BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Product of Range Symmetric Block Matrices in Minkowski Space

¹AR. MEENAKSHI AND ²D. KRISHNASWAMY

¹Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India ²Directorate of Distance Education, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India ¹arm_meenakshi@yahoo.co.in, ²krishna_swamy2004@yahoo.co.in

Abstract. Necessary and sufficient conditions for the product of range symmetric matrices of rank r to be range symmetric in Minkowski space \mathcal{M} is derived. Also equivalent conditions for the product of two range symmetric block matrices to be range symmetric are established. As an application we have shown that a block matrix in Minkowski space can be expressed as a product of range symmetric matrices in \mathcal{M} .

2000 Mathematics Subject Classification: Primary 15A57, Secondary 15A09

Key words and phrases: Minkowski space, range symmetric matrix

1. Introduction

Throughout we shall deal with $C^{n \times n}$, the space of $n \times n$ complex matrices. Let C^n be the space of complex *n*-tuples, we shall index the components of a complex vector in C^n from 0 to n - 1, that is $u = (u_0, u_1, u_2, \dots, u_{n-1})$. Let G be the Minkowski metric tensor defined by $Gu = (u_0, -u_1, -u_2, \dots, -u_{n-1})$. Clearly the Minkowski metric matrix

(1.1)
$$G = \begin{bmatrix} 1 & 0 \\ 0 & -I_{n-1} \end{bmatrix}, G = G^* \text{ and } G^2 = I_n.$$

In [8], Minkowski inner product on C^n is defined by (u, v) = [u, Gv], where [.,.] denotes the conventional Hilbert(unitary) space inner product. A space with Minkowski inner product is called a Minkowski space and denoted as \mathcal{M} . For $A \in C^{n \times n}$, $x, y \in C^n$, by using (1.1),

(1.2)
$$(Ax, y) = [Ax, Gy] = [x, A^*Gy]$$
$$= [x, G(GA^*G)y] = [x, GA^{\sim}y] = (x, A^{\sim}y)$$

where $A^{\sim} = GA^*G$. The matrix A^{\sim} is called the Minkowski adjoint of A in \mathcal{M} (A^* is usual hermitian adjoint of A). Naturally, we call a matrix $A \in C^{n \times n}$

Received: November 18, 2004; Revised: March 9, 2005.

 \mathcal{M} -symmetric in \mathcal{M} if $A = A^{\sim}$. From the definition $A^{\sim} = GA^*G$ we have the following equivalence: A is \mathcal{M} -symmetric $\Leftrightarrow AG$ is hermitian $\Leftrightarrow GA$ is hermitian. For $A \in C^{n \times n}$, $\operatorname{rk}(A)$, N(A), and R(A) are respectively the rank of A, null space of A and range space of A. By a generalized inverse of A we mean a solution of the equation AXA = A and is denoted as $A^{(1)}$. $A\{1\}$ is the set of all generalized inverses of A. Throughout I refers to identity matrix of appropriate order unless otherwise specified.

Definition 1.1. [2, Definition 1, p.7] For $A \in C^{m \times n}$, A^+ is the Moore-Penrose inverse of A if $AA^+A = A$, $A^+AA^+ = A^+$, AA^+ and A^+A are Hermitian. The Minkowski inverse of A, analogous to Moore-Penrose inverse of A is introduced and its existence is discussed in [5].

Definition 1.2. [5, Definition 4, p.2] For $A \in C^{m \times n}$, $A^{\textcircled{m}}$ is the Minkowski inverse of A if $AA^{\textcircled{m}}A = A$, $A^{\textcircled{m}}AA^{\textcircled{m}} = A$, $AA^{\textcircled{m}}$ and $A^{\textcircled{m}}A$ are \mathcal{M} -symmetric.

Theorem 1.1. [5, Theorem 1, p.4] For $A \in C^{m \times n}$, $A^{\textcircled{m}}$ exists in $\mathcal{M} \Leftrightarrow \operatorname{rk}(A) = \operatorname{rk}(AA^{\sim}) = \operatorname{rk}(A^{\sim}A)$.

Theorem 1.2. [7, Lemma 3.3, p.143] Let A and B be matrices in \mathcal{M} . Then $N(A^*) \subseteq N(B^*) \Leftrightarrow N(A^{\sim}) \subseteq N(B^{\sim})$.

Theorem 1.3. [4, Lemma 1, p.193] For $A, B, C \in C^{m \times n}$, the following are equivalent:

- (1) $CA^{(1)}B$ is invariant for every $A^{(1)} \in C^{nxm}$.
- (2) $N(A) \subseteq N(C)$ and $N(A^*) \subseteq N(B^*)$ 3. $C = CA^{(1)}A$ and $B = AA^{(1)}B$ for every $A^{(1)} \in A\{1\}$.

Theorem 1.4. [7, Lemma 2.3, p.139] For A_1 , $A_2 \in C^{n \times n}(A_1A_2)^{\sim} = A_2^{\sim}A_1^{\sim}$ and $(A_1^{\sim})^{\sim} = A_1$.

A matrix $A \in C^{n \times n}$ is said to be range symmetric in unitary space (or) equivalently A is said to be EP if $N(A) = N(A^*)$ (or $AA^+ = A^+A$) [2, p.163]]. For further properties of EP matrices one may refer [1,2, 4 and 9]. In [6] the concept of range symmetric matrix in \mathcal{M} is introduced and developed analogous to that of EP matrices. A matrix $A \in C^{n \times n}$ said to be range symmetric in $\mathcal{M} \Leftrightarrow N(A) = N(A^{\sim})$. In the sequel we shall make use of the following results.

Theorem 1.5. [6, Theorem 2.2, p.47] For $A \in C^{n \times n}$, the following are equivalent:

- (i) A is range symmetric in \mathcal{M}
- (ii) GA is EP
- (iii) AG is EP
- (iv) $N(A^*) = N(AG)$
- (v) $R(A) = R(A^{\sim})$
- (vi) $A^{\sim} = HA = AK$ for some non-singular matrices H and K.
- (vii) $R(A^*) = R(GA)$

2. Product of range symmetric matrices in \mathcal{M}

In this section we have obtained necessary and sufficient conditions for the product of two range symmetric matrices of rank r to be range symmetric in \mathcal{M} . Later we have extended the result to block matrices in \mathcal{M} .

Theorem 2.1. Let A and B be range symmetric matrices of rank r in \mathcal{M} and AB be of rank r. Then AB is range symmetric in \mathcal{M} if and only if R(A) = R(B).

Proof. Let A and B be range symmetric matrices of rank r in \mathcal{M} . Let AB be of rank r and R(A) = R(B). We prove that AB is range symmetric in \mathcal{M} . Clearly $R(AB) \subseteq R(A)$. Since $\operatorname{rk}(AB) = \operatorname{rk}(A) = r$, it follows that R(AB) = R(A). Also $R(AB)^{\sim} \subseteq R(B^{\sim}) = R(B)$ and $\operatorname{rk}(AB)^{\sim} = \operatorname{rk}(AB) = \operatorname{rk}(A) = \operatorname{rk}(B) = r$. This implies $R(AB)^{\sim} = R(B)$. Since R(A) = R(B), if follows that $R(AB) = R(AB)^{\sim}$. Hence AB is range symmetric in \mathcal{M} .

Conversely, AB is range symmetric in \mathcal{M} implies $R(AB)^{\sim} = R(AB)$. $R(AB) \subseteq R(A)$ and rk(AB) = rk(A) = r implies R(AB) = R(A). $R(AB)^{\sim} \subseteq R(B^{\sim}) = R(B)$. Thus R(A) = R(B).

Hence forth we are concerned with $n \times n$ matrices M partitioned in the form

(2.1)
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ with } \operatorname{rk}(M) = \operatorname{rk}(A) = r$$

It is well known that in [3] M of the form (2.1) satisfies $N(A) \subseteq N(C), N(A^*) \subseteq N(B^*)$ and $D = CA^+B$.

Definition 2.1. [4, Lemma 1.2, p.193] Let

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

be an $n \times n$ matrix. The Schur complement of A in M, denoted by M/A is defined as $D - CA^{(1)}B$, where $A^{(1)}$ is a generalized inverse of A.

Theorem 2.2. Let M be of the form (2.1), then M is range symmetric in $\mathcal{M} \Leftrightarrow A$ is range symmetric in \mathcal{M} and $CA^+ = -G_1(A^+B)^\sim$, where G_1 is the Minkowski metric tensor of order as that of A.

Proof. Since A is range symmetric in \mathcal{M} and $CA^+ = -G_1(A^+B)^\sim$, by Theorem 1.5 (ii), G_1A is EP and $(G_1A)^+ = A^+G_1$. Hence $G_1A(G_1A)^+ = (G_1A)^+G_1A$. Since $G_1^+ = G_1, G_1AA^+G_1 = A^+G_1G_1A$. By (1.1) for G_1 , we have

(2.2)
$$G_1 A A^+ G_1 = A^+ A.$$

Since $\operatorname{rk}(M) = \operatorname{rk}(A) = r$, we have $N(A) \subseteq N(C)$, $N(A^{\sim}) \subseteq N(B^{\sim})$ and Schur complement of A in M is zero. By Theorem 1.3, we have $C = CA^+A$, $B = AA^+B$ and $D = CA^+B$.

Let us consider the matrices

$$P = \begin{bmatrix} I & 0 \\ CA^+ & I \end{bmatrix}, \quad Q = \begin{bmatrix} I & A^+B \\ 0 & I \end{bmatrix} \quad \text{and} \quad L = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix},$$

where P, Q are non-singular. Now

$$PLQ = \begin{bmatrix} I & 0 \\ CA^{+} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & A^{+}B \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} A & AA^{+}B \\ CA^{+}A & CA^{+}B \end{bmatrix}$$
$$= \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
$$= M$$

and by using $CA^+ = -G_1(A^+B)^{\sim}$, we have

$$Q^{\sim} = GQ^{*}G$$

$$= \begin{bmatrix} G_{1} & 0\\ 0 & -I \end{bmatrix} \begin{bmatrix} I & 0\\ (A^{+}B)^{*} & I \end{bmatrix} \begin{bmatrix} G_{1} & 0\\ 0 & -I \end{bmatrix}$$

$$= \begin{bmatrix} I & 0\\ -(A^{+}B)^{*}G_{1} & I \end{bmatrix}$$

$$= \begin{bmatrix} I & 0\\ -G_{1} (A^{+}B)^{\sim} & I \end{bmatrix}$$

$$= \begin{bmatrix} I & 0\\ CA^{+} & I \end{bmatrix}$$

$$= P$$

Since A is range symmetric in \mathcal{M} , L is range symmetric in \mathcal{M} . We claim M is range symmetric in \mathcal{M} , that is $N(M) = N(M^{\sim})$. Since $M = PLP^{\sim}$, $x \in N(M) \Leftrightarrow Mx = 0 \Leftrightarrow PLP^{\sim}x = 0 \Leftrightarrow Ly = 0$ [where $y = P^{\sim}x$] $\Leftrightarrow L^{\sim}y = 0$ [by $N(L) = N(L^{\sim})$] $\Leftrightarrow PL^{\sim}P^{\sim}x = 0 \Leftrightarrow M^{\sim}x = 0 \Leftrightarrow x \in N(M^{\sim})$. Thus $N(M) = N(M^{\sim})$ and hence M is range symmetric in \mathcal{M} .

Conversely, let us assume that M is range symmetric in \mathcal{M} . Since M = PLQ, one choice of $M^{(1)}$ is

$$M^{(1)} = Q^{-1} \begin{bmatrix} A^+ & 0\\ 0 & 0 \end{bmatrix} P^{-1}.$$

Since M is range symmetric in \mathcal{M} , we have $N(M) = N(M^{\sim})$. By using Theorem 1.2, and Theorem 1.3 we get $M^{\sim} = M^{\sim}M^{(1)}M$. By using (1.2), we have $GM^*G =$

 $GM^*GM^{(1)}M$ and by using (1.1),

$$\begin{split} M^* &= M^* G M^{(1)} M G \\ &= M^* G Q^{-1} \begin{bmatrix} A^+ & 0 \\ 0 & 0 \end{bmatrix} P^{-1} P \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} Q G \\ &= M^* G Q^{-1} \begin{bmatrix} A^+ A & 0 \\ 0 & 0 \end{bmatrix} Q G \\ &= M^* G \begin{bmatrix} I & -(A^+ B) \\ 0 & I \end{bmatrix} \begin{bmatrix} A^+ A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & (A^+ B) \\ 0 & I \end{bmatrix} G \\ &= M^* G \begin{bmatrix} A^+ A & A^+ B \\ 0 & 0 \end{bmatrix} G \begin{bmatrix} A^* & C^* \\ B^* & D^* \end{bmatrix} \\ &= \begin{bmatrix} A^* & C^* \\ B^* & D^* \end{bmatrix} \begin{bmatrix} G_1 & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} A^+ A & A^+ B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} G_1 & 0 \\ 0 & -I \end{bmatrix} \\ &= \begin{bmatrix} A^* G_1 A^+ A G_1 & -A^* G_1 A^+ B \\ B^* G_1 A^+ A G_1 & -B^* G_1 A^+ B \end{bmatrix} \end{split}$$

Equating the corresponding blocks, we get

$$A^* = A^* G_1 A^+ A G_1 \Rightarrow G_1 A^* G_1 = G_1 A^* G_1 A^+ A \Rightarrow A^{\sim} = A^{\sim} A^+ A.$$

By Theorem 1.3, it follows that $N(A) \subset N(A^{\sim})$ and $\operatorname{rk}(A) = \operatorname{rk}(A^{\sim})$. Hence $N(A) = N(A^{\sim})$ and therefore A is range symmetric in \mathcal{M} . Also

$$C^* = -A^*G_1A^+B \Rightarrow G_1C^*G_1 = -G_1A^*G_1A^+BG_1 \Rightarrow C^{\sim} = -A^{\sim}A^+BG_1.$$

Taking Minkowski adjoint, and by using $G_1^{\sim} = G_1$ and Theorem 1.4, we get $C = -G_1(A^+B)^{\sim}A$. Now

$$CA^{+} = -G_{1}(A^{+}B)^{\sim}AA^{+}$$

= $-G_{1}(A^{+}B)^{\sim}G_{1}A^{+}AG_{1}$
= $-G_{1}(A^{+}B)^{\sim}G_{1}(A^{+}A)^{*}G_{1}$ [By using (2.2)]
= $-G_{1}(A^{+}B)^{\sim}(A^{+}A)^{\sim}$
= $-G_{1}(A^{+}AA^{+}B)^{\sim}$ [By using Theorem 1.4]
= $-G_{1}(A^{+}B)^{\sim}$.

This completes the proof.

Lemma 2.1. Let M be of the form (2.1) be range symmetric in \mathcal{M} , then A is range symmetric in \mathcal{M} and there exists an $r \times (n-r)$ matrix X such that

(2.3)
$$M = \begin{bmatrix} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{bmatrix}$$

where G_1 is the Minkowski metric tensor of order as that of A.

Proof. Since M is of the form (2.1) by using Theorem 1.2 and Theorem 1.3, M satisfy $N(A) \subset N(C)$, $N(A^{\sim}) \subset N(B^{\sim})$ and $D = CA^{+}B$. Hence there exist $(n-r) \times r$ matrix Y and $n \times (n-r)$ matrix X such that C = YA and B = AX.

Since A is range symmetric in \mathcal{M} by using Theorem 1.5(ii). G_1A is EPr, again by using (2.2) we have $AA^+ = G_1A^+AG_1$, $CA^+ = -G_1(A^+B)^{\sim}$, and

$$YAA^{+} = -G_{1}(A^{+}AX)^{\sim}$$

= $-G_{1}X^{\sim}(A^{+}A)^{\sim}$ [By using Theorem 1.4]
= $-G_{1}X^{\sim}G_{1}(A^{+}A)^{*}G_{1}$ [By using (1.2)]
= $-G_{1}X^{\sim}G_{1}A^{+}AG_{1}$
= $-G_{1}X^{\sim}AA^{+}$ [By using (2.2)]

Therefore $YA = -G_1X^{\sim}A = C$ and $D = CA^+B = -G_1X^{\sim}AA^+AX = -G_1X^{\sim}AX$. Thus

$$M = \left[\begin{array}{cc} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{array} \right].$$

Theorem 2.3. Let

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] and L = \left[\begin{array}{cc} F & U \\ H & K \end{array} \right]$$

be range symmetric matrices in \mathcal{M} both of the form (2.1) and ML of rank r, then the following are equivalent:

- (i) ML is range symmetric in \mathcal{M} .
- (ii) AF is range symmetric in \mathcal{M} and $CA^+ = HF^+$
- (iii) AF is range symmetric in \mathcal{M} and $A^+B = F^+U$

Proof. Since M and L are of the form (2.1) by Lemma 2.1 there exist $r \times (n-r)$ matrices X and Y such that

$$M = \begin{bmatrix} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{bmatrix} \text{ and } L = \begin{bmatrix} F & FY \\ -G_1 Y^{\sim} F & -G_1 Y^{\sim} FY \end{bmatrix}.$$

Now

$$\begin{split} ML &= \begin{bmatrix} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{bmatrix} \begin{bmatrix} F & FY \\ -G_1 Y^{\sim} F & -G_1 Y^{\sim} FY \end{bmatrix} \\ &= \begin{bmatrix} A(I - XG_1 Y^{\sim})F & A(I - XG_1 Y^{\sim})FY \\ -G_1 X^{\sim} A(I - XG_1 Y^{\sim})F & -G_1 X^{\sim} AX(I - XG_1 Y^{\sim})FY \end{bmatrix} \\ &= \begin{bmatrix} AZF & AZFY \\ -G_1 X^{\sim} AZF & -G_1 X^{\sim} AZFY \end{bmatrix} \end{split}$$

where $Z = I - XG_1Y^{\sim}$. Clearly

$$N(AZF) \subset N(-G_1X^{\sim}AZF) = N(G_1X^{\sim}AZF), \ N(AZF)^{\sim} \subset N(AZFY)^{\sim}$$

and the Schur complement of AZF in ML is zero. For

$$ML/AZF = -G_1 X^{\sim} AZFY + G_1 X^{\sim} (AZF)(AZF)^+ AZFY$$
$$= -G_1 X^{\sim} AZFY + G_1 X^{\sim} AZFY = 0.$$

Hence $\operatorname{rk}(AZF) = \operatorname{rk}(ML) = r$. Thus ML is also of the form (2.1). Since M and L are range symmetric in \mathcal{M} by Theorem 2.2 and Lemma 2.1, A and F are range symmetric in \mathcal{M} . Now

$$-G_{1}(A^{+}AX)^{\sim} = -G_{1}X^{\sim}(A^{+}A)^{\sim}$$
 [By Theorem 1.4]
$$= -G_{1}X^{\sim}G_{1}(A^{+}A)^{*}G_{1}$$
 [By using 1.2]
$$= -G_{1}X^{\sim}G_{1}A^{+}AG_{1}$$

$$= -G_{1}X^{\sim}AA^{+}$$
 [By using 2.2]

Similarly it can be proved that $-G_1Y^{\sim}FF^+ = -G_1(F^+FY)^{\sim}$. We now claim AZF is range symmetric in \mathcal{M} . $N(F) \subset N(AZF)$, and $\operatorname{rk}(AZF) = rk(F) = r$, hence it follows N(F) = N(AZF). Also $N(A^{\sim}) \subset N(AZF)^{\sim}$ and $\operatorname{rk}(AZF)^{\sim} = \operatorname{rk}(AZF) = \operatorname{rk}(A) = r = rk(F), N(A) = N(A^{\sim}) = N(AZF)^{\sim} = N(F)$. Thus $N(AZF) = N(AZF)^{\sim}$ and hence AZF is range symmetric in \mathcal{M} . By Theorem 1.5 (ii), G_1AZF in EPr and by using (2.2) we have

(2.4)
$$G_1 AZF (AZF)^+ G_1 = (AZF)^+ AZF$$

By using (2.4) for

$$N(AZF) = N(F), \ N(AZF)^{\sim} = N(A^{\sim}) = N(A)$$

we get

(2.5)
$$\begin{aligned} AZF(AZF)^+ &= FF^+ = G_1(AZF)^+ AZFG_1 \text{ and} \\ (AZF)^+ AZF &= A^+A = G_1AA^+G_1. \end{aligned}$$

Since $H = -G_1 Y^{\sim} F$ and $C = -G_1 X^{\sim} A$, we have

$$HF^{+} = -G_{1}Y^{\sim}FF^{+} \qquad [by (2.5)]$$
$$= -G_{1}Y^{\sim}G_{1}AZF(AZF)^{+}$$
$$= -G_{1}Y^{\sim}G_{1}(AZF)^{+}AZFG_{1}$$
$$= -G_{1}Y^{\sim}[(AZF)^{+}AZF]^{\sim}$$
$$= -G_{1}[(AZF)^{+}AZFY]^{\sim}.$$

Similarly by using (2.5), we have

$$CA^+ = -G_1 X^\sim AZF (AZF)^+.$$

Therefore

(2.6)
$$CA^+ = HF^+ \Leftrightarrow -G_1 X^{\sim} AZF (AZF)^+ = -G_1 [(AZF)^+ AZFY]^{\sim}.$$

Now the proof runs as follows: ML is range symmetric in $\mathcal{M} \Leftrightarrow AZF$ is range symmetric in \mathcal{M} and $G_1X^{\sim}AZF(AZF)^+ = -G_1[(AZF)^+AZFY]^{\sim} \Leftrightarrow AZF$ is range symmetric in \mathcal{M} and $CA^+ = HF^+$ [By using (2.6)] $\Leftrightarrow N(AZF) = N(AZF)^{\sim}$ and $CA^+ = HF^+ \Leftrightarrow N(F) = N(A)^{\sim} = N(A)$ and $CA^+ = HF^+ \Leftrightarrow AF$ is range symmetric in \mathcal{M} and $CA^+ = HF^+$ [By using Theorem 2.1] $\Leftrightarrow AF$ is range symmetric in \mathcal{M} and $A^+B = F^+U$ [By Theorem 2.2].

3. Factorization

In this section a set of conditions under which a matrix can be expressed as product of range symmetric matrices in m are derived.

Definition 3.1. A matrix $A \in C^{n \times n}$ is said to be unitary in unitary space if and only if $AA^* = A^*A = I$.

Lemma 3.1. [9, Theorem 1] Let $A \in Cr^{n \times n}$ be EPr matrix, then there exist a unitary matrix U such that

$$A = U^* D U = U^* \begin{bmatrix} D_1 & 0\\ 0 & 0 \end{bmatrix} U,$$

where D_1 is $r \times r$ non-singular.

Lemma 3.2. Let $A \in C^{n \times n}$, A is range symmetric in \mathcal{M} if and only if

$$A = P \left[\begin{array}{cc} D & 0\\ 0 & 0 \end{array} \right] P^{\sim},$$

where D is $r \times r$ matrix and rk(D) = r and P is unitary.

Proof. By Theorem 1.5 (ii), the matrix A is range symmetric in $\mathcal{M} \Leftrightarrow AG$ is EP. By Lemma 3.1, this holds if and only if

$$AG = U \left[\begin{array}{cc} D_1 & 0\\ 0 & 0 \end{array} \right] U^*$$

or

or

$$A = U \left[\begin{array}{cc} D_1 & 0 \\ 0 & 0 \end{array} \right] U^* G$$

$$A = UG \begin{bmatrix} G_1 & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix} U^*G$$

where G_1 is $r \times r$ or

$$A = UG \left[\begin{array}{cc} G_1 D_1 & 0 \\ 0 & 0 \end{array} \right] U^* G.$$

Thus the matrix A is range symmetric in \mathcal{M} if and only if

$$A = P \left[\begin{array}{cc} D & 0 \\ 0 & 0 \end{array} \right] P^{\sim},$$

where P = UG, $P^{\sim} = GU^{\sim} = U^*G$ and $D = G_1D_1$ is $r \times r$ non-singular.

Lemma 3.3. Let A and B be range symmetric matrices in \mathcal{M} of rank r. Then N(A) = N(B) if and only if $N(PAP^{\sim}) = N(PBP^{\sim})$ where P is unitary.

Proof. Let A and B be range symmetric matrices in \mathcal{M} . Assume N(A) = N(B). Then $x \in N(PAP^{\sim}) PAP^{\sim}x = 0 AP^{\sim}x = 0 Ay = 0$ where $y = P^{\sim}x y \in N(A) =$ $N(B)By = 0 BP^{\sim}x = 0 PBP^{\sim}x = 0 x \in N(PBP^{\sim})$. Thus N(A) = N(B) $N(PAP^{\sim}) = N(PBP^{\sim}).$ \Box

The proof the converse is similar and hence omitted.

Theorem 3.1. Let M be of the form (2.1) be range symmetric in \mathcal{M} . Then M can be written as a product of range symmetric matrices in \mathcal{M} .

Proof. Since M is of the form (2.1) and M is range symmetric in \mathcal{M} , by Lemma 2.1, A is range symmetric in \mathcal{M} and

$$M = \left[\begin{array}{cc} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{array} \right].$$

Since M is range symmetric in \mathcal{M} by Theorem 1.5(ii), GM in EPr, where

$$GM = \begin{bmatrix} G_1 & 0 \\ 0 & -I \end{bmatrix} \begin{bmatrix} A & AX \\ -G_1 X^{\sim} A & -G_1 X^{\sim} AX \end{bmatrix} = \begin{bmatrix} G_1 A & G_1 AX \\ G_1 X^{\sim} A & G_1 X^{\sim} AX \end{bmatrix}.$$

Consider

$$P = \begin{bmatrix} G_1 A A^+ G_1 & G_1 A A^+ G_1 X \\ X^* G_1 A A^+ G_1 & X^* G_1 A A^+ G_1 X \end{bmatrix},$$

$$L = \begin{bmatrix} G_1 A & 0 \\ 0 & -I \end{bmatrix},$$

$$Q = \begin{bmatrix} A^+ A & A^+ A X \\ X^* A^+ A & X^* A^+ A X \end{bmatrix}.$$

By using (1.1),

$$P^* = \begin{bmatrix} (G_1AA^+G_1)^* & (X^*G_1AA^+G_1)^* \\ (G_1AA^+G_1X)^* & (X^*G_1AA^+G_1X)^* \end{bmatrix}$$
$$= \begin{bmatrix} G_1 (AA^+)^*G_1 & G_1 (AA^+)^*G_1X \\ X^*G_1 (AA^+)^*G_1 & X^*G_1 (AA^+)^*G_1X \end{bmatrix}$$
$$= \begin{bmatrix} G_1AA^+G_1 & G_1AA^+G_1X \\ X^*G_1AA^+G_1 & X^*G_1AA^+G_1X \end{bmatrix} = P$$

Similarly $Q^* = Q$ can be proved. Thus $P = P^*$ and $Q = Q^*$ and therefore P, Q are EPr. Since A is range symmetric by Theorem 1.5(iii) G_1A is EPr and hence L is EPr.

Now

$$PLQ$$

$$= \begin{bmatrix} G_{1}AA^{+}G_{1} & G_{1}AA^{+}G_{1}X \\ X^{*}G_{1}AA^{+}G_{1} & X^{*}G_{1}AA^{+}G_{1}X \end{bmatrix} \begin{bmatrix} G_{1}A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A^{+}A & A^{+}AX \\ X^{*}A^{+}A & X^{*}A^{+}AX \end{bmatrix}$$

$$= \begin{bmatrix} G_{1}AA^{+}G_{1}G_{1}A & 0 \\ X^{*}G_{1}AA^{+}G_{1}G_{1}A & 0 \end{bmatrix} \begin{bmatrix} A^{+}A & A^{+}AX \\ X^{*}A^{+}A & X^{*}A^{+}AX \end{bmatrix}$$

$$= \begin{bmatrix} G_{1}A & 0 \\ X^{*}G_{1}A & 0 \end{bmatrix} \begin{bmatrix} A^{+}A & A^{+}AX \\ X^{*}A^{+}A & X^{*}A^{+}AX \end{bmatrix}$$

$$= \begin{bmatrix} G_{1}AA^{+}A & G_{1}AA^{+}AX \\ X^{*}G_{1}AA^{+}A & X^{*}G_{1}AA^{+}AX \end{bmatrix}$$

$$= \begin{bmatrix} G_{1}A & G_{1}AX \\ X^{*}G_{1}A & X^{*}G_{1}AX \end{bmatrix}$$

$$= \begin{bmatrix} A & AX \\ -G_{1}X^{*}A & -G_{1}X^{*}AX \end{bmatrix}$$

$$= GM.$$

By using (1.1), M = GPLQ = (GP)(LG)(GQ). Since P, Q, L and EPr, by Theorem 1.5 (ii) and (iii), it follow that GP, LG, GQ are range symmetric \mathcal{M} . Thus a range symmetric matrix M in \mathcal{M} is expressed as a product of range symmetric matrices in \mathcal{M} .

Acknowledgement. The first author is thankful to the All India council for Technical Education, New Delhi for the financial support to carry out the work.

References

- T. S. Baskett and I. J. Katz, Theorems on products of EP_r matrices, Linear Algebra and Appl. 2 (1969), 87–103.
- [2] A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, Wiley-Intersci., New York, 1974.
- [3] D. Carlson, E. Haynsworth and T. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26 (1974), 169–175.
- [4] A. R. Meenakshi, On Schur complements in an EP matrix, Period. Math. Hungar. 16 (1985), no. 3, 193–200.
- [5] A. R. Meenakshi, Generalized inverses of matrices in Minkowski space, in Proc. Nat. Seminar Alg. Appln. Annamalai University, Annamalainagar, (2000), 1–14.
- [6] A. R. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc. (2) 23(1) (2000), 45–52.
- [7] A. R. Meenakshi and D. Krishnaswamy, On sums of range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc. (2) 25(2) (2002), 137–148.
- [8] M. Renardy, Singular value decomposition in Minkowski space, *Linear Algebra Appl.* 236 (1996), 53–58.
- [9] M. Pearl, On normal and EP_r matrices, Michigan Math. J. 6 (1959), 1–5.

68