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Abstract. In this note the notion of interval-valued fuzzy QS-algebra (briefly,

i-v fuzzy QS-algebra), as well as the i-v level and strong i-v level QS-subalgebra

is introduced. Several theorems which determine the relationship between
these notions and QS-subalgebras are stated and proved. The images and

inverse images of i-v fuzzy QS-subalgebras are defined, and how the homo-

morphic images and inverse images of an i-v fuzzy QS-subalgebra become i-v
fuzzy QS-algebras is studied as well.
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1. Introduction

In 1966, Imai and Iseki [7] introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [5], Hu and Li introduced a wide class
of abstract algebras: BCH-algebras. They showed that the class of BCI-algebras
is a proper subclass of the class of BCH-algebras. Neggers, Ahn and Kim intro-
duced the notion of Q-algebras [11], which is a generalization of BCH/BCI/BCK-
algebras. In [1], Ahn and Kim introduced the notion of QS-algebras which is a
generalization of Q-algebras.

The concept of a fuzzy set, was introduced in [12]. In [13], Zadeh made an
extension of the concept of a fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy
set with an interval-valued membership function). This interval-valued fuzzy set is
referred to as an i-v fuzzy set. He constructed a method of approximate inference
using his i-v fuzzy sets. Biswas [2], defined interval-valued fuzzy subgroups and
Hong et al. applied the notion of interval-valued fuzzy sets to BCI-algebras [4].
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In the present paper, we use the notion of interval-valued fuzzy set and intro-
duce the concept of interval-valued fuzzy QS-subalgebras (briefly i-v fuzzy QS-
subalgebras) of a QS-algebra, and we study some of their properties. Among other
results, we prove that every QS-subalgebra of a QS-algebra X can be realized as
an i-v level QS-subalgebra of an i-v fuzzy QS-subalgebra of X. We also obtain
some related results which have been mentioned in the abstract.

2. Preliminary notes

Definition 2.1. [1] A QS-algebra is a non-empty set X with a constant 0 and a
binary operation ∗ satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(IV) (x ∗ y) ∗ (x ∗ z) = z ∗ y,

for all x, y, z ∈ X.

In X we define a binary relation ≤ by x ≤ y if and only if x ∗ y = 0

Example 2.1. [1] Let Z be the set of all integers and let nZ= {nz | z ∈ Z}. Then
(Z;−, 0) and (nZ;−, 0) are both QS-algebras, where ”-” is the usual subtraction
of integers. Also (R;−, 0) and (C;−, 0) are QS-algebras where R is the set of all
real numbers, C is the set of all complex numbers and ”-” is the usual subtraction
of real (complex) numbers.

Proposition 2.1. [1] Let X be a QS-algebra. Then for any x, y and z in X, the
following relations hold:

(a) x ≤ y implies z ∗ y ≤ z ∗ x,
(b) x ≤ y and y ≤ z imply x ≤ z,
(c) x ∗ y ≤ z implies x ∗ z ≤ y,
(d) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,
(e) x ≤ y implies x ∗ z ≤ y ∗ z,
(f) 0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x.

Definition 2.2. A non-empty subset S of a QS-algebra X is called a subalgebra of
X if x ∗ y ∈ S for any x, y ∈ S.

A mapping f : X −→ Y of QS-algebras is called a QS-homomorphism if f(x ∗
y) = f(x) ∗ f(y), for all x, y ∈ X.

We now review some fuzzy logic concepts (see [12]). Let X be a set. A fuzzy
set A in X is characterized by a membership function µA : X −→ [0, 1]. Let f
be a mapping from the set X to the set Y and let B be a fuzzy set in Y with
membership function µB . The inverse image of B, denoted f−1(B), is the fuzzy set
in X with membership function µf−1(B) defined by µf−1(B)(x) = µB(f(x)) for all
x ∈ X. Conversely, let A be a fuzzy set in X with membership function µA Then
the image of A, denoted by f(A), is the fuzzy set in Y such that:

µf(A)(y) =

{
sup

z∈f−1(y)

µA(z) if f−1(y) = {x : f(x) = y} 6= ∅,

0 otherwise.
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A fuzzy set A in the QS-algebra X with the membership function µA is said to
have the sup property if for any subset T ⊆ X there exists x0 ∈ T such that

µA(x0) = sup
t∈T

µA(t).

An interval-valued fuzzy set (briefly, i-v fuzzy set) A defined on X is given by

A = {(x, [µL
A(x), µU

A(x)])}, ∀x ∈ X.

Briefly, it is denoted by A = [µL
A, µU

A] where µL
A and µU

A are any two fuzzy sets in
X such that µL

A(x) ≤ µU
A(x) for all x ∈ X.

Let µA(x) = [µL
A(x), µU

A(x)], for all x ∈ X and let D[0, 1] denote the family of all
closed sub-intervals of [0, 1]. It is clear that if µL

A(x) = µU
A(x) = c, where 0 ≤ c ≤ 1

then µA(x) = [c, c] is in D[0, 1]. Thus µA(x) ∈ D[0, 1], for all x ∈ X. Therefore the
i-v fuzzy set A is given by

A = {(x, µA(x))}, ∀x ∈ X

where
µA : X −→ D[0, 1].

Now we define the refined minimum (briefly, rmin) and order ” ≤ ” on elements
D1 = [a1, b1] and D2 = [a2, b2] of D[0, 1] as:

rmin(D1, D2) = [min{a1, a2},min{b1, b2}],

D1 ≤ D2 ⇐⇒ a1 ≤ a2 ∧ b1 ≤ b2.

Similarly we can define ≥ and =.

Definition 2.3. [3] Let µ be a fuzzy set in a QS-algebra X. Then µ is called a
fuzzy QS-subalgebra (QS-algebra) of X if

µ(x ∗ y) ≥ min{µ(x), µ(y)},

for all x, y ∈ X.

Proposition 2.2. [3] Let f be a QS-homomorphism from X into Y and G be
a fuzzy QS-subalgebra of Y with the membership function µG. Then the inverse
image f−1(G) of G is a fuzzy QS-subalgebra of X.

Proposition 2.3. [3] Let f be a QS-homomorphism from X onto Y and D be a
fuzzy QS-subalgebra of X with the sup property. Then the image f(D) of D is a
fuzzy QS-subalgebra of Y .

3. Interval-valued fuzzy QS-algebra

From now on X is a QS-algebra, unless otherwise is stated.

Definition 3.1. An i-v fuzzy set A in X is called an interval-valued fuzzy QS-
subalgebras (briefly i-v fuzzy QS-subalgebra) of X if

µA(x ∗ y) ≥ rmin{µA(x), µA(y)},

for all x, y ∈ X.
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Example 3.1. Let X = {0, 1, 2} be a set with the following table:

∗ 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

Then (X, ∗, 0) is a QS-algebra, but not a BCH/BCI/BCK-algebra.
Define µA as:

µA(x) =
{

[0.3, 0.9] if x ∈ {0, 2}
[0.1, 0.6] otherwise.

It is easy to check that A is an i-v fuzzy QS-subalgebra of X.

Lemma 3.1. If A is an i-v fuzzy QS-subalgebra of X, then

µA(0) ≥ µA(x)

for all x ∈ X.

Proof. For all x ∈ X, we have

µA(0) = µA(x ∗ x) ≥ rmin{µA(x), µA(x)}
= rmin{[µL

A(x), µU
A(x)], [µL

A(x), µU
A(x)]}

= [µL
A(x), µU

A(x)] = µA(x).

�

Proposition 3.1. Let A be an i-v fuzzy QS-subalgebra of X, and let n ∈ N . Then

(i) µA(
n∏

x ∗ x) ≥ µA(x), for any odd number n,

(ii) µA(
n∏

x ∗ x) = µA(0), for any even number n.

Proof. We proved by induction. Let x ∈ X and assume that n is odd. Then
n = 2k − 1 for some positive integer k. The definition and the above lemma imply

that µA(x ∗ x) = µA(0) ≥ µA(x). Now suppose that µA(
2k−1∏

x ∗ x) ≥ µA(x). Then
by assumption

µA(
2(k+1)−1∏

x ∗ x) = µA(
2k+1∏

x ∗ x)

= µA(
2k−1∏

x ∗ (x ∗ (x ∗ x)))

= µA(
2k−1∏

x ∗ x)

≥ µA(x).

This proves (i), and similarly we can prove (ii). �
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Theorem 3.1. Let A be an i-v fuzzy QS-subalgebra of X. If there exists a sequence
{xn} in X, such that

lim
n→∞

µA(xn) = [1, 1].

Then µA(0) = [1, 1].

Proof. By the above lemma we have µA(0) ≥ µA(x), for all x ∈ X, thus µA(0) ≥
µA(xn), for every positive integer n. Consider the inequality

[1, 1] ≥ µA(0) ≥ lim
n→∞

µA(xn) = [1, 1].

Hence µA(0) = [1, 1]. �

Theorem 3.2. An i-v fuzzy set A = [µL
A, µU

A] in X is an i-v fuzzy QS-subalgebra
of X if and only if µL

A and µU
A are fuzzy QS-subalgebras of X.

Proof. Let µL
A and µU

A be fuzzy QS-subalgebras of X and x, y ∈ X. Observe

µA(x ∗ y) = [µL
A(x ∗ y), µU

A(x ∗ y)]

≥ [min{µL
A(x), µL

A(y)},min{µU
A(x), µU

A(y)}]
= rmin{[µL

A(x), µU
A(x)], [µL

A(y), µU
A(y)]}

= rmin{µA(x), µA(y)}.
From what was mentioned above we can conclude that A is an i-v fuzzy QS-
subalgebra of X.

Conversely, suppose that A is an i-v fuzzy QS-subalgebra of X. For any x, y ∈ X
we have

[µL
A(x ∗ y), µU

A(x ∗ y)] = µA(x ∗ y)
≥ rmin{µA(x), µA(y)}
= rmin{[µL

A(x), µU
A(x)], [µL

A(y), µU
A(y)]}

= [min{µL
A(x), µL

A(y)},min{µU
A(x), µU

A(y)}.
Therefore µL

A(x ∗ y) ≥ min{µL
A(x), µL

A(y)} and µU
A(x ∗ y) ≥ min{µU

A(x), µU
A(y)},

whence we get that µL
A and µU

A are fuzzy QS-subalgebras of X. �

Theorem 3.3. Let A1 and A2 be i-v fuzzy QS-subalgebras of X. Then A1 ∩A2 is
an i-v fuzzy QS-subalgebra of X.

Proof. Let x, y ∈ A1 ∩ A2. Then x, y ∈ A1 and A2, since A1 and A2 are i-v fuzzy
QS-subalgebras of X, by the above theorem we have:

µA1∩A2
(x ∗ y) = [µL

A1∩A2
(x ∗ y), µU

A1∩A2
(x ∗ y)]

= [min(µL
A1

(x ∗ y), µL
A2

(x ∗ y)),min(µU
A1

(x ∗ y), µU
A2

(x ∗ y))]

≥ [min((µL
A1∩A2

(x), µL
A1∩A2

(y)),min((µU
A1∩A2

(x), µU
A1∩A2

(y))]
= rmin{µA1∩A2

(x), µA1∩A2
(y)}.

which proves the theorem. �

Corollary 3.8. Let {Ai|i ∈ Λ} be a family of i-v fuzzy QS-subalgebras of X. Then⋂
i∈Λ

Ai is also an i-v fuzzy QS-subalgebra of X.
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Definition 3.2. Let A be an i-v fuzzy set in X and [δ1, δ2] ∈ D[0, 1]. Then the i-v
level QS-subalgebra U(A; [δ1, δ2]) of A and strong i-v level QS-subalgebra U(A;>
, [δ1, δ2]) of X are defined as follows:

U(A; [δ1, δ2]) := {x ∈ X | µA(x) ≥ [δ1, δ2]},

U(A;>, [δ1, δ2]) := {x ∈ X | µA(x) > [δ1, δ2]}.

Theorem 3.4. Let A be an i-v fuzzy QS-subalgebra of X and let B be the closure
of the image of µA. Then the following conditions are equivalent:

(i) A is an i-v fuzzy QS-subalgebra of X.
(ii) For all [δ1, δ2] ∈ =(µA), the nonempty i-v level subset U(A; [δ1, δ2]) of A is

a QS-subalgebra of X.
(iii) For all [δ1, δ2] ∈ =(µA) \ B, the nonempty strong i-v level subset U(A;>

, [δ1, δ2]) of A is a QS-subalgebra of X.
(iv) For all [δ1, δ2] ∈ D[0, 1], the nonempty strong i-v level subset U(A;>, [δ1, δ2])

of A is a QS-subalgebra of X.
(v) For all [δ1, δ2] ∈ D[0, 1], the nonempty i-v level subset U(A; [δ1, δ2]) of A is

a QS-subalgebra of X.

Proof. (i) =⇒ (iv). Let A be an i-v fuzzy QS-subalgebra of X, [δ1, δ2] ∈ D[0, 1]
and x, y ∈ U(A;<, [δ1, δ2]), then we have

µA(x ∗ y) ≥ rmin{µA(x), µA(y)} > rmin{[δ1, δ2], [δ1, δ2]} = [δ1, δ2],

and thus x ∗ y ∈ U(A;>, [δ1, δ2]). Hence U(A;>, [δ1, δ2]) is a QS-subalgebra of X.
(iv) =⇒ (iii). It is clear.
(iii) =⇒ (ii). If [δ1, δ2] ∈ =(µA), then U(A; [δ1, δ2]) is nonempty, since

U(A; [δ1, δ2]) =
⋂

[δ1,δ2]>[α1,α2]

U(A;>, [δ1, δ2]),

where [α1, α2] ∈ =(µA) \ B. Then by (iii) and Corollary 3.7, U(A; [δ1, δ2]) is a
QS-subalgebra of X.

(ii) =⇒ (v). Let [δ1, δ2] ∈ D[0, 1] and U(A; [δ1, δ2]) be nonempty. Suppose
x, y ∈ U(A; [δ1, δ2]). Let [β1, β2] = min{µA(x), µA(y)}, it is clear that

[β1, β2] = min{µA(x), µA(y)} ≥ {[δ1, δ2], [δ1, δ2]} = [δ1, δ2].

Thus x, y ∈ U(A; [β1, β2]) and [β1, β2] ∈ =(µA), by (ii) U(A; [β1, β2]) is a QS-
subalgebra of X, hence x ∗ y ∈ U(A; [β1, β2]). Then we have

µA(x ∗ y) ≥ rmin{µA(x), µA(y)} ≥ {[β1, β2], [β1, β2]} = [β1, β2] ≥ [δ1, δ2].

Therefore x ∗ y ∈ U(A; [δ1, δ2]). Then U(A; [δ1, δ2]) is a QS-subalgebra of X.
(v) =⇒ (i). Assume that the nonempty set U(A; [δ1, δ2]) is a QS-subalgebra of

X, for every [δ1, δ2] ∈ D[0, 1]. In the contrary, let x0, y0 ∈ X be such that

µA(x0 ∗ y0) < rmin{µA(x0), µA(y0)}.
Let µA(x0) = [γ1, γ2], µA(y0) = [γ3, γ4] and µA(x0 ∗ y0) = [δ1, δ2]. Then

[δ1, δ2] < rmin{[γ1, γ2], [γ3, γ4]} = [min{γ1, γ3],min{γ2, γ4}].
So δ1 < min{γ1, γ3} and δ2 < min{γ2, γ4}.
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Consider

[λ1, λ2] =
1
2
µA(x0 ∗ y0) + rmin{µA(x0), µA(y0)}.

We find that

[λ1, λ2] =
1
2
([δ1, δ2] + [min{γ1, γ3},min{γ2, γ4}])

= [
1
2
(δ1 + min{γ1, γ3}),

1
2
(δ2 + min{γ2, γ4})].

Therefore

min{γ1, γ3} > λ1 =
1
2
(δ1 + min{γ1, γ3}) > δ1,

min{γ2, γ4} > λ2 =
1
2
(δ2 + min{γ2, γ4}) > δ2.

Hence
[min{γ1, γ3},min{γ2, γ4}] > [λ1, λ2] > [δ1, δ2] = µA(x0 ∗ y0),

so that x0 ∗ y0 6∈ U(A; [δ1, δ2]) which is a contradiction, since

µA(x0) = [γ1, γ2] ≥ [min{γ1, γ3},min{γ2, γ4}] > [λ1, λ2],

µA(y0) = [γ3, γ4] ≥ [min{γ1, γ3},min{γ2, γ4}] > [λ1, λ2],

imply that x0, y0 ∈ U(A; [δ1, δ2]). Thus µA(x ∗ y) ≥ rmin{µA(x), µA(y)} for all
x, y ∈ X, which completes the proof. �

Theorem 3.5. Each QS-subalgebra of X is an i-v level QS-subalgebra of an i-v
fuzzy QS-subalgebra of X.

Proof. Let Y be a QS-subalgebra of X, and A be an i-v fuzzy set on X defined by

µA(x) =
{

[α1, α2] if x ∈ Y
[0, 0] otherwise

where α1, α2 ∈ [0, 1] with α1 < α2. It is clear that U(A; [α1, α2]) = Y . Let x, y ∈ X.
If x, y ∈ Y , then x ∗ y ∈ Y and therefore

µA(x ∗ y) = [α1, α2] = rmin{[α1, α2], [α1, α2]} = rmin{µA(x), µA(y)}.

If x, y 6∈ Y , then µA(x) = [0, 0] = µA(y) and so

µA(x ∗ y) ≥ [0, 0] = rmin{[0, 0], [0, 0]} = rmin{µA(x), µA(y)}.

If x ∈ Y and y 6∈ Y , then µA(x) = [α1, α2] and µA(y) = [0, 0]. Thus

µA(x ∗ y) ≥ [0, 0] = rmin{[α1, α2], [0, 0]} = rmin{µA(x), µA(y)}.

Similarly, if y ∈ Y and x 6∈ Y , then µA(x ∗ y) ≥ rmin{µA(x), µA(y)}. Therefore A
is an i-v fuzzy QS-subalgebra of X. �

Theorem 3.6. Let Y be a subset of X and A be the i-v fuzzy set on X which is
given in the proof of Theorem 3.5 If A is an i-v fuzzy QS-subalgebra of X, then Y
is a QS-subalgebra of X.
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Proof. Let A be an i-v fuzzy QS-subalgebra of X, and x, y ∈ Y . Then µA(x) =
[α1, α2] = µA(y), thus

µA(x ∗ y) ≥ rmin{µA(x), µA(y)} = rmin{[α1, α2], [α1, α2]} = [α1, α2]

which implies that x ∗ y ∈ Y . �

Theorem 3.7. If A is an i-v fuzzy QS-subalgebra of X, then the set

XµA
:= {x ∈ X | µA(x) = µA(0)},

is a QS-subalgebra of X.

Proof. Let x, y ∈ XµA
. Then µA(x) = µA(0) = µA(y), and so

µA(x ∗ y) ≥ rmin{µA(x), µA(y)} = rmin{µA(0), µA(0)} = µA(0).

By Lemma 3.1, we get that µA(x ∗ y) = µA(0) which means that x ∗ y ∈ XµA
. �

Theorem 3.8. Let N be an i-v fuzzy subset of X defined by

µN (x) =
{

[α1, α2] if x ∈ N
[β1, β2] otherwise

for all [α1, α2], [β1, β2] ∈ D[0, 1] with [α1, α2] ≥ [β1, β2]. Then N is an i-v fuzzy
QS-subalgebra if and only if N is a QS-subalgebra of X. Moreover, in this case
XµN

= N .

Proof. Let N be an i-v fuzzy QS-subalgebra. Let x, y ∈ X be such that x, y ∈ N .
Then

µN (x ∗ y) ≥ rmin{µN (x), µN (y)} = rmin{[α1, α2], [α1, α2]} = [α1, α2],

and so x ∗ y ∈ N .
Conversely, suppose that N is a QS-subalgebra of X, and let x, y ∈ X.
(i) If x, y ∈ N then x ∗ y ∈ N , thus

µN (x ∗ y) = [α1, α2] = rmin{µN (x), µN (y)}.
(ii) If x 6∈ N or y 6∈ N , then

µN (x ∗ y) ≥ [β1, β2] = rminb{µN (x), µN (y)}.
This shows that N is an i-v fuzzy QS-subalgebra.

Moreover, we have

XµN
:= {x ∈ X | µN (x) = µN (0)} = {x ∈ X | µN (x) = [α1, α2]} = N.

�

Definition 3.3. [2] Let f be a mapping from the set X into a set Y . Let B be
an i-v fuzzy set in Y . Then the inverse image of B, denoted by f−1[B], is the i-v
fuzzy set in X with the membership function given by µf−1[B](x) = µB(f(x)), for
all x ∈ X.

Lemma 3.2. [2] Let f be a mapping from the set X into the set Y . Let m =
[mL,mU ] and n = [nL, nU ] be i-v fuzzy sets in X and Y respectively. Then

(i) f−1(n) = [f−1(nL), f−1(nU )],
(ii) f(m) = [f(mL), f(mU )].
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Proposition 3.2. Let f be a QS-homomorphism from X into Y and G be an
i-v fuzzy QS-subalgebra of Y with the membership function µG. Then the inverse
image f−1[G] of G is an i-v fuzzy QS-subalgebra of X.

Proof. Since B = [µL
B , µU

B ] is an i-v fuzzy QS-subalgebra of Y , by Theorem 3.2, we
get that µL

B and µU
B are fuzzy QS-subalgebras of Y . By Proposition 2.2, f−1[µL

B ]
and f−1[µU

B ] are fuzzy QS-subalgebras of X. By the above lemma and Theorem 3.2,
we can conclude that f−1(B) = [f−1(µL

B), f−1(µU
B)] is an i-v fuzzy QS-subalgebra

of X. �

Definition 3.4. [2] Let f be a mapping from the set X into a set Y , and A be an
i-v fuzzy set in X with membership function µA. Then the image of A, denoted by
f [A], is the i-v fuzzy set in Y with membership function defined by:

µf [A](y) =
{

rsupz∈f−1(y)µA(z) if f−1(y) 6= ∅,∀y ∈ Y,

[0,0] otherwise

in which f−1(y) = {x | f(x) = y}.

Theorem 3.9. Let f be a QS-homomorphism from X onto Y . If A is an i-v fuzzy
QS-subalgebra of X, then the image f [A] of A is an i-v fuzzy QS-subalgebra of Y .

Proof. Assume that A is an i-v fuzzy QS-subalgebra of X, then A = [µL
A, µU

A] is an
i-v fuzzy QS-subalgebra of X if and only if µL

B and µU
B are fuzzy QS-subalgebras

of X. By Proposition 2.3, f [µL
A] and f [µU

A] are fuzzy QS-subalgebras of Y . By
Lemma 3.2, and Theorem 3.2, we can conclude that f [A] = [f [µL

A], f [µU
A]] is an i-v

fuzzy QS-subalgebra of Y . �
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