BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On β -I-open Sets and a Decomposition of Almost-I-continuity

¹E. Hatir and ²T. Noiri

¹Selçuk Üniversitesi, Eğitim Fakultesi, Matematik Bölümü, 42090, Konya, Turkey ²2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan ¹hatir10@yahoo.com, ²t.noiri@nifty.com

Abstract. In this paper, we investigate further properties of β -I-open sets defined in [5] and give a decomposition of almost-I-continuity as the following: a function $f:(X,\tau,I)\to (Y,\sigma)$ is almost-I-continuous if and only if it is β -I-continuous and *-I-continuous.

2000 Mathematics Subject Classification: Primary 54C10, 54A05; Secondary $54\mathrm{D}25,\,54\mathrm{D}30$

Key words and phrases: β -open set, β -I-open set, almost-I-open set, β -I-continuous, almost-I-continuous.

1. Introduction

In 1992, Janković and Hamlett [8] introduced the notion of I-open sets in topological spaces via ideals. Abd El-Monsef et al. [2] further investigated I-open sets and I-continuous functions. In 1999, Abd El-Monsef et al. [3] introduced and investigated almost-I-open sets and almost-I-continuous functions. Recently, Hatir and Noiri [5] have introduced the notion of β -I-open sets to obtain certain decompositions of continuity.

In this paper, we obtain the further properties of β -I-open sets and β -I-continuity and give a decomposition of almost-I-continuity.

2. Preliminaries

Throughout the present paper, spaces always mean topological spaces on which no separation properties are assumed unless explicity stated. In a topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by Cl(A) and Int(A), respectively. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions:

- (1) if $A \in I$ and $B \subset A$, then $B \in I$;
- (2) $A \in I$ and $B \in I$, then $A \cup B \in I$.

Received: February 2, 2004; Accepted: November 8, 2005.

Let (X,τ) be a topological space and I an ideal of subsets of X. An ideal topological space, denoted by (X,τ,I) , is a topological space (X,τ) with an ideal I on X. For a subset A of X, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each neighborhood } U \text{ of } x\}$ is called the local function [6] of A with respect to I and τ . We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. The set X^* is often a proper subset of X. It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$ which is finer than τ . A subset A of (X,τ,I) is called *-dense-in-itself if $A \subset A^*[6]$.

Lemma 2.1. [7] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then

- (a) If $A \subset B$, then $A^* \subset B^*$,
- (b) If $U \in \tau$, then $U \cap A^* \subset (U \cap A)^*$,
- (c) A^* is closed in (X, τ) .

First we shall recall some definitions used in the sequel.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be

- (a) I-open [8] if $A \subset Int(A^*)$,
- (b) almost-I-open [3] if $A \subset Cl(Int(A^*))$,
- (c) β -I-open [5] if $A \subset Cl(Int(Cl^*(A)))$,
- (d) β -open [1] if $A \subset Cl(Int(Cl(A)))$.

By $\beta IO(X,\tau)$, we denote the family of all β -I-open sets of space (X,τ,I) .

3. β -I-open sets

Lemma 3.1. Every almost-I-open set is β -I-open.

Proof. Let (X, τ, I) be an ideal topological space and A an almost-I-open set of X. Then $A \subset \operatorname{Cl}(\operatorname{Int}(A^*)) \subset \operatorname{Cl}(\operatorname{Int}(A^* \cup A)) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A)))$. Therefore, A is β -I-open.

The converse of Lemma 3.1 is not necessarily true as shown by the following example. $\hfill\Box$

Example 3.1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $A = \{c\}$ is a β -I-open set which is not almost-I-open.

Lemma 3.2. [5] (a) Every β -I-open set is β -open but not conversely. (b) Every open set is β -I-open but not conversely.

Theorem 3.1. A subset A of a space (X, τ, I) is β -I-open if and only if $Cl(A) = Cl(Int(Cl^*(A)))$.

Proof. Let A be a β -I-open set. Then we have $A \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A)))$ and hence $\operatorname{Cl}(A) \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A))) \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A))) \subset \operatorname{Cl}(A)$. Therefore, we have $\operatorname{Cl}(A) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A)))$. The converse is obvious.

The intersection of even two β -I-open sets need not be β -I-open as shown by the following example due to Dontchev [4].

Example 3.2. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$ and $I = \{\emptyset, \{c\}\}$. Set $A = \{a, c\}$ and $B = \{b, c\}$. Since $A^* = B^* = X$, then both A and B are β -I-open. But on the other hand $A \cap B = \{c\} \notin \beta IO(X, \tau)$.

Theorem 3.2. Let (X, τ, I) be an ideal topological space and $\{A_{\alpha} : \alpha \in \Delta\}$ a family of subsets of X, where Δ is an arbitrary index set. Then,

- (a) If $\{A_{\alpha} : \alpha \in \Delta\} \subset \beta IO(X,\tau)$, then $\cup \{A_{\alpha} : \alpha \in \Delta\} \in \beta IO(X,\tau)$.
- (b) If $A \in \beta IO(X, \tau)$ and $U \in \tau$, then $A \cap U \in \beta IO(X, \tau)$.

Proof. (a) Since $\{A_{\alpha} : \alpha \in \Delta\} \subset \beta IO(X, \tau)$, then $A_{\alpha} \subset Cl(Int(Cl^*(A_{\alpha})))$ for each $\alpha \in \Delta$. Then we have

$$\bigcup_{\alpha \in \Delta} A_{\alpha} \subset \bigcup_{\alpha \in \Delta} \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^{*}(A_{\alpha})))
\subset \operatorname{Cl}(\operatorname{Int}(\bigcup_{\alpha \in \Delta} \operatorname{Cl}^{*}(A_{\alpha})))
\subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^{*}(\bigcup_{\alpha \in \Delta} A_{\alpha}))).$$

This shows that $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \beta IO(X, \tau)$.

(b) By the assumption, $A \subset \mathrm{Cl}(\mathrm{Int}(\mathrm{Cl}^*(A)))$ and $U = \mathrm{Int}(U)$. Thus using Lemma 2.1, we have

$$A \cap U \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A))) \cap \operatorname{Int}(U)$$

$$\subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A)) \cap \operatorname{Int}(U))$$

$$= \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A) \cap U))$$

$$= \operatorname{Cl}(\operatorname{Int}((A^* \cup A) \cap U))$$

$$= \operatorname{Cl}(\operatorname{Int}((A^* \cap U) \cup (A \cap U)))$$

$$\subset \operatorname{Cl}(\operatorname{Int}((A \cap U)^* \cup (A \cap U)))$$

$$= \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A \cap U))).$$

This shows that $A \cap U \in \beta IO(X, \tau)$.

Definition 3.1. A subset F of a space (X, τ, I) is said to be β -I-closed if its complement is β -I-open.

Theorem 3.3. A subset A of a space (X, τ, I) is β -I-closed if and only if $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}^*(A))) \subset A$.

Proof. Let A be a β -I-closed set of (X, τ, I) . Then X - A is β -I-open and hence

$$X-A\subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(X-A)))=X-\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}^*(A))).$$

Therefore, we have $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}^*(A))) \subset A$.

Conversely, let $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}^*(A))) \subset A$. Then $X - A \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(X - A)))$ and hence X - A is β -I-open. Therefore, A is β -I-closed.

Remark 3.1. For a subset A of a space (X, τ, I) , we have

$$X - \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \neq \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(X - A)))$$

as shown by the following example.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\} \text{ and } I = \{\emptyset, \{a\}\}.$ Then if we put $A = \{a, c\}, X - \text{Int}(\text{Cl}^*(\text{Int}(A))) = \{b, c\} \text{ and } \text{Cl}(\text{Int}(\text{Cl}^*(X - A))) = \emptyset.$

Theorem 3.4. If a subset A of a space (X, τ, I) is β -I-closed, then

$$\operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \subset A.$$

Proof. Let A be any β -I-closed set of (X, τ, I) . Since $\tau * (I)$ is finer than τ , we have

$$\operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \subset \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}^*(A))) \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}^*(A))).$$

Therefore, by Theorem 3.3, we obtain $\operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) \subset A$.

Corollary 3.1. Let A be a subset of a space (X, τ, I) such that

$$X - \operatorname{Int}(\operatorname{Cl}^*(\operatorname{Int}(A))) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(X - A))).$$

Then A is β -I-closed if and only if $Int(Cl^*(Int(A))) \subset A$.

Proof. This is an immediate consequence of Theorem 3.3.

4. β -I-continuous functions

Definition 4.1. A function $f:(X,\tau,I)\to (Y,\sigma)$ is said to be β -I-continuous [5] (resp. almost- I -continuous [3], β -continuous [1]) if $f^{-1}(V)$ is β -I-open (resp. almost-I-open, β -open) in (X,τ,I) for each open set V of (Y,σ) .

Remark 4.1. It is obvious from Lemmas 3.1 and 3.2 that almost-I-continuity implies β -I-continuity and β -I-continuity implies β -continuity.

Theorem 4.1. For a function $f:(X,\tau,I)\to (Y,\sigma)$, the following conditions are equivalent:

- (a) f is β -I-continuous,
- (b) For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \beta IO(X,\tau)$ containing x such that $f(U) \subset V$,
- (c) The inverse image of each closed set in Y is β -I-closed.

Proof. Straightforward.

Definition 4.2. A function $f:(X,\tau,I)\to (Y,\sigma,J)$ is said to be β -I-irresolute if $f^{-1}(V)$ is β -I-open for every β -J-open set V of (Y,σ,J) .

Theorem 4.2. Let $f:(X,\tau,I)\to (Y,\sigma,J)$ and $g:(Y,\sigma,J)\to (Z,\eta)$ be two functions, where I and J are ideals on X and Y respectively. Then

- (a) gof is β -I-continuous if f is β -I-continuous and g is continuous,
- (b) gof is β -I-continuous if f is β -I-irresolute and g is β -I-continuous.

If (X, τ, I) is an ideal topological space and A is subset of X, we denote by $\tau_{|A}$ the relative topology on A and $I_{|A} = \{A \cap I | I \in I\}$ is obviously an ideal on A.

Lemma 4.1. [7] Let (X, τ, I) be an ideal topological space and B, A subsets of X such that $B \subset A$. Then $B^*(\tau_{|A}, I_{|A}) = B^*(\tau, I) \cap A$.

Theorem 4.3. Let (X, τ, I) be an ideal topological space. If $U \in \tau$ and $A \in \beta IO(X, \tau)$, then $U \cap A \in \beta IO(U, \tau_{|U}, I_{|U})$.

Proof. Since $U \in \tau$ and $A \in \beta IO(X, \tau)$, by Theorem 3.2 we have

$$A \cap U \subset \mathrm{Cl}(\mathrm{Int}(\mathrm{Cl}^*(A \cap U))$$

and hence

$$A \cap U \subset U \cap \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A \cap U)))$$

$$\subset \operatorname{Cl}(U \cap \operatorname{Int}(\operatorname{Cl}^*(A \cap U)))$$

$$\subset \operatorname{Cl}(\operatorname{Int}[U \cap \operatorname{Cl}^*(A \cap U)])$$

$$= \operatorname{Cl}(\operatorname{Int}_U(U \cap \operatorname{Cl}^*(A \cap U))).$$

Since $U \in \tau \subset \tau *$, we obtain

$$A \cap U \subset U \cap \mathrm{Cl}(\mathrm{Int}_U(\mathrm{Cl}_U^*(A \cap U))) = \mathrm{Cl}_U(\mathrm{Int}_U(\mathrm{Cl}_U^*(A \cap U))).$$

This shows that $A \cap U \in \beta IO(U, \tau_{|U}, I_{|U})$.

Theorem 4.4. Let $f:(X,\tau,I)\to (Y,\sigma)$ be β -I-continuous function and $U\in\tau$. Then the restriction $f_{|U}:(U,\tau_{|U},I_{|U})\to (Y,\sigma)$ is β -I-continuous.

Proof. Let V be any open set of (Y, σ) . Since f is β -I-continuous, we have $f^{-1}(V) \in \beta IO(X, \tau)$. Since $U \in \tau$, by Theorem 4.3 $U \cap f^{-1}(V) \in \beta IO(U, \tau_{|U}, I_{|U})$. On the other hand, $(f_{|U})^{-1}(V) = U \cap f^{-1}(V)$ and $(f_{|U})^{-1}(V) \in \beta IO(U, \tau_{|U}, I_{|U})$. This shows that $f_{|U}: (U, \tau_{|U}, I_{|U}) \to (Y, \sigma)$ is β -I-continuous.

Theorem 4.5. A function $f:(X,\tau,I)\to (Y,\sigma)$ be β -I-continuous if and only if the graph function $g:X\to X\times Y$, defined by g(x)=(x,f(x)) for each $x\in X$, is β -I-continuous.

Proof. Necessity. Suppose that f is β -I-continuous. Let $x \in X$ and W be any open set of $X \times Y$ containing g(x). Then there exists a basic open set $U \times V$ such that $g(x) = (x, f(x)) \in U \times V \subset W$. Since f is β -I-continuous, there exists a β -I-open set U_o of X containing x such that $f(U_o) \subset V$. By Theorem 3.2, $U_o \cap U \in \beta IO(X, \tau)$ and $g(U_o \cap U) \subset U \times V \subset W$. This shows that g is β -I-continuous.

Sufficiency. Suppose that g is β -I-continuous. Let $x \in X$ and V be any open set of Y containing f(x). Then $X \times V$ is open in $X \times Y$ and by β -I-continuity of g, there exists $U \in \beta IO(X, \tau)$ containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. This shows that f is β -I-continuous.

5. A decomposition of almost-I-continuity

Definition 5.1. A function $f:(X,\tau,I)\to (Y,\sigma)$ is said to be *-I-continuous [4] if the preimage of every open set in (Y,σ) is *-dense-in-itself in (X,τ,I) .

Theorem 5.1. For a subset A of an ideal topological space (X, τ, I) , the following conditions are equivalent:

- (a) A is almost-I-open,
- (b) A is β -I-open and *-dense-in-itself.

Proof. $(a) \Rightarrow (b)$. By Lemma 3.1, every almost-I-open set is β -I-open. On the other hand, by Lemma 2.1 we have $A \subset \text{Cl}(\text{Int}(A^*)) \subset \text{Cl}(A^*) = A^*$. This shows that A is *-dense-in-itself.

 $(b) \Rightarrow (a)$. By the assumption,

$$A \subset \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(A))) = \operatorname{Cl}(\operatorname{Int}(A^* \cup A)) = \operatorname{Cl}(\operatorname{Int}(A^*)).$$

This shows that A is almost-I-open.

Thus we have the following decomposition of almost-I-continuity.

Theorem 5.2. For a function $f:(X,\tau,I)\to (Y,\sigma)$, the following conditions are equivalent:

- (a) f is almost-I-continuous,
- (b) f is β -I-continuous and *-I-continuous.

Proof. This is an immediate consequence from Theorem 5.1.

Remark 5.1. β -I-continuity and *-I-continuity are independent notions as shown by the following example due to Dontchev [4].

Example 5.1. Let $X = \{a, b, c\}$, $I = \{\emptyset, \{c\}\}$, $\tau = \{\emptyset, X, \{b\}\}$, $\sigma = \{\emptyset, X, \{c\}\}$ and $\gamma = \{\emptyset, X, \{a\}\}$. The identity function $f : (X, \tau, I) \to (X, \gamma, I)$ is *-I-continuous but neither almost-I-continuous nor β -I-continuous since $f^{-1}(\{a\}) = \{a\}$ and $\{a\}^* = \{a, c\}$. On the other hand, the identity function $g : (X, \sigma, I) \to (X, \sigma, I)$ is β -I-continuous but neither almost-I-continuous nor *-I-continuous since $f^{-1}(\{c\}) = \{c\}$ and $\{c\}^* = \emptyset$.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. A 12(1) (1983), 77–90.
- [2] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On *I*-open sets and *I*-continuous functions, Kyungpook Math. J. **32**(1)(1992), 21–30.
- [3] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Almost I-openness and almost I-continuity, J. Egyptian Math. Soc. 7(2)(1999), 191–200.
- [4] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J. 2(1996).
- [5] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar. 96(4)(2002), 341–349.
- [6] E. Hayashi, Topologies defined by local properties, Math. Ann. 156(1964), 205–215.
- [7] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97(4) (1990), 295–310.
- [8] D. Janković and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. B (7) 6(3)(1992), 453–465.
- [9] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Col. At Santa Barbara (unpublished) (1967).