract. Necessary and sufficient conditions for the product of range sym-
metric matrices of rank r to be range symmetric in Minkowski space M is

derived. Also equivalent conditions for the product of two range symmetric

block matrices to be range symmetric are established. As an application we
have shown that a block matrix in Minkowski space can be expressed as a

product of range symmetric matrices inM.
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1. Introduction

Throughout we shall deal with Cn×n, the space of n × n complex matrices. Let
Cn be the space of complex n-tuples, we shall index the components of a complex
vector in Cn from 0 to n − 1, that is u = (u0, u1, u2, . . . un−1). Let G be the
Minkowski metric tensor defined by Gu = (u0,−u1,−u2, . . . ,−un−1). Clearly the
Minkowski metric matrix

(1.1) G =
[

1 0
0 −In−1

]
, G = G∗ and G2 = In.

In [8], Minkowski inner product on Cn is defined by (u, v) = [u, Gv], where
[.,.] denotes the conventional Hilbert(unitary) space inner product. A space with
Minkowski inner product is called a Minkowski space and denoted as M. For
A ∈ Cn×n, x, y ∈ Cn, by using (1.1),

(Ax, y) = [Ax,Gy] = [x,A∗Gy](1.2)

= [x,G(GA∗G)y] = [x,GA∼y] = (x,A∼y)

where A∼ = GA∗G. The matrix A∼ is called the Minkowski adjoint of A in M
(A∗ is usual hermitian adjoint of A ). Naturally, we call a matrix A ∈ Cn×n
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M-symmetric in M if A = A∼. From the definition A∼ = GA∗G we have the
following equivalence: A is M-symmetric ⇔ AG is hermitian ⇔ GA is hermitian.
For A ∈ Cn×n, rk(A), N(A), and R(A) are respectively the rank of A, null space
of A and range space of A. By a generalized inverse of A we mean a solution of
the equation AXA = A and is denoted as A(1). A{1} is the set of all generalized
inverses of A . Throughout I refers to identity matrix of appropriate order unless
otherwise specified.

Definition 1.1. [2, Definition 1, p.7] For A ∈ Cm×n, A+ is the Moore-Penrose
inverse of A if AA+A = A, A+AA+ = A+, AA+ and A+A are Hermitian. The
Minkowski inverse of A, analogous to Moore-Penrose inverse of A is introduced and
its existence is discussed in [5].

Definition 1.2. [5, Definition 4, p.2] For A ∈ Cm×n, A©m is the Minkowski inverse
of A if AA©mA = A, A©mAA©m = A, AA©m and A©mA are M-symmetric.

Theorem 1.1. [5, Theorem 1, p.4] For A ∈ Cm×n, A©m exists in M ⇔ rk(A) =
rk(AA∼) = rk(A∼A).

Theorem 1.2. [7, Lemma 3.3, p.143] Let A and B be matrices in M. Then
N(A∗) ⊆ N(B∗)⇔ N(A∼) ⊆ N(B∼).

Theorem 1.3. [4, Lemma 1, p.193] For A,B,C ∈ Cm×n, the following are equiv-
alent:

(1) CA(1)B is invariant for every A(1) ∈ Cnxm.
(2) N(A) ⊆ N(C) and N(A∗) ⊆ N(B∗) 3. C = CA(1)A and B = AA(1)B for

every A(1) ∈ A{1}.

Theorem 1.4. [7, Lemma 2.3, p.139] For A1, A2 ∈ Cn×n(A1A2)∼ = A∼2 A∼1 and
(A∼1 )∼ = A1.

A matrix A ∈ Cn×n is said to be range symmetric in unitary space (or) equiva-
lently A is said to be EP if N(A) = N(A∗) (or AA+ = A+A) [2, p.163]]. For further
properties of EP matrices one may refer [1,2, 4 and 9]. In [6] the concept of range
symmetric matrix in M is introduced and developed analogous to that of EP ma-
trices. A matrix A ∈ Cn×n said to be range symmetric in M⇔ N(A) = N(A∼).
In the sequel we shall make use of the following results.

Theorem 1.5. [6, Theorem 2.2, p.47] For A ∈ Cn×n, the following are equivalent:

(i) A is range symmetric in M
(ii) GA is EP
(iii) AG is EP
(iv) N(A∗) = N(AG)
(v) R(A) = R(A∼)
(vi) A∼ = HA = AK for some non-singular matrices H and K.
(vii) R(A∗) = R(GA)
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2. Product of range symmetric matrices in M

In this section we have obtained necessary and sufficient conditions for the product
of two range symmetric matrices of rank r to be range symmetric in M. Later we
have extended the result to block matrices in M.

Theorem 2.1. Let A and B be range symmetric matrices of rank r in M and AB
be of rank r. Then AB is range symmetric in M if and only if R(A) = R(B).

Proof. Let A and B be range symmetric matrices of rank r in M. Let AB be of
rank r and R(A) = R(B). We prove that AB is range symmetric in M. Clearly
R(AB) ⊆ R(A). Since rk(AB) = rk(A) = r, it follows that R(AB) = R(A). Also
R(AB)∼ ⊆ R(B∼) = R(B) and rk(AB)∼ = rk(AB) = rk(A) = rk(B) = r. This
implies R(AB)∼ = R(B). Since R(A) = R(B), if follows that R(AB) = R(AB)∼.
Hence AB is range symmetric in M.

Conversely, AB is range symmetric in M implies R(AB)∼ = R(AB). R(AB) ⊆
R(A) and rk(AB) = rk(A) = r implies R(AB) = R(A). R(AB)∼ ⊆ R(B∼) =
R(B). Thus R(A) = R(B). �

Hence forth we are concerned with n× n matrices M partitioned in the form

(2.1) M =
[

A B
C D

]
with rk(M) = rk(A) = r

It is well known that in [3] M of the form (2.1) satisfies N(A) ⊆ N(C), N(A∗) ⊆
N(B∗) and D = CA+B.

Definition 2.1. [4, Lemma 1.2, p.193] Let

M =
[

A B
C D

]
be an n× n matrix. The Schur complement of A in M , denoted by M/A is defined
as D − CA(1)B, where A(1) is a generalized inverse of A.

Theorem 2.2. Let M be of the form (2.1), then M is range symmetric in M⇔ A
is range symmetric in M and CA+ = −G1(A+B)∼, where G1 is the Minkowski
metric tensor of order as that of A.

Proof. Since A is range symmetric inM and CA+ = −G1(A+B)∼, by Theorem 1.5
(ii), G1A is EP and (G1A)+ = A+G1. Hence G1A(G1A)+ = (G1A)+G1A. Since
G+

1 = G1, G1AA+G1 = A+G1G1A. By (1.1) for G1, we have

(2.2) G1AA+G1 = A+A.

Since rk(M) = rk(A) = r, we have N(A) ⊆ N(C), N(A∼) ⊆ N(B∼) and Schur
complement of A in M is zero. By Theorem 1.3, we have C = CA+A, B = AA+B
and D = CA+B.

Let us consider the matrices

P =
[

I 0
CA+ I

]
, Q =

[
I A+B
0 I

]
and L =

[
A 0
0 0

]
,
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where P , Q are non-singular. Now

PLQ =
[

I 0
CA+ I

] [
A 0
0 0

] [
I A+B
0 I

]
=

[
A AA+B

CA+A CA+B

]
=

[
A B
C D

]
= M

and by using CA+ = −G1(A+B)∼, we have

Q∼ = GQ∗G

=
[

G1 0
0 −I

] [
I 0

(A+B)∗ I

] [
G1 0
0 −I

]
=

[
I 0

− (A+B)∗G1 I

]
=

[
I 0

−G1 (A+B)
∼

I

]
=

[
I 0

CA+ I

]
= P

Since A is range symmetric inM, L is range symmetric inM. We claim M is range
symmetric inM, that is N(M) = N(M∼). Since M = PLP∼, x ∈ N(M)⇔Mx =
0 ⇔ PLP∼x = 0 ⇔ Ly = 0 [where y = P∼x] ⇔ L∼y = 0 [ by N(L) = N(L∼)]
⇔ PL∼P∼x = 0 ⇔ M∼x = 0 ⇔ x ∈ N(M∼). Thus N(M) = N(M∼) and hence
M is range symmetric in M.

Conversely, let us assume that M is range symmetric in M. Since M = PLQ,
one choice of M (1) is

M (1) = Q−1

[
A+ 0
0 0

]
P−1.

Since M is range symmetric in M, we have N(M) = N(M∼). By using Theorem
1.2, and Theorem 1.3 we get M∼ = M∼M (1)M . By using (1.2), we have GM∗G =
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GM∗GM (1)M and by using (1.1),

M∗ = M∗GM (1)MG

= M∗GQ−1

[
A+ 0
0 0

]
P−1P

[
A 0
0 0

]
QG

= M∗GQ−1

[
A+A 0

0 0

]
QG

= M∗G

[
I −(A+B)
0 I

] [
A+A 0

0 0

] [
I (A+B)
0 I

]
G

= M∗G

[
A+A A+B

0 0

]
G

[
A∗ C∗

B∗ D∗

]
=

[
A∗ C∗

B∗ D∗

] [
G1 0
0 −I

] [
A+A A+B

0 0

] [
G1 0
0 −I

]
=

[
A∗G1A

+AG1 −A∗G1A
+B

B∗G1A
+AG1 −B∗G1A

+B

]
Equating the corresponding blocks, we get

A∗ = A∗G1A
+AG1 ⇒ G1A

∗G1 = G1A
∗G1A

+A⇒ A∼ = A∼A+A.

By Theorem 1.3, it follows that N(A) ⊂ N(A∼) and rk(A) = rk(A∼). Hence
N(A) = N(A∼) and therefore A is range symmetric in M. Also

C∗ = −A∗G1A
+B ⇒ G1C

∗G1 = −G1A
∗G1A

+BG1 ⇒ C∼ = −A∼A+BG1.

Taking Minkowski adjoint, and by using G∼1 = G1 and Theorem 1.4, we get C =
−G1(A+B)∼A. Now

CA+ = −G1(A+B)∼AA+

= −G1(A+B)∼G1A
+AG1

= −G1(A+B)∼G1(A+A)∗G1 [By using (2.2)]

= −G1(A+B)∼(A+A)∼

= −G1(A+AA+B)∼ [By using Theorem 1.4]

= −G1(A+B)∼.

This completes the proof. �

Lemma 2.1. Let M be of the form (2.1) be range symmetric in M, then A is
range symmetric in M and there exists an r × (n− r) matrix X such that

(2.3) M =
[

A AX
−G1X

∼
A −G1X

∼
AX

]
where G1 is the Minkowski metric tensor of order as that of A.

Proof. Since M is of the form (2.1) by using Theorem 1.2 and Theorem 1.3, M
satisfy N(A) ⊂ N(C), N(A∼) ⊂ N(B∼) and D = CA+B. Hence there exist
(n− r)× r matrix Y and n× (n− r) matrix X such that C = Y A and B = AX.
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Since A is range symmetric in M by using Theorem 1.5(ii). G1A is EPr, again by
using (2.2) we have AA+ = G1A

+AG1, CA+ = −G1(A+B)∼, and

Y AA+ = −G1(A+AX)∼

= −G1X
∼(A+A)∼ [By using Theorem 1.4]

= −G1X
∼G1(A+A)∗G1 [By using (1.2)]

= −G1X
∼G1A

+AG1

= −G1X
∼AA+ [By using (2.2)]

Therefore Y A = −G1X
∼A = C and D = CA+B = −G1X

∼AA+AX =
−G1X

∼AX. Thus

M =
[

A AX
−G1X

∼
A −G1X

∼
AX

]
.

�

Theorem 2.3. Let

M =
[

A B
C D

]
and L =

[
F U
H K

]
be range symmetric matrices in M both of the form (2.1) and ML of rank r, then
the following are equivalent:

(i) ML is range symmetric in M.
(ii) AF is range symmetric in M and CA+ = HF+

(iii) AF is range symmetric in M and A+B = F+U

Proof. Since M and L are of the form (2.1) by Lemma 2.1 there exist r × (n − r)
matrices X and Y such that

M =
[

A AX
−G1X

∼
A −G1X

∼
AX

]
and L =

[
F FY

−G1Y
∼
F −G1Y

∼
FY

]
.

Now

ML =
[

A AX
−G1X

∼
A −G1X

∼
AX

] [
F FY

−G1Y
∼
F −G1Y

∼
FY

]
=

[
A(I −XG1Y

∼
)F A(I −XG1Y

∼
)FY

−G1X
∼
A(I −XG1Y

∼
)F −G1X

∼
AX(I −XG1Y

∼
)FY

]
=

[
AZF AZFY

−G1X
∼
AZF −G1X

∼
AZFY

]
where Z = I −XG1Y

∼. Clearly

N(AZF ) ⊂ N(−G1X
∼AZF ) = N(G1X

∼AZF ), N(AZF )∼ ⊂ N(AZFY )∼

and the Schur complement of AZF in ML is zero. For

ML/AZF = −G1X
∼AZFY + G1X

∼(AZF )(AZF )+AZFY

= −G1X
∼AZFY + G1X

∼AZFY = 0.
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Hence rk(AZF ) = rk(ML) = r. Thus ML is also of the form (2.1). Since M and
L are range symmetric in M by Theorem 2.2 and Lemma 2.1, A and F are range
symmetric in M. Now

−G1(A+AX)∼ = −G1X
∼(A+A)∼ [By Theorem 1.4]

= −G1X
∼G1(A+A)∗G1 [By using 1.2]

= −G1X
∼G1A

+AG1

= −G1X
∼AA+ [By using 2.2]

Similarly it can be proved that −G1Y
∼FF+ = −G1(F+FY )∼. We now claim

AZF is range symmetric in M. N(F ) ⊂ N(AZF ), and rk(AZF ) = rk(F ) = r,
hence it follows N(F ) = N(AZF ). Also N(A∼) ⊂ N(AZF )∼ and rk(AZF )∼ =
rk(AZF ) = rk(A) = r = rk(F ), N(A) = N(A∼) = N(AZF )∼ = N(F ). Thus
N(AZF ) = N(AZF )∼ and hence AZF is range symmetric in M. By Theorem 1.5
(ii), G1AZF in EPr and by using (2.2) we have

(2.4) G1AZF (AZF )+G1 = (AZF )+AZF

By using (2.4) for

N(AZF ) = N(F ), N(AZF )∼ = N(A∼) = N(A)

we get

(2.5)
AZF (AZF )+ = FF+ = G1(AZF )+AZFG1 and
(AZF )+AZF = A+A = G1AA+G1.

Since H = −G1Y
∼F and C = −G1X

∼A, we have

HF+ = −G1Y
∼FF+ [ by (2.5)]

= −G1Y
∼G1AZF (AZF )+

= −G1Y
∼G1(AZF )+AZFG1

= −G1Y
∼[(AZF )+AZF ]∼

= −G1[(AZF )+AZFY ]∼.

Similarly by using (2.5), we have

CA+ = −G1X
∼AZF (AZF )+.

Therefore

(2.6) CA+ = HF+ ⇔ −G1X
∼AZF (AZF )+ = −G1[(AZF )+AZFY ]∼.

Now the proof runs as follows: ML is range symmetric in M ⇔ AZF is range
symmetric in M and G1X

∼AZF (AZF )+ = −G1[(AZF )+AZFY ]∼ ⇔ AZF is
range symmetric inM and CA+ = HF+ [By using (2.6)]⇔ N(AZF ) = N(AZF )∼

and CA+ = HF+ ⇔ N(F ) = N(A)∼ = N(A) and CA+ = HF+ ⇔ AF is
range symmetric in M and CA+ = HF+ [By using Theorem 2.1] ⇔ AF is range
symmetric in M and A+B = F+U [By Theorem 2.2]. �
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3. Factorization

In this section a set of conditions under which a matrix can be expressed as product
of range symmetric matrices in m are derived.

Definition 3.1. A matrix A ∈ Cn×n is said to be unitary in unitary space if and
only if AA∗ = A∗A = I.

Lemma 3.1. [9, Theorem 1] Let A ∈ Crn×n be EPr matrix, then there exist a
unitary matrix U such that

A = U∗DU = U∗
[

D1 0
0 0

]
U,

where D1 is r × r non-singular.

Lemma 3.2. Let A ∈ Cn×n, A is range symmetric in M if and only if

A = P

[
D 0
0 0

]
P∼,

where D is r × r matrix and rk(D) = r and P is unitary.

Proof. By Theorem 1.5 (ii), the matrix A is range symmetric in M ⇔ AG is EP.
By Lemma 3.1, this holds if and only if

AG = U

[
D1 0
0 0

]
U∗

or

A = U

[
D1 0
0 0

]
U∗G

or

A = UG

[
G1 0
0 −I

] [
D1 0
0 0

]
U∗G

where G1 is r × r or

A = UG

[
G1D1 0

0 0

]
U∗G.

Thus the matrix A is range symmetric in M if and only if

A = P

[
D 0
0 0

]
P∼,

where P = UG, P∼ = GU∼ = U∗G and D = G1D1 is r × r non-singular. �

Lemma 3.3. Let A and B be range symmetric matrices in M of rank r. Then
N(A) = N(B) if and only if N(PAP∼) = N(PBP∼) where P is unitary.
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Proof. Let A and B be range symmetric matrices in M. Assume N(A) = N(B).
Then x ∈ N(PAP∼) PAP∼x = 0 AP∼x = 0 Ay = 0 where y = P∼x y ∈ N(A) =
N(B)By = 0 BP∼x = 0 PBP∼x = 0 x ∈ N(PBP∼). Thus N(A) = N(B)
N(PAP∼) = N(PBP∼).

The proof the converse is similar and hence omitted. �

Theorem 3.1. Let M be of the form (2.1) be range symmetric in M. Then M
can be written as a product of range symmetric matrices in M.

Proof. Since M is of the form (2.1) and M is range symmetric in M, by Lemma
2.1, A is range symmetric in M and

M =
[

A AX
−G1X

∼
A −G1X

∼
AX

]
.

Since M is range symmetric in M by Theorem 1.5(ii), GM in EPr, where

GM =
[

G1 0
0 −I

] [
A AX

−G1X
∼
A −G1X

∼
AX

]
=

[
G1A G1AX

G1X
∼
A G1X

∼
AX

]
.

Consider

P =
[

G1AA+G1 G1AA+G1X
X∗G1AA+G1 X∗G1AA+G1X

]
,

L =
[

G1A 0
0 −I

]
,

Q =
[

A+A A+AX
X∗A+A X∗A+AX

]
.

By using (1.1),

P ∗ =

[
(G1AA+G1)

∗
(X∗G1AA+G1)

∗

(G1AA+G1X)
∗

(X∗G1AA+G1X)
∗

]

=
[

G1 (AA+)∗G1 G1 (AA+)∗G1X
X∗G1 (AA+)∗G1 X∗G1 (AA+)∗G1X

]
=

[
G1AA+G1 G1AA+G1X

X∗G1AA+G1 X∗G1AA+G1X

]
= P

Similarly Q∗ = Q can be proved. Thus P = P ∗ and Q = Q∗ and therefore P,Q are
EPr. Since A is range symmetric by Theorem 1.5(iii) G1A is EPr and hence L is
EPr.
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Now

PLQ

=
[

G1AA+G1 G1AA+G1X
X∗G1AA+G1 X∗G1AA+G1X

] [
G1A 0

0 0

] [
A+A A+AX

X∗A+A X∗A+AX

]
=

[
G1AA+G1G1A 0

X∗G1AA+G1G1A 0

] [
A+A A+AX

X∗A+A X∗A+AX

]
=

[
G1A 0

X∗G1A 0

] [
A+A A+AX

X∗A+A X∗A+AX

]
=

[
G1AA+A G1AA+AX

X∗G1AA+A X∗G1AA+AX

]
=

[
G1A G1AX

X∗G1A X∗G1AX

]
=

[
A AX

−G1X
∼
A −G1X

∼
AX

]
= GM.

By using (1.1), M = GPLQ = (GP )(LG)(GQ). Since P,Q,L and EPr, by Theorem
1.5 (ii) and (iii), it follow that GP,LG, GQ are range symmetric M. Thus a range
symmetric matrix M in M is expressed as a product of range symmetric matrices
in M. �
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