Null Generalized Helices in \mathbb{L}^{m+2}

${ }^{1}$ A. F. Yaliniz and ${ }^{2}$ H. H. Hacisalihoğlu
${ }^{1}$ Department of Mathematics, Science Faculty,Dumlupınar University, Kütahya-Turkey
${ }^{2}$ Department of Mathematics, Science Faculty, Ankara University, 06100 Ankara-Turkey fyaliniz@dumlupinar.edu.tr

Abstract

In this paper, we obtain the harmonic curvetures of a null generalized helix in \mathbb{L}^{m+2}. Later we get the characterization of null general helices in \mathbb{L}^{m+2}.

2000 Mathematics Subject Classification: 53C50, 53C53

Key words and phrases: Lorentzian space, null helix, harmonic curveture.

1. Introduction

In the geometry of null curves, difficulties arise because the arc length vanishes, so that it is not possible to normalize the tangent vector in the usual way. One method of proceeding is to introduce a new parameter called the pseudo-arc which normalize the derivative of the tangent vector. Bonnor defined two curvatures K_{2} and K_{3} in terms of the pseudo-arc and a third curvature K_{1} which takes only two values, 0 whether the null curve is a straight line, or 1 otherwise (see also the paper by Bonnor [4] and Castagnino [5]. Many authors generalize the results of Bonnor in [4], since for a null curve in an n-dimensional Lorentzian space form they introduce a Frenet frame with the minimum number of curvature functions (which called the Cartan frame), and then they study the null helices in those spaces, that is, null curves with constant curvatures [3].

In this paper, we use the Duggal-Bejancu's Frenet equations introduced in Duggal and Bejancu [1] and distinguished Frenet frame $F=\left\{T, N, W_{1}, \ldots, W_{m}\right\}$ with respect to distinguished parameter t to define and study null generalized helices in the ($m+2$)-dimensional Lorentzian space for null curves. We don't consider a Frenet frame with the minimum number of curvature functions which are called the Cartan frame, but we consider all of the curvature functions which are $k_{i}, 1 \leq i \leq 2 m-1$, $\left(k_{2 m}=0\right)$. Also since t is a distinguished parameter from Duggal and Bejancu [1], we assume that $h=0[1,3]$. Later, we obtain harmonic curvatures $H_{i}, 1<i \leq m$, of null helix in \mathbb{L}^{m+2}. Thus we show that, for the first five harmonic curvatures H_{i}, $1 \leq i \leq 5$ we can not get a general formulae. If $i>5$, then we can get a general
formulae. Finally, we obtain the following characterization of null generalized helices in \mathbb{L}^{m+2} :

The null curve α is a generalized helix if and only if $2 H_{1}+\sum_{i=2}^{m} H_{i}^{2}$ is a constant.

2. Preliminaries

2.1. Symmetric bilinear forms. Let \mathbb{V} be a real vector space. A bilinear form on \mathbb{V} is an r-bilinear function:

$$
\langle,\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}
$$

and we consider only the symmetric case. A symmetric bilinear form \langle,$\rangle on \mathbb{V}$ is
(a) positive [negative] definite provided $v \neq 0$ implies $\langle v, v\rangle>0[<0]$,
(b) positive [negative] semidefinite provided $\langle v, v\rangle \geq 0(\leq 0)$ for all $v \in \mathbb{V}$.
(c) nondegenerate provided $\langle v, w\rangle=0$ for all $w \in \mathbb{V}$ implies $v \neq 0$.

If \langle,$\rangle is a symmetric bilinear form on \mathbb{V}$ then for any subspace \mathbb{W} of \mathbb{V} the restriction $\left.\langle\rangle\right|_{,\mathbb{W}} \times \mathbb{W}$ denoted merely by $\left.\langle\rangle\right|_{,\mathbb{W}}$, is again symmetric and bilinear. If \langle,$\rangle is [semi-] definite, so is \left.\langle\rangle\right|_{w$,$} .$

The index q of a symmetric bilinear form \langle,$\rangle on \mathbb{V}$ is the largest integer that is the dimension of a subspace $\mathbb{W} \subset \mathbb{V}$ on which $\left.\langle\rangle\right|_{,\mathbb{W}}$ is negative definite. Thus $0 \leq q \leq \operatorname{dim} \mathbb{V}$, and $q=0$ if and only if \langle,$\rangle is positive semidefinite [6].$
2.2. Scalar product. A scalar product \langle,$\rangle on a vector space \mathbb{V}$ is a nondegenerate symmetric bilinear form on $\mathbb{V}[6]$.
Lemma 2.1. [6] A scalar product space $V \neq 0$ has an orthonormal basis. The matrix of \langle,$\rangle relative to an orthonormal basis e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{V} is diagonal; in fact:

$$
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} \varepsilon_{j} \text { where } \varepsilon_{j}=\left\langle e_{j}, e_{j}\right\rangle= \pm 1
$$

Lemma 2.2. [5] Let $e_{1}, e_{2}, \ldots, e_{n}$ be an orthonormal basis for \mathbb{V}, with $\varepsilon_{j}=\left\langle e_{j}, e_{j}\right\rangle$. Then each $v \in \mathbb{V}$ has a unique expression $v=\sum \varepsilon_{i}\left\langle v, e_{i}\right\rangle e_{i}$.

Lemma 2.3. [6] For any orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{V} the number of negative signs in the signature $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ is the index q of \mathbb{V}.
Lemma 2.4. For any orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{V} the number of for an integer q with $0 \leq q \leq n$, changing the first q plus signs above the minus gives tensor:

$$
\left\langle v_{p}, w_{p}\right\rangle=-\sum_{i=1}^{q} v^{i} w^{i}+\sum_{j=q+1}^{n} v^{j} w^{j}
$$

of index q.
The resulting semi-Euclidean space \mathbb{R}_{q}^{n} reduces to \mathbb{R}^{n} if $q=0$. For $n \geq 2, \mathbb{R}_{1}^{n}$ is called Minkowski n-space; if $n=4$ it is the simplest example of a relativistic spacetime.

Fix the notation:

$$
\varepsilon_{i}= \begin{cases}-1 & (0 \leq i \leq q-1) \\ 1 & (q \leq i \leq n-1)\end{cases}
$$

A Lorentz vector space to be a scalar product space of index 1 and dimension $\geq 2[5]$.
2.3. Lorentzian space. Let M be a smooth connected paracompact Hausdorff manifold and let $\pi: T M \rightarrow M$ denote the tangent bundle of M. A Lorentzian metric \langle,$\rangle for M$ is a smooth symmetric tensor field of type $(0,2)$ on M such that for each $p \in M$, the tensor $\langle,\rangle_{p}: T_{P} M \times T_{P} M \rightarrow \mathbb{R}$ is a nondegenerate inner product of signature $(-,+, \ldots,+)$. In other words, a matrix representation of \langle,$\rangle at p$ will have one negative eigenvalue and all other eigenvalues will be positive.

A Lorentzian manifold $(M,\langle\rangle$,$) is a manifold M$ together with a Lorentzian metric \langle,$\rangle for M$. All noncompact manifolds admit Lorentzian metrics. However, a compact manifold admits a Lorentzian metric if its euler characteristic vanishes [7]. Lorentzian space is the manifold $M=\mathbb{R}^{n}$ together with the metric

$$
d s^{2}=-d x_{1}^{2}+\sum_{i=2}^{n} d x_{i}^{2}
$$

This space-time is time oriented by the vector field $\partial / \partial x_{1}[7]$.
Definition 2.1. [6] A tangent vector $v \in \mathbb{L}^{n}$ is:
(i) space-like if $\langle v, v\rangle>0$ or $v=0$,
(ii) null if $\langle v, v\rangle=0$ and $v \neq 0$,
(iii) time-like if $\langle v, v\rangle<0$.
2.4. Curves. A curve in a Lorentzian space, \mathbb{L}^{n} is a smooth mapping $\alpha: I \rightarrow$ \mathbb{L}^{n} where I is open interval in the real line \mathbb{R}. The interval I has a coordinate system consisting of the identity map u of I. The velocity vector of α at $t \in I$ is $\alpha^{\prime}=\left.\frac{d \alpha(u)}{d(u)}\right|_{t}$. A curve α is said to be regular if $\alpha^{\prime}(t)$ does not vanish for all t in $I . \alpha \in \mathbb{L}^{n}$ is space-like if its velocity vectors α^{\prime} are space-like for all $t \in I$, similarly for time-like and null. If α is a null curve, we can reparametrize it such that $\left\langle\alpha^{\prime}(t), \alpha^{\prime}(t)\right\rangle=0$ and $\alpha^{\prime}(t) \neq 0[6]$.

Let $(M,\langle\rangle$,$) be a proper (m+2)$-dimensional semi-Riemannian manifold of index q and let us consider α a smooth curve in M locally parametrized by $\alpha: I \subset \mathbb{R} \rightarrow M$. The curve α is said to be null or light-like if the tangent vector $\alpha^{\prime}(t)=T$ at any point is a null vector. That is $\langle T, T\rangle=0$. The following concepts are taken from Duggal and Bejancu [1].

Let $T \alpha$ denote the tangent bundle of α and define, as in the non-degenerate case, the bundle $T \alpha^{\perp}$ by:

$$
T \alpha^{\perp}=\bigcup_{p \in \alpha} T_{p} \alpha^{\perp}, T_{p} \alpha^{\perp}=\left\{\xi_{p} \in T_{p} M:\left\langle\xi_{p}, T_{p}\right\rangle=0, T_{p} \in T_{p} \alpha\right\}
$$

where T_{p} is a null vector tangent to α at p . It is well known that $T \alpha^{\perp}$ is of rank $m+1$. Since T_{p} is a null vector, it is easily follows that $T \alpha$ is a vector subbundle of $T \alpha^{\perp}$ of rank 1. Then we may consider a complementary vector subbundle $S\left(T \alpha^{\perp}\right)$ to $T \alpha$ in $T \alpha^{\perp}$ such that:

$$
T \alpha^{\perp}=T \alpha \perp S\left(T \alpha^{\perp}\right)
$$

where \perp means orthogonal direct sum. It is known that the subbundle $S\left(T \alpha^{\perp}\right)$, called the screen vector bundle of α, is non-degenerate and of dimension m. Note that, in contrast with the non-degenerate case, the tangent bundle is contained in
the normal bundle, and the screen bundle is not unique. These two properties leads to a much more difficult and also different geometry of null curves with respect to non-degenerate (space-like or time-like) curves.

Since $S\left(T \alpha^{\perp}\right)$ is non-degenerate, we have the decomposition:

$$
\left.T M\right|_{\alpha}=S\left(T \alpha^{\perp}\right) \perp S\left(T \alpha^{\perp}\right)^{\perp}
$$

where $S\left(T \alpha^{\perp}\right)^{\perp}$ is the complementary orthogonal vector bundle to $S\left(T \alpha^{\perp}\right)$ in $T M(\alpha)$. The following result is well known.
Theorem 2.1. [8] Let α be a null curve of a semi-Riemannian manifold (M,\langle,$\rangle)$ and consider $S\left(T \alpha^{\perp}\right)$ a screen vector bundle of α. Then there exist a unique vector bundle E over α, of rank 1, such that on each coordinate neighbourhood $U \subset \alpha$ there is a unique section $N \in \Gamma\left(\left.E\right|_{\alpha}\right)$ satisfying:

$$
\langle T, N\rangle=1 \quad\left(\alpha^{\prime}(t)=T\right)
$$

and

$$
\langle N, N\rangle=\langle N, X\rangle=0, \quad \text { for all } \quad X \in \Gamma\left(S\left(T \alpha^{\perp}\right)\right.
$$

The above vector bundle E will be denoted by $\operatorname{ntr}(\alpha)$ and it is called the null transversal bundle of α with respect to $S\left(T \alpha^{\perp}\right)$. The vector field N is called the null transversal vector field of α with respect to $\alpha^{\prime}(t)$. We define the transversal vector bundle of $\alpha, \operatorname{tr}(\alpha)$, as the vector bundle

$$
\operatorname{tr}(\alpha)=\operatorname{ntr}(\alpha) \perp S\left(T \alpha^{\perp}\right)
$$

and then we have

$$
\left.T M\right|_{\alpha}=T \alpha \oplus \operatorname{tr}(\alpha)=(T \alpha \oplus \operatorname{ntr}(\alpha)) \perp S\left(T \alpha^{\perp}\right)
$$

from which the following result easily follows:
Proposition 2.1. [1] Let α be a null curve of semi-Riemannian manifold (M,\langle,$\rangle)$ of index q. Then any screen vector bundle of semi-Riemannian of index $q-1$. Hence, if M is a Lorentzian manifold, then any screen vector bundle is Riemannian.

2.5. Harmonic curvatures.

Definition 2.2. Let α be a null curve in \mathbb{L}^{m+2} and T be the first Frenet vector field of $\alpha\left(\alpha^{\prime}(t)=T\right) . X \in \chi\left(\mathbb{L}^{m+2}\right)$ being a constant unit vector field, if

$$
\langle T, X\rangle=\text { constant }
$$

then α is called a general helix (inclined curves) in \mathbb{L}^{m+2}. The space $\operatorname{Sp}\{X\}$ is called slope axis.
Definition 2.3. Let $\alpha \rightarrow \mathbb{L}^{m+2}$ be a general helix. Assume X is a unit and constant vector field of \mathbb{L}^{m+2} and $\left\{T, N, W_{1}, \ldots, W_{m}\right\}$ is the Frenet ($m+2$) - frame at the point of $\alpha(t)$.

$$
\begin{gathered}
H_{j}: I \rightarrow \mathbb{R} \\
\langle N, X\rangle=H_{1}\langle T, X\rangle, \quad\left\langle W_{1}, X\right\rangle=0 \\
\left\langle W_{i}, X\right\rangle=H_{i}\langle T, X\rangle, \quad 2 \leq i \leq m
\end{gathered}
$$

where the value of the H_{i} function at $\alpha(t)$ is called as the j-th harmonic curvature according to X at the point of $\alpha(t)$ of α.

3. Harmonic Curvature of a Null Generalized Helix in \mathbb{L}^{m+2}

Suppose α is a null curve of an $(m+2)$-dimensional Lorentz manifold $(M,\langle\rangle$,$) . De-$ note by ∇ the Levi-Civita connection on M and $\alpha^{\prime}=T$. In this case, $\left\{T, N, W_{1}, \ldots\right.$, $\left.W_{m}\right\}$ is the Frenet frame of $\alpha \subset \mathbb{L}^{m+2}$, where T and N are null vectors and W_{i}, $1 \leq i \leq m$, are space-like vectors. Thus the Frenet equations of a null curve in an ($m+2$)-dimensional Lorentz manifold are as follows:

$$
\begin{align*}
\nabla_{T} T & =h T+k_{1} W_{1} \\
\nabla_{T} N & =-h N+k_{2} W_{1}+k_{3} W_{2} \\
\nabla_{T} W_{1} & =-k_{2} T-k_{1} N+k_{4} W_{2}+k_{5} W_{3} \\
\nabla_{T} W_{2} & =-k_{3} T-k_{4} W_{1}+k_{6} W_{3}+k_{7} W_{4} \\
\nabla_{T} W_{3} & =-k_{5} W_{1}-k_{6} W_{2}+k_{8} W_{4}+k_{9} W_{5} \\
& \vdots \tag{3.1}\\
\nabla_{T} W_{m-2} & =-k_{2 m-5} W_{m-4}-k_{2 m-4} W_{m-3}+k_{2 m-2} W_{m-1}+k_{2 m-1} W_{m} \\
\nabla_{T} W_{m-1} & =-k_{2 m-3} W_{m-3}-k_{2 m-2} W_{m-2}+k_{2 m} W_{m} \\
\nabla_{T} W_{m} & =-k_{2 m-1} W_{m-2}-k_{2 m} W_{m-1}
\end{align*}
$$

where h and $\left\{k_{i}\right\}, 1 \leq i \leq 2 m$, are smooth functions and $\left\{W_{1}, W_{2}, \ldots, W_{m}\right\}$ is a certain orthonormal basis of $\Gamma\left(S\left(T \alpha^{\perp}\right)\right.$). If $h=0$, then the parameter t is said to be a distinguished parameter. Moreover, if the last curvature $k_{2 m}$ vanishes, then $\left\{T, N, W_{1}, W_{2}, \ldots, W_{m}\right\}$ is called a distinguished Frenet frame [1].
Theorem 3.1. Assume that $\alpha \subset \mathbb{L}^{4}$ is a null generalized helix given by distinguished Frenet frame $\left\{T, N, W_{1}, W_{2}\right\}$ and curvature functions $k_{1}, k_{2}, k_{3}, k_{4}$. Let X be a unit and constant vector field (time-like or space-like) of \mathbb{L}^{4}. By accepting the slope axis of α curve is $\operatorname{Sp}\{X\}$ and harmonic curvatures are H_{1}, H_{2}, the following equations are obtained

$$
\langle N, X\rangle=H_{1}\langle T, X\rangle,\left\langle W_{1}, X\right\rangle=0,\left\langle W_{2}, X\right\rangle=H_{2}\langle T, X\rangle,
$$

where $H_{1}=-k_{2} / k_{1}$ and $H_{2}=H_{1}^{\prime} / k_{3}$.
Proof. From equations (3.1), it is easy to see that the Frenet equations of a null curve α in a 4-dimensional Lorentzian manifold can be written down as follows:

$$
\begin{align*}
\nabla_{T} T & =h T+k_{1} W_{1} \\
\nabla_{T} N & =-h N+k_{2} W_{1}+k_{3} W_{2} \\
\nabla_{T} W_{1} & =-k_{2} T-k_{1} N+k_{4} W_{2} \tag{3.2}\\
\nabla_{T} W_{2} & =-k_{3} T-k_{4} W_{1}
\end{align*}
$$

where $T=\alpha^{\prime}$. If $h=0$, then the parameter t is said to be a distinguished parameter. Moreover, if the last curvature k_{4} vanishes, $\left\{T, N, W_{1}, W_{2}\right\}$ is then called a distinguished Frenet frame $[1,3]$.

These equalities are present from Theorem 2.1:

$$
\begin{gathered}
\langle T, T\rangle=0,\langle N, N\rangle=0,\langle T, N\rangle=1,\left\langle T, W_{i}\right\rangle=0,\left\langle N, W_{i}\right\rangle=0, \\
\left\langle W_{i}, W_{j}\right\rangle=\delta_{i j}, \text { for } i, j=1,2 .
\end{gathered}
$$

By using the Definition 2.2, which is given by:

$$
\begin{equation*}
\langle T, X\rangle=\text { constant } \tag{3.3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left\langle\nabla_{T} T, X\right\rangle=0 \tag{3.4}
\end{equation*}
$$

Using the first equation from (3.2), the result is

$$
\begin{equation*}
\left\langle W_{1}, X\right\rangle=0 . \tag{3.5}
\end{equation*}
$$

Taking the inner product of the third equation in (3.2) by X

$$
\left\langle\nabla_{T} W_{1}, X\right\rangle=-k_{2}\langle T, X\rangle-k_{1}\langle N, X\rangle,
$$

is obtained, where since $\left\langle W_{1}, X\right\rangle=0$, it is written as $\left\langle\nabla_{T} W_{1}, X\right\rangle=0$. Thus it is

$$
\langle N, X\rangle=\frac{-k_{2}}{k_{1}}\langle T, X\rangle
$$

where $H_{1}=-k_{2} / k_{1}$ is called the 1-st harmonic curvature function. As a consequence

$$
\begin{equation*}
\langle N, X\rangle=H_{1}\langle T, X\rangle \tag{3.6}
\end{equation*}
$$

is found. By taking the derivative of equation (3.6) with respect to T, we deduce the following equation

$$
\begin{equation*}
\left\langle\nabla_{T} N, X\right\rangle=H_{1}^{\prime}\langle T, X\rangle \tag{3.7}
\end{equation*}
$$

Taking the inner product of the second Frenet equation in (3.2) by X and using the equations (3.5) and (3.7)

$$
\left\langle W_{2}, X\right\rangle=\frac{H_{1}^{\prime}}{k_{3}}\langle T, X\rangle
$$

is obtained, where $H_{2}=H_{1}^{\prime} / k_{3}$ is called 2-nd harmonic curvature function. Thus the deduction is

$$
\begin{equation*}
\left\langle W_{2}, X\right\rangle=H_{2}\langle T, X\rangle \tag{3.8}
\end{equation*}
$$

Theorem 3.2. Let $\alpha \subset \mathbb{L}^{6}$ be a null generalized helix given by distinguished Frenet frame $\left\{T, N, W_{1}, W_{2}, W_{3}, W_{4}\right\}$ and curvature functions $k_{i}, 1 \leq i \leq 8$. If the slope axis of α is $S p\{X\}$ and harmonic curvature functions are $H_{i}, i=1,2,3,4$, the following equations are existent

$$
\left\langle W_{3}, X\right\rangle=H_{3}\langle T, X\rangle,\left\langle W_{4}, X\right\rangle=H_{4}\langle T, X\rangle
$$

where $H_{3}=-k_{4} / k_{5} H_{2}$ and $H_{4}=\left\{H_{2}^{\prime}+k_{3}-k_{6} H_{3}\right\} / k_{7}$.
Proof. The Frenet equations of a null curve in a 6-dimensional Lorentzian manifold write down as follows

$$
\begin{align*}
\nabla_{T} T & =h T+k_{1} W_{1} \\
\nabla_{T} N & =-h N+k_{2} W_{1}+k_{3} W_{2} \\
\nabla_{T} W_{1} & =-k_{2} T-k_{1} N+k_{4} W_{2}+k_{5} W_{3} \tag{3.9}\\
\nabla_{T} W_{2} & =-k_{3} T-k_{4} W_{1}+k_{6} W_{3}+k_{7} W_{4} \\
\nabla_{T} W_{3} & =-k_{5} W_{1}-k_{6} W_{2}+k_{8} W_{4} \\
\nabla_{T} W_{4} & =-k_{7} W_{2}-k_{8} W_{3}
\end{align*}
$$

where $T=\alpha^{\prime}$. If the last curvature k_{8} vanishes, then $\left\{T, N, W_{1}, W_{2}, W_{3}, W_{4}\right\}$ is called a distinguished Frenet frame [1,3].

Then the following equalities are existent from Theorem 2.1

$$
\begin{gathered}
\langle T, T\rangle=0,\langle N, N\rangle=0,\langle T, N\rangle=1,\left\langle T, W_{i}\right\rangle=0 \\
\left\langle N, W_{i}\right\rangle=0,\left\langle W_{i}, W_{j}\right\rangle=\delta_{i j}, \text { for } i, j=1,2,3,4
\end{gathered}
$$

Taking the inner product of the third Frenet equation in (3.9) by X :

$$
\left\langle\nabla_{T} W_{1}, X\right\rangle=-k_{2}\langle T, X\rangle-k_{1}\langle N, X\rangle+k_{4}\left\langle W_{2}, X\right\rangle+k_{5}\left\langle W_{3}, X\right\rangle
$$

is found. By using the equations (3.5), (3.6), (3.8) and Definition 2.3, we obtain

$$
\left\langle W_{3}, X\right\rangle=\frac{-k_{4}}{k_{5}} H_{2}\langle T, X\rangle .
$$

Thus $H_{3}=-k_{4} / k_{5} H_{2}$ is called the 3-rd harmonic curvature function. That is

$$
\begin{equation*}
\left\langle W_{3}, X\right\rangle=H_{3}\langle T, X\rangle \tag{3.10}
\end{equation*}
$$

If we take the inner product of the 4 -th equation in (3.9) by X, we get

$$
\begin{equation*}
\left\langle\nabla_{T} W_{2}, X\right\rangle=-k_{3}\langle T, X\rangle-k_{4}\left\langle W_{1}, X\right\rangle m+k_{6}\left\langle W_{3}, X\right\rangle+k_{7}\left\langle W_{4}, X\right\rangle \tag{3.11}
\end{equation*}
$$

where we know that $\left\langle W_{1}, X\right\rangle=0$ and $\left\langle W_{3}, X\right\rangle=H_{3}\langle T, X\rangle$. Also if we take the derivative of (3.8) with respect to T, we have $\left\langle\nabla_{T} W_{2}, X\right\rangle=H_{2}^{\prime}\langle T, X\rangle$. Using these values in equation (3.11), we get

$$
\left\langle W_{4}, X\right\rangle=\frac{1}{k_{7}}\left\{H_{2}^{\prime}+k_{3}-k_{6} H_{3}\right\}\langle T, X\rangle,
$$

where $H_{4}=\left\{H_{2}^{\prime}+k_{3}-k_{6} H_{3}\right\} / k_{7}$ is called the 4 -th harmonic curvature function. Thus we obtain

$$
\begin{equation*}
\left\langle W_{4}, X\right\rangle=H_{4}\langle T, X\rangle \tag{3.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle\nabla_{T} W_{4}, X\right\rangle=H_{4}^{\prime}\langle T, X\rangle . \tag{3.13}
\end{equation*}
$$

Theorem 3.3. Let $\alpha \subset \mathbb{L}^{7}$ be a null generalized helix given by distinguished Frenet frame $\left\{T, N, W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right\}$ and consider $\operatorname{Sp}\{X\}$ is slope axis of α. For the curvature functions are $k_{i}, 1 \leq i \leq 10$, and harmonic curvature functions are H_{i}, $1 \leq i \leq 5$, the following conclusion is existent:

$$
\left\langle W_{5}, X\right\rangle=H_{5}\langle T, X\rangle
$$

where $H_{5}=\left\{H_{3}^{\prime}+k_{6} H_{2}-k_{8} H_{4}\right\} / k_{9}$ is the 5th harmonic curvature function.
Proof. Recall that the Frenet equations of a null curve α in a 7-dimensional Lorentzian manifold can be written down as follows

$$
\begin{align*}
\nabla_{T} T & =h T+k_{1} W_{1} \\
\nabla_{T} N & =-h N+k_{2} W_{1}+k_{3} W_{2} \\
\nabla_{T} W_{1} & =-k_{2} T-k_{1} N+k_{4} W_{2}+k_{5} W_{3} \\
\nabla_{T} W_{2} & =-k_{3} T-k_{4} W_{1}+k_{6} W_{3}+k_{7} W_{4} \tag{3.14}\\
\nabla_{T} W_{3} & =-k_{5} W_{1}-k_{6} W_{2}+k_{8} W_{4}+k_{9} W_{5}
\end{align*}
$$

$$
\begin{aligned}
& \nabla_{T} W_{4}=-k_{7} W_{2}-k_{8} W_{3}+k_{10} W_{5} \\
& \nabla_{T} W_{5}=-k_{9} W_{3}-k_{10} W_{4}
\end{aligned}
$$

where $T=\alpha^{\prime}$. If the last curvature k_{10} vanishes, then $\left\{T, N, W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right\}$ is called a distinguished Frenet frame [1,3]. Thus we have from Theorem 2.1 that

$$
\begin{array}{r}
\langle T, T\rangle=0,\langle N, N\rangle=0,\langle T, N\rangle=1,\left\langle T, W_{i}\right\rangle=0,\left\langle N, W_{i}\right\rangle=0 \\
\left\langle W_{i}, W_{j}\right\rangle=\delta_{i j}, \text { fori, } j=1,2,3,4,5 .
\end{array}
$$

Taking the inner product of the 5 th equation in (3.14) by X, we obtain

$$
\begin{align*}
\left\langle\nabla_{T} W_{3}, X\right\rangle= & -k_{5}\left\langle W_{1}, X\right\rangle-k_{6}\left\langle W_{2}, X\right\rangle \\
& +k_{8}\left\langle W_{4}, X\right\rangle+k_{9}\left\langle W_{5}, X\right\rangle . \tag{3.15}
\end{align*}
$$

In addition, taking the derivative of equation (3.10) with respect to T, we set

$$
\left\langle\nabla_{T} W_{3}, X\right\rangle=H_{3}^{\prime}\langle T, X\rangle
$$

On the other hand, the equations (3.5),(3.8), and (3.12) leads to

$$
\left\langle W_{5}, X\right\rangle=\frac{1}{k_{9}}\left\{H_{3}^{\prime}+k_{6} H_{2}-k_{8} H_{4}\right\}\langle T, X\rangle
$$

Thus $H_{5}=\frac{1}{k_{9}}\left\{H_{3}^{\prime}+k_{6} H_{2}-k_{8} H_{4}\right\}$ is called the 5 th harmonic curvature function.Thus

$$
\begin{equation*}
\left\langle W_{5}, X\right\rangle=H_{5}\langle T, X\rangle \tag{3.16}
\end{equation*}
$$

Theorem 3.4. Assume that $\alpha \subset \mathbb{L}^{m+2}$ is a null generalized helix given by distinguished Frenet frame $\left\{T, N, W_{1}, W_{2}, \ldots, W_{m}\right\}$ and curvature functions $k_{i}, 1 \leq i \leq$ $2 m$. Let X be a unit and constant vector field (time-like or space-like) of \mathbb{L}^{m+2}. If the curve α has slope axis $S p\{X\}$ and harmonic curvatures are $H_{j}, 6 \leq j \leq m$, then

$$
\left\langle W_{j}, X\right\rangle=H_{j}\langle T, X\rangle, \quad 6 \leq j \leq m
$$

where H_{j} is the jth harmonic curvature function and

$$
H_{j}=\frac{1}{k_{2 j-1}}\left\{H_{j-2}^{\prime}+k_{2 j-5} H_{j-4}+k_{2 j-4} H_{j-3}-k_{2 j-2} H_{j-1}\right\} .
$$

Proof. Recall that $\langle T, X\rangle=$ constant for is a null helix α in \mathbb{L}^{m+2}. We use the induction method. For the case $j=6$, we must show that $\left\langle W_{6}, X\right\rangle=H_{6}\langle T, X\rangle$. From Theorem 3.1, Theorem 3.2, Theorem 3.3, we obtain

$$
\begin{aligned}
& \left\langle W_{1}, X\right\rangle=0,\langle N, X\rangle=H_{1}\langle T, X\rangle \\
& \left\langle W_{i}, X\right\rangle=H_{i}\langle T, X\rangle, \quad 2 \leq i \leq 5 .
\end{aligned}
$$

Considering the inner product of the 6 -th equation in (3.1) by X, we have

$$
\begin{aligned}
\left\langle\nabla_{T} W_{4}, X\right\rangle= & -k_{7}\left\langle W_{2}, X\right\rangle-k_{8}\left\langle W_{3}, X\right\rangle \\
& +k_{10}\left\langle W_{5}, X\right\rangle+k_{11}\left\langle W_{6}, X\right\rangle .
\end{aligned}
$$

By using the values of (3.8), (3.10) and (3.13) in the equation above, we set

$$
\left\langle W_{6}, X\right\rangle=\frac{1}{k_{11}}\left\{H_{4}^{\prime}+k_{7} H_{2}+k_{8} H_{3}-k_{10} H_{5}\right\}\langle T, X\rangle .
$$

Since

$$
\begin{equation*}
H_{6}=\frac{1}{k_{11}}\left\{H_{4}^{\prime}+k_{7} H_{2}+k_{8} H_{3}-k_{10} H_{5}\right\} \tag{3.17}
\end{equation*}
$$

that

$$
\begin{equation*}
\left\langle W_{6}, X\right\rangle=H_{6}\langle T, X\rangle \tag{3.18}
\end{equation*}
$$

Indeed, since $X \in\left\{T, N, W_{1}, W_{2}, \ldots, W_{6}\right\}$, it is clear that

$$
\begin{align*}
X & =\langle N, X\rangle T+\langle T, X\rangle N+\left\langle W_{2}, X\right\rangle W_{2}+\left\langle W_{3}, X\right\rangle W_{3} \\
& +\left\langle W_{4}, X\right\rangle W_{4}+\left\langle W_{5}, X\right\rangle W_{5}+\left\langle W_{6}, X\right\rangle W_{6} . \tag{3.19}
\end{align*}
$$

If we take the derivative of (3.19) with respect to T, then we obtain:

$$
\begin{aligned}
\nabla_{T} X= & \left\langle\nabla_{T} N, X\right\rangle T+\langle N, X\rangle \nabla_{T} T+\left\langle\nabla_{T} T, X\right\rangle N+\langle T, X\rangle \nabla_{T} N \\
& +\left\langle\nabla_{T} W_{2}, X\right\rangle W_{2}+\left\langle W_{2}, X\right\rangle \nabla_{T} W_{2}+\left\langle\nabla_{T} W_{3}, X\right\rangle W_{3} \\
& +\left\langle W_{3}, X\right\rangle \nabla_{T} W_{3}+\left\langle\nabla_{T} W_{4}, X\right\rangle W_{4}+\left\langle W_{4}, X\right\rangle \nabla_{T} W_{4} \\
& +\left\langle\nabla_{T} W_{5}, X\right\rangle W_{5}+\left\langle W_{5}, X\right\rangle \nabla_{T} W_{5} \\
& +\left\langle\nabla_{T} W_{6}, X\right\rangle W_{6}+\left\langle W_{6}, X\right\rangle \nabla_{T} W_{6} .
\end{aligned}
$$

Using (3.1) and the value of $\left\langle W_{6}, X\right\rangle$ in (3.18) we obtain $\nabla_{T} X=0$. This means that X is a constant vector field.

Conversely, since X is a time-like or space-like vector field, $\langle X, X\rangle= \pm 1$. Thus, from (3.19),

$$
\begin{array}{r}
\pm 1=2\langle N, X\rangle\langle T, X\rangle+\left\langle W_{2}, X\right\rangle^{2}+\left\langle W_{3}, X\right\rangle^{2} \\
+\left\langle W_{4}, X\right\rangle^{2}+\left\langle W_{5}, X\right\rangle^{2}+\left\langle W_{6}, X\right\rangle^{2}
\end{array}
$$

or by using Theorem 3.1, Theorem 3.2, Theorem 2.3 and equation (3.18), we set

$$
\begin{equation*}
1=2 H_{1}+\sum_{i=2}^{6} H_{i}^{2} \tag{3.20}
\end{equation*}
$$

By taking the derivative of (3.20),

$$
\begin{equation*}
2 H_{1}^{\prime}+2 H_{2} H_{2}^{\prime}+2 H_{3} H_{3}^{\prime}+2 H_{4} H_{4}^{\prime}+2 H_{5} H_{5}^{\prime}+2 H_{6} H_{6}^{\prime}=0 \tag{3.21}
\end{equation*}
$$

Additionally, from (3.1), we may derive the following results

$$
\begin{align*}
& \left\langle\nabla_{T} W_{2}, X\right\rangle=-k_{3}\langle T, X\rangle+k_{6}\left\langle W_{3}, X\right\rangle+k_{7}\left\langle W_{4}, X\right\rangle, \\
& \left\langle\nabla_{T} W_{3}, X\right\rangle=-k_{6}\left\langle W_{2}, X\right\rangle+k_{8}\left\langle W_{4}, X\right\rangle+k_{10}\left\langle W_{5}, X\right\rangle, \\
& \left\langle\nabla_{T} W_{5}, X\right\rangle=-k_{9}\left\langle W_{3}, X\right\rangle-k_{10}\left\langle W_{4}, X\right\rangle, \tag{3.22}\\
& \left\langle\nabla_{T} W_{6}, X\right\rangle=-k_{11}\left\langle W_{4}, X\right\rangle .
\end{align*}
$$

Using the equation $\left\langle W_{i}, X\right\rangle=H_{i}\langle T, X\rangle, 2 \leq i \leq 5$ and equation (3.18) it is clear that

$$
\left\langle\nabla_{T} W_{i}, X\right\rangle=H_{i}^{\prime}\langle T, X\rangle, \quad 2 \leq i \leq 6
$$

Thus from (3.22), we have

$$
\begin{align*}
H_{2}^{\prime} & =-k_{3}+k_{6} H_{3}+k_{7} H_{4}, \\
H_{3}^{\prime} & =-k_{6} H_{2}+k_{8} H_{4}+k_{9} H_{5}, \tag{3.23}\\
H_{5}^{\prime} & =-k_{9} H_{3}-k_{10} H_{4}, \\
H_{6}^{\prime} & =-k_{11} H_{4} .
\end{align*}
$$

If we put the equalities at (3.23) in equation (3.21), we obtain

$$
\begin{aligned}
0= & H_{2}\left\{k_{6} H_{3}+k_{7} H_{4}\right\}+H_{3}\left\{-k_{6} H_{2}+k_{8} H_{4}+k_{9} H_{5}\right\} \\
& +H_{4} H_{4}^{\prime}+H_{5}\left\{-k_{9} H_{3}-k_{10} H_{4}\right\}+H_{6}\left\{-k_{11} H_{4}\right\}
\end{aligned}
$$

or

$$
\begin{equation*}
H_{6}=\frac{1}{k_{11}}\left\{H_{4}^{\prime}-k_{10} H_{5}+k_{8} H_{3}+k_{7} H_{2}\right\} \tag{3.24}
\end{equation*}
$$

Thus the theorem holds for the case $j=6$. Assuming that the theorem holds for the case $j<p$, let us show that the theorem also holds for the case $j=p$. This assume that

$$
\begin{equation*}
\left\langle W_{p-1}, X\right\rangle=H_{p-1}\langle T, X\rangle \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle W_{p-2}, X\right\rangle=H_{p-2}\langle T, X\rangle \tag{3.26}
\end{equation*}
$$

If we take the derivative of (3.26) with respect to T, then, we obtain

$$
\begin{equation*}
\left\langle\nabla_{T} W_{p-2}, X\right\rangle=H_{p-2}^{\prime}\langle T, X\rangle \tag{3.27}
\end{equation*}
$$

If the value of $\nabla_{T} W_{p-2}$ in (3.1) supersede in (3.27), the inference is

$$
\begin{aligned}
H_{p-2}^{\prime}\langle T, X\rangle= & -k_{2 p-5}\left\langle W_{p-4}, X\right\rangle-k_{2 p-4}\left\langle W_{p-3}, X\right\rangle \\
& +k_{2 p-2}\left\langle W_{p-1}, X\right\rangle+k_{2 p-1}\left\langle W_{p}, X\right\rangle .
\end{aligned}
$$

Since $\left\langle W_{p-4}, X\right\rangle=H_{p-4}\langle T, X\rangle,\left\langle W_{p-3}, X\right\rangle=H_{p-3}\langle T, X\rangle,\left\langle W_{p-1}, X\right\rangle=H_{p-1}\langle T, X\rangle$, we have

$$
\left\{k_{2 p-5} H_{p-4}+k_{2 p-4} H_{p-3}-k_{2 p-2} H_{p-1}+H_{p-2}^{\prime}\right\}\langle T, X\rangle=k_{2 p-1}\left\langle W_{p}, X\right\rangle
$$

or

$$
\left\langle W_{p}, X\right\rangle=\frac{1}{k_{2 p-1}}\left\{k_{2 p-5} H_{p-4}+k_{2 p-4} H_{p-3}-k_{2 p-2} H_{p-1}+H_{p-2}^{\prime}\right\}\langle T, X\rangle
$$

where

$$
H_{p}=\frac{1}{k_{2 p-1}}\left\{k_{2 p-5} H_{p-4}+k_{2 p-4} H_{p-3}-k_{2 p-2} H_{p-1}+H_{p-2}^{\prime}\right\}
$$

Thus $\left\langle W_{p}, X\right\rangle=H_{p}\langle T, X\rangle$.
Definition 3.1. Assume that $\alpha \subset \mathbb{L}^{m+2}$ is a null generalized helix given by distinguished Frenet frame $T, N, W_{1}, W_{2}, \ldots, W_{m}$ and curvature functions $k_{i}, 1 \leq i \leq$ $2 m-1$, then higher ordered harmonic curvatures of α are as follows

$$
H_{i}= \begin{cases}-\frac{k_{2}}{k_{1}}, & i=1 \tag{3.28}\\ \frac{H_{1}^{\prime}}{k_{3}}, & i=2 \\ -\frac{k_{4}}{k_{5}} H_{2}, & i=3 \\ \frac{1}{k_{7}}\left\{H_{2}^{\prime}+k_{3}-k_{6} H_{3}\right\}, & i=5 \\ \frac{1}{k_{9}}\left\{H_{3}^{\prime}+k_{6} H_{2}-k_{8} H_{4}\right\}, & 5<i \leq m \\ \frac{1}{k_{2 m-1}}\left\{H_{m-2}^{\prime}+k_{2 m-5} H_{m-4}\right. \\ \left.+k_{2 m-4} H_{m-3}-k_{2 m-2} H_{m-1}\right\}, & \end{cases}
$$

4. The Characterization of Null Generalized Helices in \mathbb{L}^{m+2}

Theorem 4.1. Suppose that $\alpha \subset \mathbb{L}^{m+2}$ is a null curve given by distinguished Frenet frame $\left\{T, N, W_{1}, W_{2}, \ldots, W_{m}\right\}$. Let $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ be harmonic curvatures of α. Then a null curve α is a general helix in \mathbb{L}^{m+2} if and only if $2 H_{1}+\sum_{i=2}^{m} H_{i}^{2}$ is a constant.

Proof. (\Rightarrow) Let $\alpha \subset \mathbb{L}^{m+2}$ be a general null helix, then, for α whose slope axis $S p\{X\}$ we know that $\langle T, X\rangle=$ constant. Also from Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4 we know that

$$
\left\langle W_{j}, X\right\rangle=H_{j}\langle T, X\rangle, \quad 2 \leq j \leq m
$$

In addition since $X \in\left\{T, N, W_{1}, W_{2}, \ldots, W_{m}\right\}$, it can be written as:

$$
X=\lambda_{1} T+\lambda_{2} N+\lambda_{3} W_{1}+\ldots+\lambda_{m+2} W_{m}
$$

or

$$
X=\langle N, X\rangle T+\langle T, X\rangle N+\left\langle W_{2}, X\right\rangle W_{2}+\ldots+\left\langle W_{m}, X\right\rangle W_{m}
$$

Now, assume that X is a time-like (or space-like) vector field, then since $\langle X, X\rangle= \pm 1$, it is clear that:

$$
\pm 1=\langle X, X\rangle=2\langle N, X\rangle+\left\langle W_{2}, X\right\rangle^{2}+\ldots+\left\langle W_{m}, X\right\rangle^{2}
$$

or

$$
\pm 1=2\langle T, X\rangle\langle N, X\rangle+\sum_{i=2}^{m}\left\langle W_{i}, X\right\rangle^{2}
$$

or, since $\langle N, X\rangle=H_{1}\langle T, X\rangle$,

$$
\pm 1=2 H_{1}\langle T, X\rangle^{2}+\sum_{i=2}^{m}\left\langle W_{i}, X\right\rangle^{2}
$$

which, in view of $\left\langle W_{i}, X\right\rangle=H_{i}\langle T, X\rangle, 2 \leq j \leq m$, leads to

$$
\pm 1=\left\langle 2 H_{1}+\sum_{i=2}^{m} H_{i}^{2}\right\rangle\langle T, X\rangle^{2}
$$

Thus

$$
2 H_{1}+\sum_{i=2}^{m}{H_{i}}^{2}= \pm \frac{1}{\langle T, X\rangle^{2}}
$$

Since $\langle T, X\rangle=$ constant, $2 H_{1}+\sum_{i=2}^{m} H_{i}{ }^{2}$ is a constant.
(\Leftarrow) We assume that $2 H_{1}+\sum_{i=2}^{m} H_{i}{ }^{2}$ is a constant. We show that $\alpha \subset \mathbb{L}^{m+2}$ be a general null helix. In order to show this, we must indicate that the following vector field X is a constant vector field in \mathbb{L}^{m+2}.

$$
X=\langle N, X\rangle T+\langle T, X\rangle N+\sum_{i=2}^{m} H_{i}\langle T, X\rangle
$$

If we take the derivative of X in respect to T, then using Theorem 2, Theorem 3, Theorem 4 and Theorem 5, we obtain:

$$
\begin{aligned}
\nabla_{T} X= & \left\langle\nabla_{T} N, X\right\rangle T+\langle N, X\rangle \nabla_{T} T+\langle T, X\rangle \nabla_{T} N \\
& +\sum_{i=2}^{m}\left\{H_{i}^{\prime} W_{i}+H_{i} \nabla_{T} W_{i}\right\}\langle T, X\rangle
\end{aligned}
$$

or

$$
\begin{aligned}
\nabla_{T} X= & \left\{k_{3} H_{2} T+k_{1} H_{1} W_{1}+k_{2} W_{1}+k_{3} W_{2}+H_{2}^{\prime} W_{2}\right. \\
& +H_{2}\left(-k_{3} T-k_{4} W_{1}+k_{6} W_{3}+k_{7} W_{4}\right)+H_{3}^{\prime} W_{3} \\
& +H_{3}\left(-k_{5} W_{1}-k_{6} W_{2}+k_{8} W_{4}+k_{9} W_{5}\right) \\
& +\sum_{i=4}^{m}\left[\left(k_{2 i+3} H_{i+2}-k_{2 i-1} H_{i-2}-k_{2 i} H_{i-1}\right) W_{i}\right. \\
& \left.\left.+H_{i}\left(-k_{2 i-1} W_{i-2}-k_{2 i} W_{i-1}\right)\right]\right\}\langle T, X\rangle
\end{aligned}
$$

and calculating this, we obtain $\nabla_{T} X=0$. Thus X is a constant vector field.

References

[1] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Kluwer Acad. Publ., Dordrecht, 1996.
[2] A. Ferrández, A. Giménez and P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16(30)(2001), 4845-4863.
[3] A. Ferrández, A. Giménez and P. Lucas, Characterization of null curves in Lorentz-Minkowski spaces, in Proceedings of the IX Fall Workshop on Geometry and Physics (Vilanova i la Geltrú, 2000), 221-226, R. Soc. Mat. Esp., Madrid.
[4] W. B. Bonnor, Null curves in a Minkowski space-time, Tensor (N.S.) 20(1969), 229-242.
[5] M. Castagnino, Sulle formule di Frenet-Serret per le curve nulle di una V_{4} riemanniana a metrica iperbolica normale, Rend. Mat. e Appl. (5) 23(1964), 438-461.
[6] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
[7] J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian geometry, Second edition, Dekker, New York, 1996.
[8] A. Bejancu, Lightlike curves in Lorentz manifolds, Publ. Math. Debrecen 44(1-2)(1994), 145155.

