BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Some More Properties of $F_{\mathcal{I}}$ and Regular \mathcal{I} -Closed Sets in Ideal Topological Spaces

¹V. JEYANTHI, ²V. RENUKA DEVI AND ³D. SIVARAJ
¹Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India
²Department of Mathematics, Govindammal Aditanar College, Tiruchendur-628 215, Tamil Nadu, India
³Department of Mathematics, Aditanar College, Tiruchendur-628 216, Tamil Nadu, India
³ttn_sivaraj@sancharnet.in

Abstract. In 1964, Hayashi [8] defined and studied the notions of \star -dense in itself sets and \star -perfect subsets in ideal topological spaces. In 1999, Dontchev et al. [5] have studied the notion of Ideal resolvability through codense and completely codense ideal topological spaces. Recently, in the year 2004, Keskin, Noiri and Yuksel [12] have introduced and studied the concepts of $f_{\mathcal{I}}$ -sets and $f_{\mathcal{I}}$ -continuity. In this paper, we studied some more properties of $f_{\mathcal{I}}$ -sets and $f_{\mathcal{I}}$ -continuity with codense and completely codense ideals. We also, continued the study of regular \mathcal{I} -closed concepts.

2000 Mathematics Subject Classification: Primary 54A05, 54A10, Secondary 54C08

Key words and phrases: Codense and completely codense ideals, α -set, semiopen set, preopen set, \mathcal{I} -open set, \mathcal{I} -locally closed set, $f_{\mathcal{I}}$ -set, regular \mathcal{I} -closed set, semicontinuity, $f_{\mathcal{I}}$ -continuity.

1. Introduction

Ideals in topological spaces have been considered since 1930. This topic has won its importance by the paper of Vaidyanathaswamy [20]. An *ideal* $\mathcal I$ on a topological space (X,τ) is a collection of subsets of X which satisfies (i) $A \in \mathcal I$ and $B \subset A$ implies $B \in \mathcal I$ and (ii) $A \in \mathcal I$ and $B \in \mathcal I$ implies $A \cup B \in \mathcal I$. Given a topological space (X,τ) with an ideal $\mathcal I$ on X and if $\wp(X)$ is the set of all subsets of X, a set operator () *: $\wp(X) \to \wp(X)$, called a *local function* [13] of A with respect to τ and $\mathcal I$ is defined as follows: for $A \subset X$, $A^*(\mathcal I,\tau) = \{x \in X \mid U \cap A \not\in \mathcal I$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [9, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $\operatorname{cl}^*()$ for a topology $\tau^*(\mathcal I,\tau)$, called the \star – topology, finer than τ

Received: March 7, 2005; Revised: September 6, 2005.

is defined by $\operatorname{cl}^*(A) = A \cup A^*(\mathcal{I}, \tau)[20]$. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$ and τ^* or $\tau^*(\mathcal{I})$ for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an *ideal space*. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal space (X, τ, \mathcal{I}) is τ^* -closed [9] (resp. \star -dense in itself [8], \star -perfect [8]) if $A^* \subset A$ (resp. $A \subset A^*$, $A = A^*$). Clearly, A is \star -perfect if and only if A is τ^* -closed and \star -dense in itself. In ideal topological spaces , \mathcal{I} -open sets [10], almost \mathcal{I} -open sets [1] (quasi \mathcal{I} -open sets [2]), \mathcal{I} -locally closed sets [4], $f_{\mathcal{I}}$ -sets [12] and regular \mathcal{I} -closed sets [11] are some of the \star -dense in itself sets. In this note, we discuss the properties of the \star -dense in itself sets, namely $f_{\mathcal{I}}$ -sets and regular \mathcal{I} -closed sets.

2. Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X, cl(A)$ and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $cl^*(A)$ and $int^*(A)$ will, respectively, denote the closure and interior of A in (X, τ^*) . An open subset A of a space (X, τ) is said to be regular open if $A = \operatorname{int}(\operatorname{cl}(A))$. The complement of a regular open set is regular closed. The family of all regular open (resp. regular closed) set is denoted by $RO(X,\tau)$ (resp. $RC(X,\tau)$). A subset A of a space (X,τ) is an α -open [16] (resp. semiopen [14], preopen [15]) if $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $A \subset \operatorname{cl}(\operatorname{int}(A))$, $A \subset \operatorname{int}(\operatorname{cl}(A))$). The complement of a semiopen (resp. preopen) set is semiclosed (resp. preclosed). The family of all α -open (resp. semiopen, preopen) sets in (X,τ) is denoted by τ^{α} (resp. SO (X,τ) , PO (X,τ)). The smallest preclosed set containing A is called the preclosure of A and is denoted by pcl(A). Also, $pcl(A) = A \cup cl(int(A))$ [3, Theorem 1.5(e)]. The largest preopen set contained in A is called the *preinterior* of A and is denoted by pint(A). Also, $pint(A) = A \cap int(cl(A))$ [3, Theorem 1.5(f)]. τ^{α} is a topology finer than τ . The interior of A in (X,τ^{α}) is denoted by $\operatorname{int}_{\alpha}(A)$ and $\operatorname{int}_{\alpha}(A) = A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ [3, Theorem 1.5(d)]. τ is said to be an α -topology [16] if $\tau = \tau^{\alpha}$. Two topologies τ and σ on X is said to be α -equivalent [16] if $\tau^{\alpha} = \sigma^{\alpha}$. Recall that, if two topologies on a set X are α -equivalent, then they have the same collection of regular open, semiopen, preopen, dense and nowhere dense sets. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I} -open [10] if $A \subset \operatorname{int}(A^*)$. The family of all \mathcal{I} -open sets is denoted by $IO(X,\tau)$. A subset A of an ideal space (X, τ, \mathcal{I}) is \mathcal{I} -locally closed [4] if $A = G \cap V$, where G is open and V is \star -perfect. A subset A of X is \mathcal{I} -locally closed if and only if $A = G \cap A^*$ for some open set G [19, Theorem 2.2]. Clearly, every ★-perfect set is *I*-locally closed. Given an ideal space (X, τ, \mathcal{I}) , \mathcal{I} is said to be *compatible* with respect to τ [9] (supercompact [20]), denoted by $\mathcal{I} \sim \tau$, if for every subset A of X and for each $x \in A$, there exists a neighborhood U of x such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$. I is said to be codense [5] if $\tau \cap \mathcal{I} = \{\emptyset\}$. \mathcal{I} is said to be completely codense [5] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$. Every completely codense ideal is codense but not the converse [5]. The following lemmas will be useful in the sequel.

Lemma 2.1. [9, Theorem 6.1] Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

(a) \mathcal{I} is codense.

- (b) $X = X^*$.
- (c) $G \subset G^*$ for every open set G.
- (d) $int(I) = \emptyset$ for every $I \in \mathcal{I}$.

Lemma 2.2. [18, Theorem 5] Let (X, τ, \mathcal{I}) be an ideal space. If A is \star -dense in itself, then $A^{\star} = \operatorname{cl}(A) = \operatorname{cl}^{\star}(A)$.

Lemma 2.3. [18, Corollary 4] If \mathcal{I} is a completely codense ideal of an ideal space (X, τ, \mathcal{I}) , then

- (a) $\tau \subset \tau^* \subset \tau^\alpha$,
- (b) $SO(X, \tau) = SO(X, \tau^*) = SO(X, \tau^{\alpha}),$
- $(c) (\tau^{\star})^{\alpha} = \tau^{\alpha}.$

Lemma 2.4. [19, Theorem 2.1] Let (X, τ, \mathcal{I}) be an ideal space and U and A be subsets of X such that $A \subset U \subset A^*$. Then U is \star -dense in itself, and U^* and A^* are \star -perfect.

Lemma 2.5. [19, Theorem 2.15] If (X, τ, \mathcal{I}) is an ideal space, then \mathcal{I} is completely codense if and only if $PO(X, \tau) = IO(X, \tau)$.

3. More properties of codense ideals and completely codense ideals

The following Theorem 3.1 and its corollary give relationship between codense and completely codense ideals. Given a space (X,τ) and ideals \mathcal{I} and \Im on X, the extension of \mathcal{I} via \Im [10], denoted by $\mathcal{I} \star \Im$, is the ideal given by $\mathcal{I} \star \Im = \{A \subset X \mid A^{\star}(\mathcal{I}) \in \Im\}$. In particular, $\mathcal{I} \star \mathcal{N} = \{A \subset X \mid \operatorname{int}(A^{\star}(\mathcal{I})) = \phi\}$ is a compatible ideal containing both \mathcal{I} and \mathcal{N} and $\mathcal{I} \star \mathcal{N}$ is usually denoted by $\widetilde{\mathcal{I}}$. Since $\widetilde{\mathcal{I}}$ is compatible, $(A^{\star}(\widetilde{\mathcal{I}}))^{\star}(\widetilde{\mathcal{I}}) = A^{\star}(\widetilde{\mathcal{I}})$ [9, Theorem 4.6(b)]. In Theorem 3.2 below, we discuss the relationship between the α -sets of the topologies τ , $\tau^{\star}(\mathcal{I})$ and $\tau^{\star}(\widetilde{\mathcal{I}})$.

Theorem 3.1. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense in (X, τ) if and only if \mathcal{I} is completely codense in (X, τ^*) .

Proof. If \mathcal{I} is completely codense in (X, τ^*) , then \mathcal{I} is codense in (X, τ^*) and so \mathcal{I} is codense in (X, τ) . Conversely, suppose \mathcal{I} is codense in (X, τ) . Let $A \in PO(X, \tau^*) \cap \mathcal{I}$. $A \in PO(X, \tau^*) \cap \mathcal{I} \Rightarrow A \in PO(X, \tau^*)$ and $A \in \mathcal{I}$. $A \in PO(X, \tau^*) \Rightarrow A \subset \operatorname{int}^*(\operatorname{cl}^*(A))$. $A \in \mathcal{I} \Rightarrow \operatorname{int}^*(A) = \emptyset$, by Lemma 2.1(d) and A is τ^* -closed, by [9, Lemma 2.7]. Therefore, $\operatorname{int}^*(\operatorname{cl}^*(A)) = \operatorname{int}^*(A) = \emptyset$ which implies that $A = \emptyset$. Therefore, \mathcal{I} is completely codense in (X, τ^*) .

Corollary 3.1. If (X, τ, \mathcal{I}) is an ideal space, then the following are equivalent.

- (a) \mathcal{I} is codense in (X, τ) .
- (b) \mathcal{I} is codense in (X, τ) .
- (c) $\widetilde{\mathcal{I}}$ is completely codense in (X, τ^*) .
- (d) \mathcal{I} is completely codense in (X, τ^*) .

Proof. (a) and (b) are equivalent by [10, Theorem 3.5]. (b) and (c) are equivalent by Theorem 3.1. (a) and (d) are equivalent by Theorem 3.1.

Theorem 3.2. Let (X, τ, \mathcal{I}) be an ideal space. Then

- (a) $\tau^{\star}(\widetilde{\mathcal{I}}) = (\tau^{\star}(\mathcal{I}))^{\star}(\widetilde{\mathcal{I}}).$
- (b) If \mathcal{I} is codense, then $(\tau^*(\widetilde{\mathcal{I}}))^{\alpha} = (\tau^*(\mathcal{I}))^{\alpha}$.
- (c) If \mathcal{I} is completely codense, then $(\tau^{\star}(\widetilde{\mathcal{I}}))^{\alpha} = \tau^{\star}(\widetilde{\mathcal{I}}) = (\tau^{\star}(\mathcal{I}))^{\alpha} = \tau^{\alpha}$.

Proof. (a) Since $\mathcal{I} \subset \widetilde{\mathcal{I}}$, $\tau^*(\mathcal{I}) \subset \tau^*(\widetilde{\mathcal{I}})$ which implies that $(\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}}) \subset (\tau^*(\widetilde{\mathcal{I}}))^*(\widetilde{\mathcal{I}})$ and so $(\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}}) \subset \tau^*(\widetilde{\mathcal{I}})$. Suppose $A \in \tau^*(\widetilde{\mathcal{I}})$. For each $x \in A$, there exists $U \in \tau$ and $I \in \widetilde{\mathcal{I}}$ such that $x \in U - I \subset A$. Since $U \in \tau^*(\mathcal{I})$, $A \in (\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}})$ and so $\tau^*(\widetilde{\mathcal{I}}) \subset (\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}})$. Therefore, $\tau^*(\widetilde{\mathcal{I}}) = (\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}})$.

- (b) If \mathcal{I} is codense, by Corollary 3.2, $\widetilde{\mathcal{I}}$ is completely codense in (X, τ^*) and so by [5, Theorem 4.13], $\widetilde{\mathcal{I}} \subset \mathcal{N}(\tau^*(\mathcal{I}))$. Therefore, $(\tau^*(\mathcal{I}))^*(\widetilde{\mathcal{I}}) \subset (\tau^*(\mathcal{I}))^*(\mathcal{N}(\tau^*(\mathcal{I})))$. By (a), we have, $\tau^*(\widetilde{\mathcal{I}}) \subset (\tau^*(\mathcal{I}))^{\alpha}$. Since $\tau^*(\mathcal{I}) \subset \tau^*(\widetilde{\mathcal{I}})$, we have $\tau^*(\mathcal{I}) \subset \tau^*(\widetilde{\mathcal{I}}) \subset (\tau^*(\mathcal{I}))^{\alpha}$ and so $(\tau^*(\widetilde{\mathcal{I}}))^{\alpha} = (\tau^*(\mathcal{I}))^{\alpha}$ [16, Proposition 10].
- (c) If \mathcal{I} is completely codense,by [18, Theorem 7(c)], $\widetilde{\mathcal{I}} = \mathcal{N}$ and so $\tau^*(\widetilde{\mathcal{I}}) = \tau^*(\mathcal{N}) = \tau^{\alpha}$. By Lemma 2.3(c), $(\tau^*(\mathcal{I}))^{\alpha} = \tau^{\alpha}$. Therefore, (c) follows.

We have the following.

Corollary 3.2. Let (X, τ, \mathcal{I}) be an ideal space and \mathcal{I} be codense. Then $\tau^*(\widetilde{\mathcal{I}})$ and $\tau^*(\mathcal{I})$ are α -equivalent and so they have the same collection of regular open, semiopen, preopen, dense and nowhere dense sets.

Proof. By Theorem 3.2(b), $\tau^*(\widetilde{\mathcal{I}})$ and $\tau^*(\mathcal{I})$ are α -equivalent and so, they have the same collection of regular open, semiopen, preopen, dense and nowhere dense sets.

Corollary 3.3. Let (X, τ, \mathcal{I}) be an ideal space and \mathcal{I} be completely codense. Then

- (a) $\tau^{\star}(\widetilde{\mathcal{I}})$ is an α -topology.
- (b) $\tau^{\star}(\widetilde{\mathcal{I}}) = \tau^{\star}(\mathcal{N})$, and
- (c) τ , $\tau^*(\mathcal{I})$ and $\tau^*(\widetilde{\mathcal{I}})$ are α -equivalent and so they have the same collection of regular open, semiopen, preopen, dense and nowhere dense sets.

Proof. (a) Since $(\tau^{\star}(\widetilde{\mathcal{I}}))^{\alpha} = \tau^{\star}(\widetilde{\mathcal{I}})$, by Theorem 3.2(c) $,\tau^{\star}(\widetilde{\mathcal{I}})$ is an α -topology. (b)Since $\tau^{\alpha} = \tau^{\star}(\mathcal{N})$ [9, Example 2.10], by Theorem 3.2(c), $\tau^{\star}(\widetilde{\mathcal{I}}) = \tau^{\star}(\mathcal{N})$. (c) follows from Theorem 3.2(c).

4. Characterizations of $f_{\mathcal{I}}$ -sets

A subset A of an ideal space (X, τ, \mathcal{I}) is called an $f_{\mathcal{I}}$ -set [12] if $A \subset (\operatorname{int}(A))^*$. The family of all $f_{\mathcal{I}}$ -sets in (X, τ, \mathcal{I}) is denoted by $\mathcal{F}(\tau, \mathcal{I})$. Clearly, if A is any non-empty $f_{\mathcal{I}}$ -set, then $\operatorname{int}(A) \neq \emptyset$ and if \mathcal{I} is not codense, then X is not an $f_{\mathcal{I}}$ -set. In addition to this, $\mathcal{F}(\tau, \mathcal{I})$ has the following nice property.

Theorem 4.1. If (X, τ, \mathcal{I}) is an ideal space, then $\mathcal{F}(\tau, \mathcal{I}) \cap \mathcal{I} = \{\emptyset\}$.

Proof. If $A \in \mathcal{F}(\tau, \mathcal{I}) \cap \mathcal{I}$, then $A \in \mathcal{F}(\tau, \mathcal{I})$ and $A \in \mathcal{I}$. $A \in \mathcal{I} \Rightarrow A^* = \emptyset$ and $A \in \mathcal{F}(\tau, \mathcal{I}) \Rightarrow A \subset (\operatorname{int}(A))^* \subset A^* = \emptyset$. Therefore, $A = \emptyset$ which completes the proof.

Every $f_{\mathcal{I}}$ -set is a semiopen set [12, Remark 2] but not the converse [12, Example 3]. The following Theorem 4.2 and its Corollary 4.1, characterizes codense ideals in terms of $f_{\mathcal{I}}$ -sets and Theorem 4.2 shows that for codense ideals, semiopen sets and $f_{\mathcal{I}}$ -sets coincide.

Theorem 4.2. Let (X, τ, \mathcal{I}) be an ideal space, then the following are equivalent.

- (a) I is codense.
- (b) $SO(X, \tau) = \mathcal{F}(\tau, \mathcal{I}).$
- (c) $\tau \subset \mathcal{F}(\tau, \mathcal{I})$.

Proof. $(a) \Rightarrow (b)$. If $A \in SO(X, \tau)$, then $A \subset \operatorname{cl}(\operatorname{int}(A)) = (\operatorname{int}(A))^*$, by Lemma 2.1(c) and Lemma 2.2 and so $A \in \mathcal{F}(\tau, \mathcal{I})$. If $A \in \mathcal{F}(\tau, \mathcal{I})$, then $A \subset (\operatorname{int}(A))^* = \operatorname{cl}(\operatorname{int}(A))$ and so $A \in SO(X, \tau)$.

- $(b) \Rightarrow (c)$ is clear.
- $(c) \Rightarrow (a)$. Follows from Theorem 4.1.

Corollary 4.1. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

- (a) I is codense.
- (a) $SO(X, \tau^*) = \mathcal{F}(\tau^*, \mathcal{I}).$
- (a) $\tau^* \subset \mathcal{F}(\tau^*, \mathcal{I})$.

Proof. Since \mathcal{I} is codense in (X, τ) if and only if \mathcal{I} is codense in (X, τ^*) by the remark below Theorem 6.1 of [9], the proof follows from Theorem 4.2.

Corollary 4.2. [18, Theorem 1] Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $SO(X, \tau) \cap \mathcal{I} = \{\emptyset\}$.

Since $\tau \subset \tau^*$, $\mathcal{F}(\tau, \mathcal{I}) \subset \mathcal{F}(\tau^*, \mathcal{I})$. The following Example 4.1, shows that the reverse direction is not true in general and Theorem 4.3 below shows that the two collection of sets are equal if the ideal \mathcal{I} is completely codense.

Example 4.1. [12, Example 1] Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{c\}, \{a, d\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}, \{d\}, \{b, d\}\}$. If $A = \{a\}$, then $int(A) = \emptyset$ and so $A \notin \mathcal{F}(\tau, \mathcal{I})$. Since $int^*(A) = A$ and $(int^*(A))^* = \{a, b, d\}$, $A \in \mathcal{F}(\tau^*, \mathcal{I})$.

Theorem 4.3. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} be completely codense. Then $SO(X, \tau) = SO(X, \tau^*) = SO(X, \tau^{\alpha}) = \mathcal{F}(\tau, \mathcal{I}) = \mathcal{F}(\tau^*, \mathcal{I}) = \mathcal{F}(\tau^{\alpha}, \mathcal{I}).$

Proof. Since \mathcal{I} is completely codense, by Lemma 2.3(b), $SO(X,\tau) = SO(X,\tau^*) = SO(X,\tau^{\alpha})$. Since \mathcal{N} is codense, $\mathcal{I} \subset \mathcal{N}$ and $\tau^*(\mathcal{N}) = \tau^{\alpha}$, by Theorem 4.2, $SO(X,\tau^{\alpha}) = \mathcal{F}(\tau^{\alpha},\mathcal{I})$. Therefore, the proof follows from Theorem 4.2 and Corollary 4.1.

Corollary 4.3. [12, Proposition 3(a)]. Let (X, τ, \mathcal{I}) be an ideal space. If $\mathcal{I} = \{\emptyset\}$ or \mathcal{N} , then $SO(X, \tau) = \mathcal{F}(\tau, \mathcal{I})$.

Corollary 4.4. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^{\alpha} = \mathcal{F}(X, \tau) \cap IO(X, \tau)$.

Proof. We know that $\tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$ [17]. Since \mathcal{I} is completely codense, by Lemma 2.5, $PO(X, \tau) = IO(X, \tau)$ and by Theorem 4.2, $SO(X, \tau) = \mathcal{F}(X, \tau)$. Therefore, the proof follows.

Definition 4.1. A subset A of an ideal space (X, τ, \mathcal{I}) is called a regular \mathcal{I} -closed set [11] if $A = (\text{int}(A))^*$. Every regular \mathcal{I} -closed set is an $f_{\mathcal{I}}$ -set [12], Proposition 5].

The following Theorems 4.4 and 4.5, give some properties of $f_{\mathcal{I}}$ -sets.

Theorem 4.4. If A is an $f_{\mathcal{I}}$ -set of an ideal space (X, τ, \mathcal{I}) , then

- (a) A and int(A) are \star -dense in itself.
- (b) $(int(A))^*$ is \star -dense in itself.
- (c) $A^* = (\operatorname{int}(A))^* = ((\operatorname{int}(A))^*)^*$
- (d) A^* is *-perfect and \mathcal{I} -locally closed.
- (e) $(int(A))^*$ is \star -perfect and \mathcal{I} -locally closed.
- (f) $A^{\star}(\widetilde{\mathcal{I}})$ is \star -dense in itself and $A^{\star} = \operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(\operatorname{int}(A^{\star})) = A^{\star}(\widetilde{\mathcal{I}})$.
- (g) $A^* = A^*(\widetilde{\mathcal{I}})$ is regular closed and $A \subset A^*(\mathcal{N})$.
- (h) A^* is regular \mathcal{I} -closed and hence an $f_{\mathcal{I}}$ -set.

Proof. (a) A is \star -dense in itself by Corollary 1 of [12]. Since $\operatorname{int}(A) \subset A \subset (\operatorname{int}(A))^{\star}$, $\operatorname{int}(A)$ is \star -dense in itself.

- (b) Since $A \subset (\operatorname{int}(A))^* \subset A^*$, by Lemma 2.4, $(\operatorname{int}(A))^*$ is *-dense in itself.
- (c) Since $A \subset (\operatorname{int}(A))^* \subset A^*$, $A^* \subset ((\operatorname{int}(A))^*)^* \subset (\operatorname{int}(A))^* \subset (A^*)^* \subset A^*$ and so $A^* = ((\operatorname{int}(A))^*)^* = (\operatorname{int}(A))^* = (A^*)^*$.
- (d) Since $(A^*)^* = A^*$, A^* is *-perfect and so is \mathcal{I} -locally closed.
- (e) By (c), $(int(A))^*$ is *-perfect and so \mathcal{I} -locally closed.
- (f) Since $A^* = (\operatorname{int}(A))^* \subset \operatorname{cl}(\operatorname{int}(A)) \subset \operatorname{cl}(\operatorname{int}(A^*)) = A^*(\widetilde{\mathcal{I}})$ by [10, Theorem 3.2] and $A^*(\widetilde{\mathcal{I}}) \subset A^*$, $A^*(\widetilde{\mathcal{I}})$ is *-dense in itself and $A^* = \operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(\operatorname{int}(A^*)) = A^*(\widetilde{\mathcal{I}})$.
- (g) Since $A^*(\widetilde{\mathcal{I}})$ is regular closed by [18, Theorem 10(b)], by (f), A^* is regular closed. Since $\mathcal{N} \subset \widetilde{\mathcal{I}}$, $A \subset A^*(\mathcal{N})$.
- (h) Since $A \subset (\operatorname{int}(A))^* \subset (\operatorname{int}(A^*))^* \subset A^*$, we have $A^* = (\operatorname{int}(A^*))^*$ and so A^* is regular \mathcal{I} -closed and so is an $f_{\mathcal{I}}$ -set.

Theorem 4.5. Let (X, τ, \mathcal{I}) be an ideal space and A be an $f_{\mathcal{I}}$ -subset of X. Then

- (a) $\operatorname{pcl}(A) = \operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(A) = A^{\star}$.
- (b) $pint(A) = int_{\alpha}(A)$.
- (c) $pint(pcl(A)) = int(pcl(A)) = int(A^*)$.

Proof. (a) $A \in \mathcal{F}(\tau, \mathcal{I}) \Rightarrow A \subset (\operatorname{int}(A))^* \subset \operatorname{cl}(\operatorname{int}(A)) \Rightarrow A \cup \operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(\operatorname{int}(A)) \Rightarrow \operatorname{pcl}(A) = \operatorname{cl}(\operatorname{int}(A))$. By Theorem 4.4(f), $\operatorname{pcl}(A) = A^* = \operatorname{cl}(A)$.

- (b) $\operatorname{pint}(A) = A \cap \operatorname{int}(\operatorname{cl}(A)) = A \cap \operatorname{int}(A^*)$, since A is \star -dense in itself. By (a), $\operatorname{pint}(A) = A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ and so $\operatorname{pint}(A) = \operatorname{int}_{\alpha}(A)$.
- (c) $\operatorname{pint}(\operatorname{pcl}(A)) = \operatorname{pint}(\operatorname{cl}(A))$, by (a) and so $\operatorname{pint}(\operatorname{pcl}(A)) = \operatorname{cl}(A) \cap \operatorname{int}(\operatorname{cl}(\operatorname{cl}(A))) = \operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(\operatorname{pcl}(A)) = \operatorname{int}($

We recall the following.

Definition 4.2. A mapping $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be $f_{\mathcal{I}}$ -continuous [12] (resp. semicontinuous [14]) if for every $V \in \sigma$, $f^{-1}(V)$ is an $f_{\mathcal{I}}$ -set (resp. semiopen set).

П

Corollary 4.5. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} be codense. Then $f: (X, \tau, \mathcal{I}) \to$ (Y,σ) is $f_{\mathcal{I}}$ -continuous if and only if f is semicontinuous.

Proof. Follows from Theorem 4.2.

Corollary 4.6. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} be completely codense. Then the following are equivalent.

- (a) $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is $f_{\mathcal{I}}$ -continuous. (b) $f: (X, \tau^*, \mathcal{I}) \to (Y, \sigma)$ is $f_{\mathcal{I}}$ -continuous.
- (c) $f: (X, \tau^{\alpha}, \mathcal{I}) \to (Y, \sigma)$ is $f_{\mathcal{I}}$ -continuous.
- (d) $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is semicontinuous.
- (e) $f: (X, \tau^*, \mathcal{I}) \to (Y, \sigma)$ is semicontinuous.
- (f) $f: (X, \tau^{\alpha}, \mathcal{I}) \to (Y, \sigma)$ is semicontinuous.

Proof. Proof follows from Theorem 4.3.

A subset A of an ideal space (X, τ, \mathcal{I}) is called an $\alpha - \mathcal{I}$ -open set [7] if $A \subset$ $\operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A)))$. $\alpha - \mathcal{I}$ -openness and \mathcal{I} -openness are independent concepts [7, Remark 2.1]. In [18, Corollary 1(iii)], it was established that every ★-dense in itself, $\alpha - \mathcal{I}$ -open subset is \mathcal{I} -open. The following Theorem 4.6, shows that the two kinds of sets are equivalent for the collection of $f_{\mathcal{I}}$ -sets.

Theorem 4.6. Let (X, τ, \mathcal{I}) be an ideal space and A be an $f_{\mathcal{I}}$ -subset of X. Then A is $\alpha - \mathcal{I}$ -open if and only if A is \mathcal{I} -open.

Proof. Suppose A is $\alpha - \mathcal{I}$ -open. Since A is an $f_{\mathcal{I}}$ -subset, A is \star -dense in itself and so by [18, Corollary 1(iii)], A is \mathcal{I} -open. Conversely, suppose A is \mathcal{I} -open. Then $A \subset \operatorname{int}(A^*) = \operatorname{int}((\operatorname{int}(A))^*)$ by Theorem 4.4(c), and so $A \subset \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A)))$. Therefore, A is $\alpha - \mathcal{I}$ -open.

We end this section with the following characterization of $f_{\mathcal{I}}$ -sets in terms of open sets.

Theorem 4.7. Let (X, τ, \mathcal{I}) be an ideal space. Then A is an $f_{\mathcal{I}}$ -subset of X if and only if there exists an open set G such that $G \subset A \subset G^*$.

Proof. Suppose A is an $f_{\mathcal{I}}$ -subset of X. Let G = int(A). Then G is the required open set such that $G \subset A \subset G^*$. Conversely, suppose there is an open set G such that $G \subset A \subset G^*$. Now $G \subset A \Rightarrow G \subset \operatorname{int}(A) \Rightarrow G^* \subset (\operatorname{int}(A))^* \Rightarrow A \subset (\operatorname{int}(A))^*$ and so A is an $f_{\mathcal{I}}$ -subset.

Corollary 4.7. If A is an $f_{\mathcal{I}}$ -subset of an ideal space (X, τ, \mathcal{I}) , then there exists an open set $G \subset A$ such that $A^* = G^*$.

5. Properties of regular \mathcal{I} -closed sets

We will denote the family of all regular \mathcal{I} -closed sets in (X, τ, \mathcal{I}) by $\mathcal{R}(\tau, \mathcal{I})$. If the ideal \mathcal{I} is not codense, then X is regular closed in (X, τ, \mathcal{I}) but not regular \mathcal{I} -closed and so regular closed sets need not be regular \mathcal{I} -closed. But every regular \mathcal{I} -closed set is a regular closed set by Theorem 5.4(e) below. The easy proof of the following

Theorems 5.1 and 5.2. are omitted. Theorem 5.2 below gives a characterization of codense ideals.

Theorem 5.1. If (X, τ, \mathcal{I}) is an ideal space, then $\mathcal{R}(\tau, \mathcal{I}) \cap \mathcal{I} = \{\emptyset\}$.

Theorem 5.2. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if X is regular \mathcal{I} -closed.

Theorem 5.3. If (X, τ, \mathcal{I}) is an ideal space where \mathcal{I} is codense, then $\mathcal{R}(\tau, \mathcal{I}) = RC(X, \tau)$.

Proof. $A \in \mathcal{R}(\tau, \mathcal{I}) \Leftrightarrow A = (\operatorname{int}(A))^* \Leftrightarrow A = \operatorname{cl}(\operatorname{int}(A)), \text{ since } \mathcal{I} \text{ is codense } \Leftrightarrow A \in RC(X, \tau).$

Corollary 5.1. If (X, τ, \mathcal{I}) is an ideal space where \mathcal{I} is codense, then the following are equivalent.

- (a) $A \in RC(X, \tau)$.
- (b) $A \in \mathcal{R}(\tau, \mathcal{I})$.
- (c) $A \in \mathcal{F}(\tau, \mathcal{I})$ and A is τ^* -closed.
- (d) $A \in SO(X, \tau)$ and A is τ^* -closed.

Proof. Proof follows from Theorem 5.3, [12, Proposition 5] and Theorem 4.2.

The following Theorem 5.4 gives some properties of regular \mathcal{I} -closed sets. Also, it is established that every regular \mathcal{I} -closed set is \mathcal{I} -locally closed.

Theorem 5.4. If A is a regular \mathcal{I} -closed set of an ideal space (X, τ, \mathcal{I}) , then

- (a) A and int(A) are \star -dense in itself.
- (b) $A^* = (\text{int}(A))^* = (\text{int}(A))^*)^* = A.$
- (c) A is \star -perfect and \mathcal{I} -locally closed.
- (d) $(int(A))^*$ is \star -perfect and \mathcal{I} -locally closed.
- (e) $A = \operatorname{cl}(\operatorname{int}(A)) = A^*(\widetilde{\mathcal{I}})$ and so A is regular closed.

Proof. (a) Since $int(A) \subset A = (int(A))^* \subset A^*$, int(A) and A are *-dense in itself.

- (b) Since $A = (\text{int}(A))^* \subset A^*$, $A^* = ((\text{int}(A))^*)^* \subset (\text{int}(A))^* = A \subset A^*$ and so $A^* = ((\text{int}(A))^*)^* = (\text{int}(A))^* = A$.
- (c) Since $A = A^*$, A is *-perfect and so is \mathcal{I} -locally closed.
- (d) By (b), $(int(A))^*$ is *-perfect and so \mathcal{I} -locally closed.
- (e) Since $A = (\operatorname{int}(A))^* \subset \operatorname{cl}(\operatorname{int}(A)) = \operatorname{cl}(\operatorname{int}(A^*)) = A^*(\widetilde{\mathcal{I}})$ by Theorem 3.2 of [10] and $A^*(\widetilde{\mathcal{I}}) \subset A^* = A$, $A = \operatorname{cl}(\operatorname{int}(A)) = A^*(\widetilde{\mathcal{I}})$ and so A is regular closed.

We end this section with the following characterization of regular \mathcal{I} -closed sets in terms of open sets.

Theorem 5.5. Let (X, τ, \mathcal{I}) be an ideal space. Then A is a regular \mathcal{I} -closed subset of X if and only if there exists an open set G such that $G \subset A = G^*$.

Proof. Suppose A is a regular \mathcal{I} -closed subset of X. Let $G = \operatorname{int}(A)$. Then G is the required open set such that $G \subset A = G^*$. Conversely, suppose that there is an open set G such that $G \subset A = G^*$. Now $G \subset A \Rightarrow G \subset \operatorname{int}(A) \Rightarrow G^* \subset (\operatorname{int}(A))^* \Rightarrow A \subset (\operatorname{int}(A))^*$ and $(\operatorname{int}(A))^* \subset A^* = G^* = A$. Therefore, A is regular \mathcal{I} -closed. \square

Acknowledgement. The authors sincerely thank the referees for their valuable suggestions.

References

- M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Almost I-openness and almost I-continuity, J. Egypt Math. Soc. 7 (1999), 191–200.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, On quasi I-openness and quasi I-continuity, *Tamkang J. Math.* 31 (2000), 101–108.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38 (1986), 24–32.
- [4] J. Dontchev, Idealization of Ganster Reilly decomposition theorems, Math. GN /9901017, 5
 Jan. 1999 (Internet).
- [5] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl. 93 (1999), 1–16.
- [6] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27(2) (1987), 135–143.
- [7] E. Hatir and T. Noiri, On decomposition of continuity, Acta Math. Hungar. 96(4) (2002), 341–349.
- [8] E. Hayashi, Topologies defined by local properties, Math.Ann. 156 (1964), 205–215.
- [9] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97(4) (1990), 295–310.
- [10] D. Janković and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. B(7) 6 (1992), 453–465.
- [11] A. Keskin, T. Noiri and S. Yuksel, Idealization of decomposition theorem, Acta Math. Hungar. 102 (2004), 269–277.
- [12] A. Keskin, T. Noiri and S. Yuksel, f_I-sets and decomposition of R_IC-continuity, Acta Math. Hungar. 104(4) (2004), 307–313.
- [13] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36–41.
- [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt 53 (1982), 47–53.
- [16] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [17] I. R. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta Math. Hungar. 45 (1985), 27–32.
- [18] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar. 108(3) (2005), 197–205.
- [19] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Properties of some ★-dense in itself subsets, Internat. J. Math. Math. Sci. 2004, 3989–3999.
- [20] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51–61.