Product of Range Symmetric Block Matrices in Minkowski Space

${ }^{1}$ AR. Meenakshi and ${ }^{2}$ D. Krishnaswamy
${ }^{1}$ Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India
${ }^{2}$ Directorate of Distance Education, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India
${ }^{1}$ arm_meenakshi@yahoo.co.in, ${ }^{2}$ krishna_swamy2004@yahoo.co.in

Abstract

Necessary and sufficient conditions for the product of range symmetric matrices of rank r to be range symmetric in Minkowski space \mathcal{M} is derived. Also equivalent conditions for the product of two range symmetric block matrices to be range symmetric are established. As an application we have shown that a block matrix in Minkowski space can be expressed as a product of range symmetric matrices in \mathcal{M}.

2000 Mathematics Subject Classification: Primary 15A57, Secondary 15A09
Key words and phrases: Minkowski space, range symmetric matrix

1. Introduction

Throughout we shall deal with $C^{n \times n}$, the space of $n \times n$ complex matrices. Let C^{n} be the space of complex n-tuples, we shall index the components of a complex vector in C^{n} from 0 to $n-1$, that is $u=\left(u_{0}, u_{1}, u_{2}, \ldots u_{n-1}\right)$. Let G be the Minkowski metric tensor defined by $G u=\left(u_{0},-u_{1},-u_{2}, \ldots,-u_{n-1}\right)$. Clearly the Minkowski metric matrix

$$
G=\left[\begin{array}{cc}
1 & 0 \tag{1.1}\\
0 & -I_{n-1}
\end{array}\right], G=G^{*} \text { and } G^{2}=I_{n}
$$

In [8], Minkowski inner product on C^{n} is defined by $(u, v)=[u, G v]$, where [...] denotes the conventional Hilbert(unitary) space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as M. For $A \in C^{n \times n}, x, y \in C^{n}$, by using (1.1),

$$
\begin{align*}
(A x, y) & =[A x, G y]=\left[x, A^{*} G y\right] \tag{1.2}\\
& =\left[x, G\left(G A^{*} G\right) y\right]=\left[x, G A^{\sim} y\right]=\left(x, A^{\sim} y\right)
\end{align*}
$$

where $A^{\sim}=G A^{*} G$. The matrix A^{\sim} is called the Minkowski adjoint of A in \mathcal{M} (A^{*} is usual hermitian adjoint of A). Naturally, we call a matrix $A \in C^{n \times n}$

[^0]\mathcal{M}-symmetric in \mathcal{M} if $A=A^{\sim}$. From the definition $A^{\sim}=G A^{*} G$ we have the following equivalence: A is \mathcal{M}-symmetric $\Leftrightarrow A G$ is hermitian $\Leftrightarrow G A$ is hermitian. For $A \in C^{n \times n}, \operatorname{rk}(A), N(A)$, and $R(A)$ are respectively the rank of A, null space of A and range space of A. By a generalized inverse of A we mean a solution of the equation $A X A=A$ and is denoted as $A^{(1)} . A\{1\}$ is the set of all generalized inverses of A. Throughout I refers to identity matrix of appropriate order unless otherwise specified.

Definition 1.1. [2, Definition 1, p.7] For $A \in C^{m \times n}, A^{+}$is the Moore-Penrose inverse of A if $A A^{+} A=A, A^{+} A A^{+}=A^{+}, A A^{+}$and $A^{+} A$ are Hermitian. The Minkowski inverse of A, analogous to Moore-Penrose inverse of A is introduced and its existence is discussed in [5].

Definition 1.2. [5, Definition 4, p.2] For $A \in C^{m \times n}, A^{(1)}$ is the Minkowski inverse of A if $A A^{(3} A=A, A^{(\square)} A A^{(\square)}=A, A A^{(3)}$ and $A^{(\square)} A$ are \mathcal{M}-symmetric.

Theorem 1.1. [5] Theorem 1, p.4] For $A \in C^{m \times n}, A^{(1)}$ exists in $\mathcal{M} \Leftrightarrow \operatorname{rk}(A)=$ $\operatorname{rk}\left(A A^{\sim}\right)=\operatorname{rk}\left(A^{\sim} A\right)$.

Theorem 1.2. [7, Lemma 3.3, p.143] Let A and B be matrices in \mathcal{M}. Then $N\left(A^{*}\right) \subseteq N\left(B^{*}\right) \Leftrightarrow N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$.

Theorem 1.3. [4, Lemma 1, p.193] For $A, B, C \in C^{m \times n}$, the following are equivalent:
(1) $C A^{(1)} B$ is invariant for every $A^{(1)} \in C^{n x m}$.
(2) $N(A) \subseteq N(C)$ and $N\left(A^{*}\right) \subseteq N\left(B^{*}\right)$ 3. $C=C A^{(1)} A$ and $B=A A^{(1)} B$ for every $A^{(1)} \in A\{1\}$.

Theorem 1.4. [7, Lemma 2.3, p.139] For $A_{1}, A_{2} \in C^{n \times n}\left(A_{1} A_{2}\right)^{\sim}=A_{2}^{\sim} A_{1}^{\sim}$ and $\left(A_{1}^{\sim}\right)^{\sim}=A_{1}$.

A matrix $A \in C^{n \times n}$ is said to be range symmetric in unitary space (or) equivalently A is said to be EP if $N(A)=N\left(A^{*}\right)\left(\right.$ or $\left.A A^{+}=A^{+} A\right)$ [2, p.163]]. For further properties of EP matrices one may refer [1,2, 4 and 9$]$. In [6] the concept of range symmetric matrix in \mathcal{M} is introduced and developed analogous to that of EP matrices. A matrix $A \in C^{n \times n}$ said to be range symmetric in $\mathcal{M} \Leftrightarrow N(A)=N\left(A^{\sim}\right)$. In the sequel we shall make use of the following results.

Theorem 1.5. [6. Theorem 2.2, p.47] For $A \in C^{n \times n}$, the following are equivalent:
(i) A is range symmetric in \mathcal{M}
(ii) $G A$ is $E P$
(iii) $A G$ is $E P$
(iv) $N\left(A^{*}\right)=N(A G)$
(v) $R(A)=R\left(A^{\sim}\right)$
(vi) $A^{\sim}=H A=A K$ for some non-singular matrices H and K.
(vii) $R\left(A^{*}\right)=R(G A)$

2. Product of range symmetric matrices in \mathcal{M}

In this section we have obtained necessary and sufficient conditions for the product of two range symmetric matrices of rank r to be range symmetric in \mathcal{M}. Later we have extended the result to block matrices in \mathcal{M}.

Theorem 2.1. Let A and B be range symmetric matrices of rank r in \mathcal{M} and $A B$ be of rank r. Then $A B$ is range symmetric in \mathcal{M} if and only if $R(A)=R(B)$.

Proof. Let A and B be range symmetric matrices of rank r in \mathcal{M}. Let $A B$ be of rank r and $R(A)=R(B)$. We prove that $A B$ is range symmetric in \mathcal{M}. Clearly $R(A B) \subseteq R(A)$. Since $\operatorname{rk}(A B)=\operatorname{rk}(A)=r$, it follows that $R(A B)=R(A)$. Also $R(A B)^{\sim} \subseteq R\left(B^{\sim}\right)=R(B)$ and $\operatorname{rk}(A B)^{\sim}=\operatorname{rk}(A B)=\operatorname{rk}(A)=\operatorname{rk}(B)=r$. This implies $R(A B)^{\sim}=R(B)$. Since $R(A)=R(B)$, if follows that $R(A B)=R(A B)^{\sim}$. Hence $A B$ is range symmetric in \mathcal{M}.

Conversely, $A B$ is range symmetric in \mathcal{M} implies $R(A B)^{\sim}=R(A B) . R(A B) \subseteq$ $R(A)$ and $r k(A B)=\operatorname{rk}(A)=r$ implies $R(A B)=R(A) . \quad R(A B)^{\sim} \subseteq R\left(B^{\sim}\right)=$ $R(B)$. Thus $R(A)=R(B)$.

Hence forth we are concerned with $n \times n$ matrices M partitioned in the form

$$
M=\left[\begin{array}{cc}
A & B \tag{2.1}\\
C & D
\end{array}\right] \text { with } \operatorname{rk}(M)=\operatorname{rk}(A)=r
$$

It is well known that in [3] M of the form (2.1) satisfies $N(A) \subseteq N(C), N\left(A^{*}\right) \subseteq$ $N\left(B^{*}\right)$ and $D=C A^{+} B$.

Definition 2.1. 4, Lemma 1.2, p.193] Let

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

be an $n \times n$ matrix. The Schur complement of A in M, denoted by M / A is defined as $D-C A^{(1)} B$, where $A^{(1)}$ is a generalized inverse of A.

Theorem 2.2. Let M be of the form (2.1), then M is range symmetric in $\mathcal{M} \Leftrightarrow A$ is range symmetric in \mathcal{M} and $C A^{+}=-G_{1}\left(A^{+} B\right)^{\sim}$, where G_{1} is the Minkowski metric tensor of order as that of A.

Proof. Since A is range symmetric in \mathcal{M} and $C A^{+}=-G_{1}\left(A^{+} B\right)^{\sim}$, by Theorem 1.5 (ii), $G_{1} A$ is EP and $\left(G_{1} A\right)^{+}=A^{+} G_{1}$. Hence $G_{1} A\left(G_{1} A\right)^{+}=\left(G_{1} A\right)^{+} G_{1} A$. Since $G_{1}^{+}=G_{1}, G_{1} A A^{+} G_{1}=A^{+} G_{1} G_{1} A$. By (1.1) for G_{1}, we have

$$
\begin{equation*}
G_{1} A A^{+} G_{1}=A^{+} A \tag{2.2}
\end{equation*}
$$

Since $\operatorname{rk}(M)=\operatorname{rk}(A)=r$, we have $N(A) \subseteq N(C), N\left(A^{\sim}\right) \subseteq N\left(B^{\sim}\right)$ and Schur complement of A in M is zero. By Theorem 1.3, we have $C=C A^{+} A, B=A A^{+} B$ and $D=C A^{+} B$.

Let us consider the matrices

$$
P=\left[\begin{array}{cc}
I & 0 \\
C A^{+} & I
\end{array}\right], \quad Q=\left[\begin{array}{cc}
I & A^{+} B \\
0 & I
\end{array}\right] \quad \text { and } \quad L=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right],
$$

where P, Q are non-singular. Now

$$
\begin{aligned}
P L Q & =\left[\begin{array}{cc}
I & 0 \\
C A^{+} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I & A^{+} B \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
A & A A^{+} B \\
C A^{+} A & C A^{+} B
\end{array}\right] \\
& =\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \\
& =M
\end{aligned}
$$

and by using $C A^{+}=-G_{1}\left(A^{+} B\right)^{\sim}$, we have

$$
\begin{aligned}
Q^{\sim} & =G Q^{*} G \\
& =\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\left(A^{+} B\right)^{*} & I
\end{array}\right]\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
-\left(A^{+} B\right)^{*} G_{1} & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
-G_{1}\left(A^{+} B\right)^{\sim} & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
C A^{+} & I
\end{array}\right] \\
& =P
\end{aligned}
$$

Since A is range symmetric in \mathcal{M}, L is range symmetric in \mathcal{M}. We claim M is range symmetric in \mathcal{M}, that is $N(M)=N\left(M^{\sim}\right)$. Since $M=P L P^{\sim}, x \in N(M) \Leftrightarrow M x=$ $0 \Leftrightarrow P L P^{\sim} x=0 \Leftrightarrow L y=0 \quad\left[\right.$ where $\left.y=P^{\sim} x\right] \Leftrightarrow L^{\sim} y=0 \quad\left[\right.$ by $\left.N(L)=N\left(L^{\sim}\right)\right]$ $\Leftrightarrow P L^{\sim} P^{\sim} x=0 \Leftrightarrow M^{\sim} x=0 \Leftrightarrow x \in N\left(M^{\sim}\right)$. Thus $N(M)=N\left(M^{\sim}\right)$ and hence M is range symmetric in \mathcal{M}.

Conversely, let us assume that M is range symmetric in \mathcal{M}. Since $M=P L Q$, one choice of $M^{(1)}$ is

$$
M^{(1)}=Q^{-1}\left[\begin{array}{cc}
A^{+} & 0 \\
0 & 0
\end{array}\right] P^{-1}
$$

Since M is range symmetric in \mathcal{M}, we have $N(M)=N\left(M^{\sim}\right)$. By using Theorem 1.2 , and Theorem 1.3 we get $M^{\sim}=M^{\sim} M^{(1)} M$. By using (1.2), we have $G M^{*} G=$
$G M^{*} G M^{(1)} M$ and by using (1.1),

$$
\begin{aligned}
M^{*} & =M^{*} G M^{(1)} M G \\
& =M^{*} G Q^{-1}\left[\begin{array}{cc}
A^{+} & 0 \\
0 & 0
\end{array}\right] P^{-1} P\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] Q G \\
& =M^{*} G Q^{-1}\left[\begin{array}{cc}
A^{+} A & 0 \\
0 & 0
\end{array}\right] Q G \\
& =M^{*} G\left[\begin{array}{cc}
I & -\left(A^{+} B\right) \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A^{+} A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I & \left(A^{+} B\right) \\
0 & I
\end{array}\right] G \\
& =M^{*} G\left[\begin{array}{cc}
A^{+} A & A^{+} B \\
0 & 0
\end{array}\right] G\left[\begin{array}{cc}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right]\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
A^{+} A & A^{+} B \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right] \\
& =\left[\begin{array}{ll}
A^{*} G_{1} A^{+} A G_{1} & -A^{*} G_{1} A^{+} B \\
B^{*} G_{1} A^{+} A G_{1} & -B^{*} G_{1} A^{+} B
\end{array}\right]
\end{aligned}
$$

Equating the corresponding blocks, we get

$$
A^{*}=A^{*} G_{1} A^{+} A G_{1} \Rightarrow G_{1} A^{*} G_{1}=G_{1} A^{*} G_{1} A^{+} A \Rightarrow A^{\sim}=A^{\sim} A^{+} A
$$

By Theorem 1.3, it follows that $N(A) \subset N\left(A^{\sim}\right)$ and $\operatorname{rk}(A)=\operatorname{rk}\left(A^{\sim}\right)$. Hence $N(A)=N\left(A^{\sim}\right)$ and therefore A is range symmetric in \mathcal{M}. Also

$$
C^{*}=-A^{*} G_{1} A^{+} B \Rightarrow G_{1} C^{*} G_{1}=-G_{1} A^{*} G_{1} A^{+} B G_{1} \Rightarrow C^{\sim}=-A^{\sim} A^{+} B G_{1}
$$

Taking Minkowski adjoint, and by using $G_{1}^{\sim}=G_{1}$ and Theorem 1.4, we get $C=$ $-G_{1}\left(A^{+} B\right)^{\sim} A$. Now

$$
\begin{aligned}
C A^{+} & =-G_{1}\left(A^{+} B\right)^{\sim} A A^{+} \\
& =-G_{1}\left(A^{+} B\right)^{\sim} G_{1} A^{+} A G_{1} \\
& =-G_{1}\left(A^{+} B\right)^{\sim} G_{1}\left(A^{+} A\right)^{*} G_{1} \quad[\text { By using }(2.2)] \\
& =-G_{1}\left(A^{+} B\right)^{\sim}\left(A^{+} A\right)^{\sim} \\
& =-G_{1}\left(A^{+} A A^{+} B\right)^{\sim} \quad \text { [By using Theorem 1.4] } \\
& =-G_{1}\left(A^{+} B\right)^{\sim} .
\end{aligned}
$$

This completes the proof.
Lemma 2.1. Let M be of the form (2.1) be range symmetric in \mathcal{M}, then A is range symmetric in \mathcal{M} and there exists an $r \times(n-r)$ matrix X such that

$$
M=\left[\begin{array}{ll}
A & A X \tag{2.3}\\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right]
$$

where G_{1} is the Minkowski metric tensor of order as that of A.
Proof. Since M is of the form (2.1) by using Theorem 1.2 and Theorem 1.3, M satisfy $N(A) \subset N(C), N\left(A^{\sim}\right) \subset N\left(B^{\sim}\right)$ and $D=C A^{+} B$. Hence there exist $(n-r) \times r$ matrix Y and $n \times(n-r)$ matrix X such that $C=Y A$ and $B=A X$.

Since A is range symmetric in \mathcal{M} by using Theorem $1.5(\mathrm{ii}) . G_{1} A$ is EPr, again by using (2.2) we have $A A^{+}=G_{1} A^{+} A G_{1}, C A^{+}=-G_{1}\left(A^{+} B\right)^{\sim}$, and

$$
\begin{aligned}
Y A A^{+} & =-G_{1}\left(A^{+} A X\right)^{\sim} \\
& =-G_{1} X^{\sim}\left(A^{+} A\right)^{\sim} \quad[\text { By using Theorem 1.4] } \\
& =-G_{1} X^{\sim} G_{1}\left(A^{+} A\right)^{*} G_{1} \quad[\text { By using (1.2)] } \\
& =-G_{1} X^{\sim} G_{1} A^{+} A G_{1} \\
& =-G_{1} X^{\sim} A A^{+} \quad[\text { By using }(2.2)]
\end{aligned}
$$

Therefore $Y A=-G_{1} X^{\sim} A=C$ and $D=C A^{+} B=-G_{1} X^{\sim} A A^{+} A X=$ $-G_{1} X^{\sim} A X$. Thus

$$
M=\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right] .
$$

Theorem 2.3. Let

$$
M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \text { and } L=\left[\begin{array}{cc}
F & U \\
H & K
\end{array}\right]
$$

be range symmetric matrices in \mathcal{M} both of the form (2.1) and $M L$ of rank r, then the following are equivalent:
(i) $M L$ is range symmetric in \mathcal{M}.
(ii) $A F$ is range symmetric in \mathcal{M} and $C A^{+}=H F^{+}$
(iii) $A F$ is range symmetric in \mathcal{M} and $A^{+} B=F^{+} U$

Proof. Since M and L are of the form (2.1) by Lemma 2.1 there exist $r \times(n-r)$ matrices X and Y such that

$$
M=\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right] \text { and } L=\left[\begin{array}{cc}
F & F Y \\
-G_{1} Y^{\sim} F & -G_{1} Y^{\sim} F Y
\end{array}\right] .
$$

Now

$$
\begin{aligned}
M L & =\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right]\left[\begin{array}{cc}
F & F Y \\
-G_{1} Y^{\sim} F & -G_{1} Y^{\sim} F Y
\end{array}\right] \\
& =\left[\begin{array}{cc}
A\left(I-X G_{1} Y^{\sim}\right) F & A\left(I-X G_{1} Y^{\sim}\right) F Y \\
-G_{1} X^{\sim} A\left(I-X G_{1} Y^{\sim}\right) F & -G_{1} X^{\sim} A X\left(I-X G_{1} Y^{\sim}\right) F Y
\end{array}\right] \\
& =\left[\begin{array}{cc}
A Z F & A Z F Y \\
-G_{1} X^{\sim} A Z F & -G_{1} X^{\sim} A Z F Y
\end{array}\right]
\end{aligned}
$$

where $Z=I-X G_{1} Y^{\sim}$. Clearly

$$
N(A Z F) \subset N\left(-G_{1} X^{\sim} A Z F\right)=N\left(G_{1} X^{\sim} A Z F\right), N(A Z F)^{\sim} \subset N(A Z F Y)^{\sim}
$$

and the Schur complement of $A Z F$ in $M L$ is zero. For

$$
\begin{aligned}
M L / A Z F & =-G_{1} X^{\sim} A Z F Y+G_{1} X^{\sim}(A Z F)(A Z F)^{+} A Z F Y \\
& =-G_{1} X^{\sim} A Z F Y+G_{1} X^{\sim} A Z F Y=0 .
\end{aligned}
$$

Hence $\operatorname{rk}(A Z F)=\operatorname{rk}(M L)=r$. Thus $M L$ is also of the form (2.1). Since M and L are range symmetric in \mathcal{M} by Theorem 2.2 and Lemma 2.1, A and F are range symmetric in \mathcal{M}. Now

$$
\begin{aligned}
-G_{1}\left(A^{+} A X\right)^{\sim} & =-G_{1} X^{\sim}\left(A^{+} A\right)^{\sim} \quad[\text { By Theorem 1.4] } \\
& =-G_{1} X^{\sim} G_{1}\left(A^{+} A\right)^{*} G_{1} \quad[\text { By using 1.2] } \\
& =-G_{1} X^{\sim} G_{1} A^{+} A G_{1} \\
& =-G_{1} X^{\sim} A A^{+} \quad[\text { By using } 2.2]
\end{aligned}
$$

Similarly it can be proved that $-G_{1} Y^{\sim} F F^{+}=-G_{1}\left(F^{+} F Y\right)^{\sim}$. We now claim $A Z F$ is range symmetric in $\mathcal{M} . N(F) \subset N(A Z F)$, and $\operatorname{rk}(A Z F)=r k(F)=r$, hence it follows $N(F)=N(A Z F)$. Also $N\left(A^{\sim}\right) \subset N(A Z F)^{\sim}$ and $\operatorname{rk}(A Z F)^{\sim}=$ $\operatorname{rk}(A Z F)=\operatorname{rk}(A)=r=r k(F), N(A)=N\left(A^{\sim}\right)=N(A Z F)^{\sim}=N(F)$. Thus $N(A Z F)=N(A Z F)^{\sim}$ and hence $A Z F$ is range symmetric in \mathcal{M}. By Theorem 1.5 (ii), $G_{1} A Z F$ in EPr and by using (2.2) we have

$$
\begin{equation*}
G_{1} A Z F(A Z F)^{+} G_{1}=(A Z F)^{+} A Z F \tag{2.4}
\end{equation*}
$$

By using (2.4) for

$$
N(A Z F)=N(F), N(A Z F)^{\sim}=N\left(A^{\sim}\right)=N(A)
$$

we get

$$
\begin{align*}
& A Z F(A Z F)^{+}=F F^{+}=G_{1}(A Z F)^{+} A Z F G_{1} \text { and } \\
& (A Z F)^{+} A Z F=A^{+} A=G_{1} A A^{+} G_{1} \tag{2.5}
\end{align*}
$$

Since $H=-G_{1} Y^{\sim} F$ and $C=-G_{1} X^{\sim} A$, we have

$$
\begin{aligned}
H F^{+} & =-G_{1} Y^{\sim} F F^{+} \quad[\text { by }(2.5)] \\
& =-G_{1} Y^{\sim} G_{1} A Z F(A Z F)^{+} \\
& =-G_{1} Y^{\sim} G_{1}(A Z F)^{+} A Z F G_{1} \\
& =-G_{1} Y^{\sim}\left[(A Z F)^{+} A Z F\right]^{\sim} \\
& =-G_{1}\left[(A Z F)^{+} A Z F Y\right]^{\sim}
\end{aligned}
$$

Similarly by using (2.5), we have

$$
C A^{+}=-G_{1} X^{\sim} A Z F(A Z F)^{+}
$$

Therefore

$$
\begin{equation*}
C A^{+}=H F^{+} \Leftrightarrow-G_{1} X^{\sim} A Z F(A Z F)^{+}=-G_{1}\left[(A Z F)^{+} A Z F Y\right]^{\sim} \tag{2.6}
\end{equation*}
$$

Now the proof runs as follows: $M L$ is range symmetric in $\mathcal{M} \Leftrightarrow A Z F$ is range symmetric in \mathcal{M} and $G_{1} X^{\sim} A Z F(A Z F)^{+}=-G_{1}\left[(A Z F)^{+} A Z F Y\right]^{\sim} \Leftrightarrow A Z F$ is range symmetric in \mathcal{M} and $C A^{+}=H F^{+}[$By using $(2.6)] \Leftrightarrow N(A Z F)=N(A Z F)^{\sim}$ and $C A^{+}=H F^{+} \Leftrightarrow N(F)=N(A)^{\sim}=N(A)$ and $C A^{+}=H F^{+} \Leftrightarrow A F$ is range symmetric in \mathcal{M} and $C A^{+}=H F^{+}$[By using Theorem 2.1] $\Leftrightarrow A F$ is range symmetric in \mathcal{M} and $A^{+} B=F^{+} U$ [By Theorem 2.2].

3. Factorization

In this section a set of conditions under which a matrix can be expressed as product of range symmetric matrices in m are derived.

Definition 3.1. A matrix $A \in C^{n \times n}$ is said to be unitary in unitary space if and only if $A A^{*}=A^{*} A=I$.

Lemma 3.1. 9, Theorem 1] Let $A \in C r^{n \times n}$ be EPr matrix, then there exist a unitary matrix U such that

$$
A=U^{*} D U=U^{*}\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] U
$$

where D_{1} is $r \times r$ non-singular.
Lemma 3.2. Let $A \in C^{n \times n}$, A is range symmetric in \mathcal{M} if and only if

$$
A=P\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] P^{\sim}
$$

where D is $r \times r$ matrix and $\operatorname{rk}(D)=r$ and P is unitary.
Proof. By Theorem 1.5 (ii), the matrix A is range symmetric in $\mathcal{M} \Leftrightarrow A G$ is EP. By Lemma 3.1, this holds if and only if

$$
A G=U\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

or

$$
A=U\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] U^{*} G
$$

or

$$
A=U G\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right] U^{*} G
$$

where G_{1} is $r \times r$ or

$$
A=U G\left[\begin{array}{cc}
G_{1} D_{1} & 0 \\
0 & 0
\end{array}\right] U^{*} G
$$

Thus the matrix A is range symmetric in \mathcal{M} if and only if

$$
A=P\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] P^{\sim}
$$

where $P=U G, P^{\sim}=G U^{\sim}=U^{*} G$ and $D=G_{1} D_{1}$ is $r \times r$ non-singular.
Lemma 3.3. Let A and B be range symmetric matrices in \mathcal{M} of rank r. Then $N(A)=N(B)$ if and only if $N\left(P A P^{\sim}\right)=N\left(P B P^{\sim}\right)$ where P is unitary.

Proof. Let A and B be range symmetric matrices in \mathcal{M}. Assume $N(A)=N(B)$. Then $x \in N\left(P A P^{\sim}\right) P A P^{\sim} x=0 A P^{\sim} x=0 A y=0$ where $y=P^{\sim} x y \in N(A)=$ $N(B) B y=0 B P^{\sim} x=0 P B P^{\sim} x=0 x \in N\left(P B P^{\sim}\right)$. Thus $N(A)=N(B)$ $N\left(P A P^{\sim}\right)=N\left(P B P^{\sim}\right)$.

The proof the converse is similar and hence omitted.

Theorem 3.1. Let M be of the form (2.1) be range symmetric in \mathcal{M}. Then M can be written as a product of range symmetric matrices in \mathcal{M}.

Proof. Since M is of the form (2.1) and M is range symmetric in \mathcal{M}, by Lemma 2.1, A is range symmetric in \mathcal{M} and

$$
M=\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right] .
$$

Since M is range symmetric in \mathcal{M} by Theorem $1.5(i i), G M$ in EPr, where

$$
G M=\left[\begin{array}{cc}
G_{1} & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right]=\left[\begin{array}{cc}
G_{1} A & G_{1} A X \\
G_{1} X^{\sim} A & G_{1} X^{\sim} A X
\end{array}\right] .
$$

Consider

$$
\begin{aligned}
P & =\left[\begin{array}{cc}
G_{1} A A^{+} G_{1} & G_{1} A A^{+} G_{1} X \\
X^{*} G_{1} A A^{+} G_{1} & X^{*} G_{1} A A^{+} G_{1} X
\end{array}\right], \\
L & =\left[\begin{array}{cc}
G_{1} A & 0 \\
0 & -I
\end{array}\right], \\
Q & =\left[\begin{array}{cc}
A^{+} A & A^{+} A X \\
X^{*} A^{+} A & X^{*} A^{+} A X
\end{array}\right] .
\end{aligned}
$$

By using (1.1),

$$
\begin{aligned}
P^{*} & =\left[\begin{array}{cc}
\left(G_{1} A A^{+} G_{1}\right)^{*} & \left(X^{*} G_{1} A A^{+} G_{1}\right)^{*} \\
\left(G_{1} A A^{+} G_{1} X\right)^{*} & \left(X^{*} G_{1} A A^{+} G_{1} X\right)^{*}
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1}\left(A A^{+}\right)^{*} G_{1} & G_{1}\left(A A^{+}\right)^{*} G_{1} X \\
X^{*} G_{1}\left(A A^{+}\right)^{*} G_{1} & X^{*} G_{1}\left(A A^{+}\right)^{*} G_{1} X
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A A^{+} G_{1} & G_{1} A A^{+} G_{1} X \\
X^{*} G_{1} A A^{+} G_{1} & X^{*} G_{1} A A^{+} G_{1} X
\end{array}\right]=P
\end{aligned}
$$

Similarly $Q^{*}=Q$ can be proved. Thus $P=P^{*}$ and $Q=Q^{*}$ and therefore P, Q are EPr. Since A is range symmetric by Theorem 1.5(iii) $G_{1} A$ is EPr and hence L is EPr.

Now

$$
\begin{aligned}
& P L Q \\
& =\left[\begin{array}{cc}
G_{1} A A^{+} G_{1} & G_{1} A A^{+} G_{1} X \\
X^{*} G_{1} A A^{+} G_{1} & X^{*} G_{1} A A^{+} G_{1} X
\end{array}\right]\left[\begin{array}{cc}
G_{1} A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A^{+} A & A^{+} A X \\
X^{*} A^{+} A & X^{*} A^{+} A X
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A A^{+} G_{1} G_{1} A & 0 \\
X^{*} G_{1} A A^{+} G_{1} G_{1} A & 0
\end{array}\right]\left[\begin{array}{cc}
A^{+} A & A^{+} A X \\
X^{*} A^{+} A & X^{*} A^{+} A X
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A & 0 \\
X^{*} G_{1} A & 0
\end{array}\right]\left[\begin{array}{cc}
A^{+} A & A^{+} A X \\
X^{*} A^{+} A & X^{*} A^{+} A X
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A A^{+} A & G_{1} A A^{+} A X \\
X^{*} G_{1} A A^{+} A & X^{*} G_{1} A A^{+} A X
\end{array}\right] \\
& =\left[\begin{array}{cc}
G_{1} A & G_{1} A X \\
X^{*} G_{1} A & X^{*} G_{1} A X
\end{array}\right] \\
& =\left[\begin{array}{cc}
A & A X \\
-G_{1} X^{\sim} A & -G_{1} X^{\sim} A X
\end{array}\right] \\
& =G M .
\end{aligned}
$$

By using (1.1), $M=G P L Q=(G P)(L G)(G Q)$. Since P, Q, L and $E P r$, by Theorem 1.5 (ii) and (iii), it follow that $G P, L G, G Q$ are range symmetric \mathcal{M}. Thus a range symmetric matrix M in \mathcal{M} is expressed as a product of range symmetric matrices in \mathcal{M}.

Acknowledgement. The first author is thankful to the All India council for Technical Education, New Delhi for the financial support to carry out the work.

References

[1] T. S. Baskett and I. J. Katz, Theorems on products of $E P_{r}$ matrices, Linear Algebra and Appl. 2 (1969), 87-103.
[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, WileyIntersci., New York, 1974.
[3] D. Carlson, E. Haynsworth and T. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169-175.
[4] A. R. Meenakshi, On Schur complements in an EP matrix, Period. Math. Hungar. 16 (1985), no. 3, 193-200.
[5] A. R. Meenakshi, Generalized inverses of matrices in Minkowski space, in Proc. Nat. Seminar Alg. Appln. Annamalai University, Annamalainagar, (2000), 1-14.
[6] A. R. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc. (2) 23(1) (2000), 45-52.
[7] A. R. Meenakshi and D. Krishnaswamy, On sums of range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc. (2) 25(2) (2002), 137-148.
[8] M. Renardy, Singular value decomposition in Minkowski space, Linear Algebra Appl. 236 (1996), 53-58.
[9] M. Pearl, On normal and $E P_{r}$ matrices, Michigan Math. J. 6 (1959), 1-5.

[^0]: Received: November 18, 2004; Revised: March 9, 2005.

