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Abstract. In 1964, Hayashi [8] defined and studied the notions of ?-dense in

itself sets and ?-perfect subsets in ideal topological spaces. In 1999, Dontchev
et al. [5] have studied the notion of Ideal resolvability through codense and

completely codense ideal topological spaces. Recently, in the year 2004, Ke-

skin, Noiri and Yuksel [12] have introduced and studied the concepts of fI -sets
and fI -continuity. In this paper, we studied some more properties of fI -sets

and fI -continuity with codense and completely codense ideals. We also, con-
tinued the study of regular I-closed concepts.
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1. Introduction

Ideals in topological spaces have been considered since 1930. This topic has won its
importance by the paper of Vaidyanathaswamy [20]. An ideal I on a topological
space (X, τ) is a collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A
implies B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological
space (X, τ) with an ideal I on X and if ℘(X) is the set of all subsets of X, a set
operator () ?: ℘(X) → ℘(X), called a localfunction [13] of A with respect to τ
and I is defined as follows: for A ⊂ X, A?(I, τ)=

{
x ∈ X | U ∩A 6∈ I for every U

∈ τ(x)
}

where τ(x) =
{
U ∈ τ | x ∈ U

}
. We will make use of the basic facts about

the local functions [9, Theorem 2.3] without mentioning it explicitly. A Kuratowski
closure operator cl?() for a topology τ?(I, τ), called the ?− topology, finer than τ

Received: March 7, 2005; Revised: September 6, 2005.



70 V. Jeyanthi, V. Renuka Devi and D. Sivaraj

is defined by cl?(A) = A ∪A?(I, τ)[20]. When there is no chance for confusion, we
will simply write A? for A?(I, τ) and τ? or τ?(I) for τ?(I, τ). If I is an ideal on X,
then (X, τ, I) is called an ideal space. N is the ideal of all nowhere dense subsets
in (X, τ). A subset A of an ideal space (X, τ, I)is τ?-closed [9] (resp. ?-dense in
itself [8], ?-perfect [8]) if A? ⊂A (resp. A ⊂ A?, A = A?). Clearly, A is ?-perfect if
and only if A is τ?-closed and ?-dense in itself. In ideal topological spaces , I-open
sets [10], almost I-open sets [1] (quasi I-open sets [2]), I-locally closed sets [4],
fI-sets [12] and regular I-closed sets [11] are some of the ?-dense in itself sets. In
this note, we discuss the properties of the ?-dense in itself sets, namely fI-sets and
regular I-closed sets.

2. Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties
assumed. If A ⊂ X, cl(A) and int(A) will, respectively, denote the closure and
interior of A in (X, τ) and cl?(A) and int?(A) will, respectively, denote the closure
and interior of A in (X, τ?). An open subset A of a space (X, τ) is said to be regular
open if A = int(cl(A)). The complement of a regular open set is regular closed. The
family of all regular open (resp. regular closed) set is denoted by RO(X, τ)(resp.
RC(X, τ)). A subset A of a space (X, τ) is an α-open [16] (resp. semiopen [14],
preopen [15]) if A ⊂ int(cl(int(A))) (resp. A ⊂ cl(int(A)), A ⊂ int(cl(A))). The
complement of a semiopen (resp. preopen) set is semiclosed (resp. preclosed). The
family of all α-open (resp. semiopen, preopen) sets in (X, τ) is denoted by τα

(resp. SO (X, τ), PO (X, τ)). The smallest preclosed set containing A is called
the preclosure of A and is denoted by pcl(A). Also, pcl(A) = A ∪ cl(int(A)) [3,
Theorem 1.5(e)]. The largest preopen set contained in A is called the preinterior
of A and is denoted by pint(A). Also, pint(A) = A∩ int(cl(A)) [3, Theorem 1.5(f)].
τα is a topology finer than τ . The interior of A in (X, τα) is denoted by intα(A)
and intα(A) = A∩ int(cl(int(A))) [3, Theorem 1.5(d)]. τ is said to be an α-topology
[16] if τ = τα. Two topologies τ and σ on X is said to be α-equivalent [16] if
τα = σα. Recall that, if two topologies on a set X are α-equivalent, then they have
the same collection of regular open, semiopen, preopen, dense and nowhere dense
sets. A subset A of an ideal space (X, τ, I) is said to be I-open [10] if A ⊂ int(A?).
The family of all I-open sets is denoted by IO(X, τ). A subset A of an ideal space
(X, τ, I) is I-locally closed [4] if A = G ∩ V , where G is open and V is ?-perfect.
A subset A of X is I-locally closed if and only if A = G ∩A? for some open set G
[19, Theorem 2.2]. Clearly, every ?-perfect set is I-locally closed. Given an ideal
space (X, τ, I), I is said to be compatible with respect to τ [9] (supercompact [20]),
denoted by I ∼ τ , if for every subset A of X and for each x ∈ A, there exists a
neighborhood U of x such that U ∩A ∈ I, then A ∈ I. I is said to be codense [5]
if τ ∩ I = {∅}. I is said to be completely codense [5] if PO(X) ∩ I = {∅}. Every
completely codense ideal is codense but not the converse [5]. The following lemmas
will be useful in the sequel.

Lemma 2.1. [9, Theorem 6.1] Let (X, τ, I)be an ideal space. Then the following
are equivalent.

(a) I is codense.
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(b) X = X?.
(c) G ⊂ G? for every open set G.
(d) int(I) = ∅ for every I ∈ I.

Lemma 2.2. [18, Theorem 5] Let (X, τ, I) be an ideal space. If A is ?-dense in
itself, then A? = cl(A) = cl?(A).

Lemma 2.3. [18, Corollary 4] If I is a completely codense ideal of an ideal space
(X, τ, I), then

(a) τ ⊂ τ? ⊂ τα,
(b) SO(X, τ) = SO(X, τ?) = SO(X, τα),
(c) (τ?)α = τα.

Lemma 2.4. [19, Theorem 2.1] Let (X, τ, I) be an ideal space and U and A be
subsets of X such that A ⊂ U ⊂ A?. Then U is ?-dense in itself, and U? and
A?are ?-perfect.

Lemma 2.5. [19, Theorem 2.15] If (X, τ, I) is an ideal space, then I is completely
codense if and only if PO(X, τ) = IO(X, τ).

3. More properties of codense ideals and completely codense ideals

The following Theorem 3.1 and its corollary give relationship between codense
and completely codense ideals. Given a space (X, τ) and ideals I and = on X,
the extension of I via = [10], denoted by I ? =, is the ideal given by I ? = =
{A ⊂ X | A?(I) ∈ =}. In particular, I ? N= {A ⊂ X | int(A?(I)) = φ} is a
compatible ideal containing both I and N and I ?N is usually denoted by Ĩ. Since
Ĩ is compatible, (A?(Ĩ))?(Ĩ) = A?(Ĩ) [9, Theorem 4.6(b)]. In Theorem 3.2 below,
we discuss the relationship between the α-sets of the topologies τ, τ?(I) and τ?(Ĩ).

Theorem 3.1. Let (X, τ, I) be an ideal space. Then I is codense in (X, τ) if and
only if I is completely codense in (X, τ?).

Proof. If I is completely codense in (X, τ?), then I is codense in (X, τ?) and so I is
codense in (X, τ). Conversely, suppose I is codense in (X, τ). Let A ∈ PO(X, τ?) ∩
I. A ∈ PO(X, τ?) ∩ I ⇒ A ∈ PO(X, τ?) and A ∈ I. A ∈ PO(X, τ?) ⇒ A ⊂
int?(cl?(A)). A ∈ I ⇒ int?(A) = ∅, by Lemma 2.1(d) and A is τ?-closed, by
[9, Lemma 2.7]. Therefore, int?(cl?(A))= int?(A) = ∅ which implies that A = ∅.
Therefore, I is completely codense in (X, τ?). �

Corollary 3.1. If (X, τ, I) is an ideal space, then the following are equivalent.
(a) I is codense in (X, τ).
(b) Ĩ is codense in (X, τ).
(c) Ĩ is completely codense in (X, τ?).
(d) I is completely codense in (X, τ?).

Proof. (a) and (b) are equivalent by [10, Theorem 3.5]. (b) and (c) are equivalent
by Theorem 3.1. (a) and (d) are equivalent by Theorem 3.1.

�
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Theorem 3.2. Let (X, τ, I) be an ideal space. Then

(a) τ?(Ĩ) = (τ?(I))?(Ĩ).
(b) If I is codense, then (τ?(Ĩ))α = (τ?(I))α.
(c) If I is completely codense, then (τ?(Ĩ))α = τ?(Ĩ) = (τ?(I))α = τα.

Proof. (a) Since I ⊂ Ĩ, τ?(I) ⊂ τ?(Ĩ) which implies that (τ?(I))?(Ĩ) ⊂ (τ?(Ĩ))?(Ĩ)
and so (τ?(I))?(Ĩ) ⊂ τ?(Ĩ). Suppose A ∈ τ?(Ĩ). For each x ∈ A, there exists U ∈ τ

and I ∈ Ĩ such that x ∈ U − I ⊂ A. Since U ∈ τ?(I), A ∈ (τ?(I))?(Ĩ) and so
τ?(Ĩ) ⊂ (τ?(I))?(Ĩ). Therefore, τ?(Ĩ) = (τ?(I))?(Ĩ).

(b) If I is codense, by Corollary 3.2, Ĩ is completely codense in (X, τ?) and so by
[5, Theorem 4.13], Ĩ ⊂ N (τ?(I)). Therefore, (τ?(I))?(Ĩ) ⊂ (τ?(I))?(N (τ?(I))).
By (a), we have, τ?(Ĩ) ⊂ (τ?(I))α. Since τ?(I) ⊂ τ?(Ĩ), we have τ?(I) ⊂ τ?(Ĩ) ⊂
(τ?(I))α and so (τ?(Ĩ))α = (τ?(I))α [16, Proposition 10].

(c) If I is completely codense,by [18, Theorem 7(c)], Ĩ = N and so τ?(Ĩ) =
τ?(N ) = τα. By Lemma 2.3(c), (τ?(I))α = τα. Therefore, (c) follows. �

We have the following.

Corollary 3.2. Let (X, τ, I) be an ideal space and I be codense. Then
τ?(Ĩ)and τ?(I) are α-equivalent and so they have the same collection of regular
open, semiopen, preopen, dense and nowhere dense sets.

Proof. By Theorem 3.2(b), τ?(Ĩ) and τ?(I) are α-equivalent and so, they have
the same collection of regular open, semiopen, preopen, dense and nowhere dense
sets. �

Corollary 3.3. Let (X, τ, I) be an ideal space and I be completely codense. Then

(a) τ?(Ĩ) is an α-topology.
(b) τ?(Ĩ) = τ?(N ), and
(c) τ , τ?(I)and τ?(Ĩ) are α-equivalent and so they have the same collection of

regular open, semiopen, preopen, dense and nowhere dense sets.

Proof. (a) Since (τ?(Ĩ))α = τ?(Ĩ), by Theorem 3.2(c) , τ?(Ĩ) is an α-topology.
(b)Since τα = τ?(N ) [9, Example 2.10], by Theorem 3.2(c), τ?(Ĩ) = τ?(N ).
(c) follows from Theorem 3.2(c).

�

4. Characterizations of fI-sets

A subset A of an ideal space (X, τ, I) is called an fI-set [12] if A ⊂ (int(A))?.
The family of all fI-sets in (X, τ, I) is denoted by F(τ, I). Clearly, if A is any
non-empty fI-set, then int(A) 6= ∅ and if I is not codense, then X is not an fI-set.
In addition to this, F(τ, I) has the following nice property.

Theorem 4.1. If (X, τ, I) is an ideal space, then F(τ, I) ∩ I = {∅}.
Proof. If A ∈ F(τ, I) ∩ I, then A ∈ F(τ, I) and A ∈ I. A ∈ I ⇒ A? = ∅ and
A ∈ F(τ, I) ⇒ A ⊂ (int(A))? ⊂ A? = ∅. Therefore, A = ∅ which completes the
proof. �
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Every fI-set is a semiopen set [12, Remark 2] but not the converse [12, Example
3]. The following Theorem 4.2 and its Corollary 4.1, characterizes codense ideals
in terms of fI-sets and Theorem 4.2 shows that for codense ideals, semiopen sets
and fI-sets coincide.

Theorem 4.2. Let (X, τ, I) be an ideal space, then the following are equivalent.
(a) I is codense.
(b) SO(X, τ) = F(τ, I).
(c) τ ⊂ F(τ, I).

Proof. (a) ⇒ (b). If A ∈ SO(X, τ), then A ⊂ cl(int(A)) = (int(A))?, by Lemma
2.1(c) and Lemma 2.2 and so A ∈ F(τ, I). If A ∈ F(τ, I), then A ⊂ (int(A))? =
cl(int(A)) and so A ∈ SO(X, τ).
(b) ⇒ (c) is clear.
(c) ⇒ (a). Follows from Theorem 4.1. �

Corollary 4.1. Let (X, τ, I) be an ideal space. Then the following are equivalent.
(a) I is codense.
(a) SO(X, τ?) = F(τ?, I).
(a) τ? ⊂ F(τ?, I).

Proof. Since I is codense in (X, τ) if and only if I is codense in (X, τ?) by the
remark below Theorem 6.1 of [9], the proof follows from Theorem 4.2. �

Corollary 4.2. [18, Theorem 1] Let (X, τ, I) be an ideal space. Then I is codense
if and only if SO(X, τ) ∩ I = {∅}.

Since τ ⊂ τ?, F(τ, I) ⊂ F(τ?, I). The following Example 4.1, shows that the
reverse direction is not true in general and Theorem 4.3 below shows that the two
collection of sets are equal if the ideal I is completely codense.

Example 4.1. [12, Example 1] Let X = {a, b, c, d}, τ = {∅, {c}, {a, d}, {a, c, d},
X} and I = {∅, {b}, {d}, {b, d}}. If A = {a}, then int(A) = ∅ and so A 6∈ F(τ, I).
Since int?(A) = A and (int?(A))? = {a, b, d}, A ∈ F(τ?, I).

Theorem 4.3. Let (X, τ, I) be an ideal space where I be completely codense. Then
SO(X, τ) = SO(X, τ?) = SO(X, τα) = F(τ, I) = F(τ?, I) = F(τα, I).

Proof. Since I is completely codense, by Lemma 2.3(b), SO(X, τ) = SO(X, τ?) =
SO(X, τα). Since N is codense, I ⊂ N and τ?(N ) = τα, by Theorem 4.2,
SO(X, τα) = F(τα, I). Therefore, the proof follows from Theorem 4.2 and Corol-
lary 4.1. �

Corollary 4.3. [12, Proposition 3(a)]. Let (X, τ, I) be an ideal space. If I = {∅}
or N , then SO(X, τ) = F(τ, I).

Corollary 4.4. Let (X, τ, I) be an ideal space. If I is completely codense, then
τα = F(X, τ) ∩ IO(X, τ).

Proof. We know that τα = SO(X, τ)∩PO(X, τ) [17]. Since I is completely codense,
by Lemma 2.5, PO(X, τ) = IO(X, τ) and by Theorem 4.2, SO(X, τ) = F(X, τ).
Therefore, the proof follows. �
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Definition 4.1. A subset A of an ideal space (X, τ, I) is called a regular I-closed
set [11] if A = (int(A))?. Every regular I-closed set is an fI-set [12, Proposition
5].

The following Theorems 4.4 and 4.5, give some properties of fI-sets.

Theorem 4.4. If A is an fI-set of an ideal space (X, τ, I), then
(a) A and int(A) are ?-dense in itself.
(b) (int(A))? is ?-dense in itself.
(c) A? = (int(A))? = ((int(A))?)?.
(d) A? is ?-perfect and I-locally closed.
(e) (int(A))? is ?-perfect and I-locally closed.
(f) A?(Ĩ) is ?-dense in itself and A? = cl(int(A)) = cl(int(A?)) = A?(Ĩ).
(g) A? = A?(Ĩ) is regular closed and A ⊂ A?(N ).
(h) A? is regular I-closed and hence an fI-set.

Proof. (a) A is ?-dense in itself by Corollary 1 of [12]. Since int(A) ⊂ A ⊂ (int(A))?,
int(A) is ?-dense in itself.
(b) Since A ⊂ (int(A))? ⊂ A?, by Lemma 2.4, (int(A))? is ?-dense in itself.
(c) Since A ⊂ (int(A))? ⊂ A?, A? ⊂ ((int(A))?)? ⊂ (int(A))? ⊂ (A?)? ⊂ A? and so

A? = ((int(A))?)? = (int(A))? = (A?)?.
(d) Since (A?)? = A?, A? is ?-perfect and so is I-locally closed.
(e) By (c), (int(A))? is ?-perfect and so I-locally closed.
(f) Since A? = (int(A))? ⊂ cl(int(A)) ⊂ cl(int(A?)) = A?(Ĩ) by [10, Theorem 3.2]

and A?(Ĩ) ⊂ A?, A?(Ĩ) is ?-dense in itself and A? = cl(int(A)) = cl(int(A?)) =
A?(Ĩ).

(g) Since A?(Ĩ) is regular closed by [18, Theorem 10(b)], by (f), A? is regular
closed. Since N ⊂ Ĩ, A ⊂ A?(N ).

(h) Since A ⊂ (int(A))? ⊂ (int(A?))? ⊂ A?, we have A? = (int(A?))? and so A? is
regular I-closed and so is an fI-set. �

Theorem 4.5. Let (X, τ, I) be an ideal space and A be an fI-subset of X. Then
(a) pcl(A) = cl(int(A)) = cl(A) = A?.
(b) pint(A) = intα(A).
(c) pint(pcl(A)) = int(pcl(A)) = int(A?).

Proof. (a) A ∈ F(τ, I) ⇒ A ⊂ (int(A))? ⊂ cl(int(A)) ⇒ A ∪ cl(int(A)) =
cl(int(A)) ⇒ pcl(A) = cl(int(A)). By Theorem 4.4(f), pcl(A) = A? = cl(A).
(b) pint(A) = A ∩ int(cl(A)) = A ∩ int(A?), since A is ?-dense in itself. By (a),

pint(A) = A ∩ int(cl(int(A))) and so pint(A) = intα(A).
(c) pint(pcl(A)) = pint(cl(A)), by (a) and so pint(pcl(A)) = cl(A)∩int(cl(cl(A))) =

int(cl(A)) = int(pcl(A)) = int(A?). �

We recall the following.

Definition 4.2. A mapping f : (X, τ, I) → (Y, σ) is said to be fI-continuous [12]
(resp. semicontinuous [14]) if for every V ∈ σ, f−1(V ) is an fI-set (resp. semiopen
set).
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Corollary 4.5. Let (X, τ, I) be an ideal space where I be codense. Then f : (X, τ, I) →
(Y, σ) is fI-continuous if and only if f is semicontinuous.

Proof. Follows from Theorem 4.2. �

Corollary 4.6. Let (X, τ, I) be an ideal space where I be completely codense. Then
the following are equivalent.

(a) f : (X, τ, I) → (Y, σ) is fI-continuous.
(b) f : (X, τ?, I) → (Y, σ) is fI-continuous.
(c) f : (X, τα, I) → (Y, σ) is fI-continuous.
(d) f : (X, τ, I) → (Y, σ) is semicontinuous.
(e) f : (X, τ?, I) → (Y, σ) is semicontinuous.
(f) f : (X, τα, I) → (Y, σ) is semicontinuous.

Proof. Proof follows from Theorem 4.3. �

A subset A of an ideal space (X, τ, I) is called an α − I-open set [7] if A ⊂
int(cl?(int(A))). α − I-openness and I-openness are independent concepts [7, Re-
mark 2.1]. In [18, Corollary 1(iii)], it was established that every ?-dense in itself,
α−I-open subset is I-open. The following Theorem 4.6, shows that the two kinds
of sets are equivalent for the collection of fI-sets.

Theorem 4.6. Let (X, τ, I) be an ideal space and A be an fI-subset of X. Then
A is α− I-open if and only if A is I-open.

Proof. Suppose A is α−I-open. Since A is an fI-subset, A is ?-dense in itself and
so by [18, Corollary 1(iii)], A is I-open. Conversely, suppose A is I-open. Then
A ⊂ int(A?) = int((int(A))?) by Theorem 4.4(c), and so A ⊂ int(cl?(int(A))).
Therefore, A is α− I-open. �

We end this section with the following characterization of fI-sets in terms of
open sets.

Theorem 4.7. Let (X, τ, I) be an ideal space. Then A is an fI-subset of X if and
only if there exists an open set G such that G ⊂ A ⊂ G?.

Proof. Suppose A is an fI-subset of X. Let G = int(A). Then G is the required
open set such that G ⊂ A ⊂ G?. Conversely, suppose there is an open set G such
that G ⊂ A ⊂ G?. Now G ⊂ A ⇒ G ⊂ int(A) ⇒ G? ⊂ (int(A))? ⇒ A ⊂ (int(A))?

and so A is an fI-subset. �

Corollary 4.7. If A is an fI-subset of an ideal space (X, τ, I), then there exists
an open set G ⊂ A such that A? = G?.

5. Properties of regular I-closed sets

We will denote the family of all regular I-closed sets in (X, τ, I) by R(τ, I). If the
ideal I is not codense, then X is regular closed in (X, τ, I) but not regular I-closed
and so regular closed sets need not be regular I-closed. But every regular I-closed
set is a regular closed set by Theorem 5.4(e) below. The easy proof of the following
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Theorems 5.1 and 5.2. are omitted. Theorem 5.2 below gives a characterization of
codense ideals.

Theorem 5.1. If (X, τ, I) is an ideal space, then R(τ, I) ∩ I = {∅}.
Theorem 5.2. Let (X, τ, I) be an ideal space. Then I is codense if and only if X
is regular I-closed.
Theorem 5.3. If (X, τ, I) is an ideal space where I is codense, then R(τ, I) =
RC(X, τ).

Proof. A ∈ R(τ, I) ⇔ A = (int(A))? ⇔ A = cl(int(A)), since I is codense ⇔ A ∈
RC(X, τ). �

Corollary 5.1. If (X, τ, I) is an ideal space where I is codense, then the following
are equivalent.

(a) A ∈ RC(X, τ).
(b) A ∈ R(τ, I).
(c) A ∈ F(τ, I) and A is τ?-closed.
(d) A ∈ SO(X, τ) and A is τ?-closed.

Proof. Proof follows from Theorem 5.3, [12, Proposition 5] and Theorem 4.2. �

The following Theorem 5.4 gives some properties of regular I-closed sets. Also,
it is established that every regular I-closed set is I-locally closed.

Theorem 5.4. If A is a regular I-closed set of an ideal space (X, τ, I), then
(a) A and int(A) are ?-dense in itself.
(b) A? = (int(A))? = (int(A))?)? = A.
(c) A is ?-perfect and I-locally closed.
(d) (int(A))? is ?-perfect and I-locally closed.
(e) A = cl(int(A)) = A?(Ĩ) and so A is regular closed.

Proof. (a) Since int(A) ⊂ A = (int(A))? ⊂ A?, int(A) and A are ?-dense in itself.
(b) Since A = (int(A))? ⊂ A?, A? = ((int(A))?)? ⊂ (int(A))? = A ⊂ A? and so

A? = ((int(A))?)? = (int(A))? = A.
(c) Since A = A?, A is ?-perfect and so is I-locally closed.
(d) By (b), (int(A))? is ?-perfect and so I-locally closed.
(e) Since A = (int(A))? ⊂ cl(int(A)) = cl(int(A?)) = A?(Ĩ) by Theorem 3.2 of [10]

and A?(Ĩ) ⊂ A? = A, A = cl(int(A)) = A?(Ĩ) and so A is regular closed. �

We end this section with the following characterization of regular I-closed sets
in terms of open sets.

Theorem 5.5. Let (X, τ, I) be an ideal space. Then A is a regular I-closed subset
of X if and only if there exists an open set G such that G ⊂ A = G?.

Proof. Suppose A is a regular I-closed subset of X. Let G = int(A). Then G is the
required open set such that G ⊂ A = G?. Conversely, suppose that there is an open
set G such that G ⊂ A = G?. Now G ⊂ A ⇒ G ⊂ int(A) ⇒ G? ⊂ (int(A))? ⇒
A ⊂ (int(A))? and (int(A))? ⊂ A? = G? = A. Therefore, A is regular I-closed. �
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