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1. Introduction

In the geometry of null curves, difficulties arise because the arc length vanishes, so
that it is not possible to normalize the tangent vector in the usual way. One method
of proceeding is to introduce a new parameter called the pseudo-arc which normalize
the derivative of the tangent vector. Bonnor defined two curvatures K2 and K3 in
terms of the pseudo-arc and a third curvature K1 which takes only two values, 0
whether the null curve is a straight line, or 1 otherwise (see also the paper by Bonnor
[4] and Castagnino [5]. Many authors generalize the results of Bonnor in [4], since
for a null curve in an n-dimensional Lorentzian space form they introduce a Frenet
frame with the minimum number of curvature functions (which called the Cartan
frame), and then they study the null helices in those spaces, that is, null curves with
constant curvatures [3].

In this paper, we use the Duggal-Bejancu’s Frenet equations introduced in Duggal
and Bejancu [1] and distinguished Frenet frame F = {T,N,W1, ...,Wm} with respect
to distinguished parameter t to define and study null generalized helices in the
(m + 2)-dimensional Lorentzian space for null curves. We don’t consider a Frenet
frame with the minimum number of curvature functions which are called the Cartan
frame, but we consider all of the curvature functions which are ki, 1 ≤ i ≤ 2m− 1,
(k2m = 0). Also since t is a distinguished parameter from Duggal and Bejancu [1],
we assume that h = 0 [1, 3]. Later, we obtain harmonic curvatures Hi, 1 < i ≤ m,
of null helix in Lm+2. Thus we show that, for the first five harmonic curvatures Hi,
1 ≤ i ≤ 5 we can not get a general formulae. If i > 5, then we can get a general
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formulae. Finally, we obtain the following characterization of null generalized helices
in Lm+2:

The null curve α is a generalized helix if and only if 2H1 +
∑m

i=2 H2
i is a constant.

2. Preliminaries

2.1. Symmetric bilinear forms. Let V be a real vector space. A bilinear form
on V is an r-bilinear function:

〈 , 〉 : V× V → R
and we consider only the symmetric case. A symmetric bilinear form 〈 , 〉 on V is

(a) positive [negative] definite provided v 6= 0 implies 〈v, v〉 > 0 [< 0 ],
(b) positive [negative] semidefinite provided 〈v, v〉 ≥ 0 (≤ 0) for all v ∈ V.
(c) nondegenerate provided 〈v, w〉 = 0 for all w ∈ V implies v 6= 0.
If 〈 , 〉 is a symmetric bilinear form on V then for any subspace W of V the

restriction 〈 , 〉 |W × W denoted merely by 〈 , 〉 |W, is again symmetric and bilinear.
If 〈 , 〉 is [semi-] definite, so is 〈 , 〉 |W .

The index q of a symmetric bilinear form 〈 , 〉 on V is the largest integer that
is the dimension of a subspace W ⊂ V on which 〈 , 〉 |W is negative definite. Thus
0 ≤ q ≤ dim V, and q = 0 if and only if 〈 , 〉 is positive semidefinite [6].

2.2. Scalar product. A scalar product 〈 , 〉 on a vector space V is a nondegenerate
symmetric bilinear form on V [6].

Lemma 2.1. [6] A scalar product space V 6= 0 has an orthonormal basis. The
matrix of 〈 , 〉 relative to an orthonormal basis e1, e2, ..., en for V is diagonal; in
fact:

〈ei, ej〉 = δi jεj where εj = 〈ej , ej〉 = ±1.

Lemma 2.2. [5] Let e1, e2, ..., en be an orthonormal basis for V, with εj = 〈ej , ej〉.
Then each v ∈ V has a unique expression v=

∑
εi〈v, ei〉ei.

Lemma 2.3. [6] For any orthonormal basis e1, e2, ..., en for V the number of neg-
ative signs in the signature (ε1, ε2, ..., εn) is the index q of V.

Lemma 2.4. For any orthonormal basis e1, e2, ..., en for V the number of for an
integer q with 0 ≤ q ≤ n, changing the first q plus signs above the minus gives tensor:

〈vp, wp〉 = −
q∑

i=1

viwi +
n∑

j=q+1

vjwj

of index q.

The resulting semi-Euclidean space Rn
q reduces to Rn if q = 0. For n ≥ 2, Rn

1

is called Minkowski n-space; if n = 4 it is the simplest example of a relativistic
spacetime.

Fix the notation:

εi =

{
−1 (0 ≤ i ≤ q − 1),
1 (q ≤ i ≤ n− 1).

A Lorentz vector space to be a scalar product space of index 1 and dimension ≥ 2 [5].
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2.3. Lorentzian space. Let M be a smooth connected paracompact Hausdorff
manifold and let π : TM → M denote the tangent bundle of M. A Lorentzian metric
〈, 〉 for M is a smooth symmetric tensor field of type (0,2) on M such that for each
p ∈ M, the tensor 〈, 〉p : TP M × TP M → R is a nondegenerate inner product of
signature (−,+, . . . ,+). In other words, a matrix representation of 〈 , 〉 at p will
have one negative eigenvalue and all other eigenvalues will be positive.

A Lorentzian manifold (M, 〈, 〉) is a manifold M together with a Lorentzian met-
ric 〈, 〉 for M. All noncompact manifolds admit Lorentzian metrics. However, a
compact manifold admits a Lorentzian metric if its euler characteristic vanishes [7].
Lorentzian space is the manifold M = Rn together with the metric

ds2 = −dx2
1 +

n∑
i=2

dx2
i .

This space-time is time oriented by the vector field ∂/∂x1 [7].

Definition 2.1. [6] A tangent vector v ∈ Ln is:

(i) space-like if 〈v, v〉 > 0 or v = 0,
(ii) null if 〈v, v〉 = 0 and v 6= 0,
(iii) time-like if 〈v, v〉 < 0.

2.4. Curves. A curve in a Lorentzian space, Ln is a smooth mapping α : I →
Ln where I is open interval in the real line R. The interval I has a coordinate
system consisting of the identity map u of I. The velocity vector of α at t ∈ I

is α
′

=
dα(u)
d(u)

∣∣∣∣
t

. A curve α is said to be regular if α
′
(t) does not vanish for all

t in I. α ∈ Ln is space-like if its velocity vectors α
′

are space-like for all t ∈ I,
similarly for time-like and null. If α is a null curve, we can reparametrize it such
that 〈α′

(t), α
′
(t)〉 = 0 and α

′
(t) 6= 0 [6].

Let (M, 〈 , 〉) be a proper (m+2)-dimensional semi-Riemannian manifold of index
q and let us consider α a smooth curve in M locally parametrized by α : I ⊂ R → M.
The curve α is said to be null or light-like if the tangent vector α

′
(t) = T at any

point is a null vector. That is 〈T, T 〉 = 0. The following concepts are taken from
Duggal and Bejancu [1].

Let Tα denote the tangent bundle of α and define, as in the non-degenerate case,
the bundle Tα⊥ by:

Tα⊥ =
⋃
p∈α

Tpα
⊥, Tpα

⊥ = {ξp ∈ TpM : 〈ξp, Tp〉 = 0, Tp ∈ Tpα}

where Tp is a null vector tangent to α at p. It is well known that Tα⊥ is of rank
m+1. Since Tp is a null vector, it is easily follows that Tα is a vector subbundle of
Tα⊥ of rank 1. Then we may consider a complementary vector subbundle S(Tα⊥)
to Tα in Tα⊥ such that:

Tα⊥ = Tα ⊥ S(Tα⊥),
where ⊥ means orthogonal direct sum. It is known that the subbundle S(Tα⊥),
called the screen vector bundle of α, is non-degenerate and of dimension m. Note
that, in contrast with the non-degenerate case, the tangent bundle is contained in
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the normal bundle, and the screen bundle is not unique. These two properties leads
to a much more difficult and also different geometry of null curves with respect to
non-degenerate (space-like or time-like) curves.

Since S(Tα⊥) is non-degenerate, we have the decomposition:

TM |α= S(Tα⊥) ⊥ S(Tα⊥)⊥,

where S(Tα⊥)⊥ is the complementary orthogonal vector bundle to S(Tα⊥) in TM(α).
The following result is well known.

Theorem 2.1. [8] Let α be a null curve of a semi-Riemannian manifold (M, 〈 , 〉)
and consider S(Tα⊥) a screen vector bundle of α. Then there exist a unique vector
bundle E over α, of rank 1, such that on each coordinate neighbourhood U ⊂ α there
is a unique section N ∈ Γ(E |α) satisfying:

〈T,N〉 = 1 (α
′
(t) = T )

and
〈N,N〉 = 〈N,X〉 = 0, for all X ∈ Γ(S(Tα⊥).

The above vector bundle E will be denoted by ntr(α) and it is called the null
transversal bundle of α with respect to S(Tα⊥). The vector field N is called the
null transversal vector field of α with respect to α

′
(t). We define the transversal

vector bundle of α, tr(α), as the vector bundle

tr(α) = ntr(α) ⊥ S(Tα⊥),

and then we have

TM |α= Tα⊕ tr(α) = (Tα⊕ ntr(α)) ⊥ S(Tα⊥),

from which the following result easily follows:

Proposition 2.1. [1] Let α be a null curve of semi-Riemannian manifold (M, 〈 , 〉)
of index q. Then any screen vector bundle of semi-Riemannian of index q−1. Hence,
if M is a Lorentzian manifold, then any screen vector bundle is Riemannian.

2.5. Harmonic curvatures.

Definition 2.2. Let α be a null curve in Lm+2 and T be the first Frenet vector field
of α(α

′
(t) = T ). X ∈ χ(Lm+2) being a constant unit vector field, if

〈T, X〉 = constant,

then α is called a general helix (inclined curves) in Lm+2. The space Sp{X} is called
slope axis.

Definition 2.3. Let α → Lm+2 be a general helix. Assume X is a unit and constant
vector field of Lm+2 and {T,N,W1, ...,Wm} is the Frenet (m+2) - frame at the point
of α(t).

Hj : I → R

〈N, X〉 = H1〈T, X〉, 〈W1, X〉 = 0,

〈Wi, X〉 = Hi〈T, X〉, 2 ≤ i ≤ m

where the value of the Hi function at α(t) is called as the j-th harmonic curvature
according to X at the point of α(t) of α.
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3. Harmonic Curvature of a Null Generalized Helix in Lm+2

Suppose α is a null curve of an (m+2)-dimensional Lorentz manifold (M, 〈, 〉). De-
note by ∇ the Levi-Civita connection on M and α

′
= T . In this case, {T,N,W1, ...,

Wm} is the Frenet frame of α ⊂ Lm+2, where T and N are null vectors and Wi,
1 ≤ i ≤ m, are space-like vectors. Thus the Frenet equations of a null curve in an
(m+2)-dimensional Lorentz manifold are as follows:

∇T T = hT + k1W1

∇T N = −hN + k2W1 + k3W2

∇T W1 = −k2T − k1N + k4W2 + k5W3

∇T W2 = −k3T − k4W1 + k6W3 + k7W4

∇T W3 = −k5W1 − k6W2 + k8W4 + k9W5

...(3.1)
∇T Wm−2 = −k2m−5Wm−4 − k2m−4Wm−3 + k2m−2Wm−1 + k2m−1Wm

∇T Wm−1 = −k2m−3Wm−3 − k2m−2Wm−2 + k2mWm

∇T Wm = −k2m−1Wm−2 − k2mWm−1

where h and {ki}, 1 ≤ i ≤ 2m, are smooth functions and {W1,W2, ...,Wm} is a
certain orthonormal basis of Γ(S(Tα⊥)). If h = 0, then the parameter t is said to
be a distinguished parameter. Moreover, if the last curvature k2m vanishes, then
{T,N,W1,W2, ...,Wm} is called a distinguished Frenet frame [1].

Theorem 3.1. Assume that α ⊂ L4 is a null generalized helix given by distinguished
Frenet frame {T,N,W1,W2} and curvature functions k1, k2, k3,k4. Let X be a unit
and constant vector field (time-like or space-like) of L4. By accepting the slope axis
of α curve is Sp{X} and harmonic curvatures are H1,H2, the following equations
are obtained

〈N, X〉 = H1〈T, X〉, 〈W1, X〉 = 0, 〈W2, X〉 = H2〈T, X〉,

where H1 = −k2/k1 and H2 = H
′

1/k3.

Proof. From equations (3.1), it is easy to see that the Frenet equations of a null
curve α in a 4-dimensional Lorentzian manifold can be written down as follows:

∇T T = hT + k1W1

∇T N = −hN + k2W1 + k3W2

∇T W1 = −k2T − k1N + k4W2(3.2)

∇T W2 = −k3T − k4W1

where T = α
′
. If h = 0, then the parameter t is said to be a distinguished param-

eter. Moreover, if the last curvature k4 vanishes, {T,N,W1,W2} is then called a
distinguished Frenet frame [1,3].

These equalities are present from Theorem 2.1:

〈T, T 〉 = 0, 〈N,N〉 = 0, 〈T,N〉 = 1, 〈T,Wi〉 = 0, 〈N,Wi〉 = 0,
〈Wi ,Wj〉 = δij , for i, j = 1, 2.
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By using the Definition 2.2, which is given by:

(3.3) 〈T, X〉 = constant,

we obtain

(3.4) 〈∇T T, X〉 = 0.

Using the first equation from (3.2), the result is

(3.5) 〈W1, X〉 = 0.

Taking the inner product of the third equation in (3.2) by X

〈∇T W1, X〉 = −k2〈T, X〉 − k1〈N,X〉,
is obtained, where since 〈W1, X〉 = 0, it is written as 〈∇T W1, X〉 = 0. Thus it is

〈N,X〉 =
−k2

k1
〈T, X〉,

where H1 = −k2/k1 is called the 1-st harmonic curvature function. As a consequence

(3.6) 〈N,X〉 = H1〈T, X〉
is found. By taking the derivative of equation (3.6) with respect to T , we deduce
the following equation

(3.7) 〈∇T N, X〉 = H
′

1〈T, X〉.
Taking the inner product of the second Frenet equation in (3.2) by X and using the
equations (3.5) and (3.7)

〈W2, X〉 =
H

′

1

k3
〈T, X〉

is obtained, where H2 = H
′

1/k3 is called 2-nd harmonic curvature function. Thus
the deduction is

(3.8) 〈W2, X〉 = H2〈T, X〉.

Theorem 3.2. Let α ⊂ L6 be a null generalized helix given by distinguished Frenet
frame {T,N,W1,W2,W3,W4} and curvature functions ki, 1 ≤ i ≤ 8. If the slope
axis of α is Sp{X} and harmonic curvature functions are Hi, i = 1, 2, 3, 4, the
following equations are existent

〈W3, X〉 = H3〈T, X〉, 〈W4, X〉 = H4〈T, X〉,
where H3 = −k4/k5H2 and H4 = {H ′

2 + k3 − k6H3} /k7.

Proof. The Frenet equations of a null curve in a 6-dimensional Lorentzian manifold
write down as follows

∇T T = hT + k1W1

∇T N = −hN + k2W1 + k3W2

∇T W1 = −k2T − k1N + k4W2 + k5W3(3.9)
∇T W2 = −k3T − k4W1 + k6W3 + k7W4

∇T W3 = −k5W1 − k6W2 + k8W4

∇T W4 = −k7W2 − k8W3
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where T = α
′
. If the last curvature k8 vanishes, then {T,N,W1,W2,W3,W4} is

called a distinguished Frenet frame [1,3].
Then the following equalities are existent from Theorem 2.1

〈T, T 〉 = 0, 〈N,N〉 = 0, 〈T,N〉 = 1, 〈T,Wi〉 = 0,

〈N,Wi〉 = 0, 〈Wi,Wj〉 = δij , for i, j = 1, 2, 3, 4

Taking the inner product of the third Frenet equation in (3.9) by X:

〈∇T W1, X〉 = −k2〈T, X〉 − k1〈N,X〉+ k4〈W2, X〉+ k5〈W3, X〉
is found. By using the equations (3.5), (3.6), (3.8) and Definition 2.3, we obtain

〈W3, X〉 =
−k4

k5
H2〈T, X〉.

Thus H3 = −k4/k5H2 is called the 3-rd harmonic curvature function. That is

(3.10) 〈W3, X〉 = H3〈T, X〉.
If we take the inner product of the 4-th equation in (3.9) by X, we get

(3.11) 〈∇T W2, X〉 = −k3〈T, X〉 − k4〈W1, X〉m + k6〈W3, X〉+ k7 〈W4, X〉,
where we know that 〈W1, X〉 = 0 and 〈W3, X〉 = H3〈T, X〉. Also if we take the
derivative of (3.8) with respect to T , we have 〈∇T W2, X〉 = H

′

2〈T, X〉. Using these
values in equation (3.11), we get

〈W4, X〉 =
1
k7

{
H

′

2 + k3 − k6H3

}
〈T, X〉,

where H4 = {H ′
2 + k3 − k6H3} /k7 is called the 4-th harmonic curvature function.

Thus we obtain

(3.12) 〈W4, X〉 = H4〈T, X〉,
or

(3.13) 〈∇T W4, X〉 = H
′

4〈T, X〉.

Theorem 3.3. Let α ⊂ L7 be a null generalized helix given by distinguished Frenet
frame {T,N,W1,W2,W3,W4,W5} and consider Sp{X} is slope axis of α. For the
curvature functions are ki, 1 ≤ i ≤ 10, and harmonic curvature functions are Hi,
1 ≤ i ≤ 5, the following conclusion is existent:

〈W5, X〉 = H5〈T, X〉,
where H5 = {H ′

3 + k6H2 − k8H4} /k9 is the 5th harmonic curvature function.

Proof. Recall that the Frenet equations of a null curve α in a 7-dimensional Lorentzian
manifold can be written down as follows

∇T T = hT + k1W1

∇T N = −hN + k2W1 + k3W2

∇T W1 = −k2T − k1N + k4W2 + k5W3

∇T W2 = −k3T − k4W1 + k6W3 + k7W4(3.14)
∇T W3 = −k5W1 − k6W2 + k8W4 + k9W5
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∇T W4 = −k7W2 − k8W3 + k10W5

∇T W5 = −k9W3 − k10W4

where T = α
′
. If the last curvature k10 vanishes, then {T,N,W1,W2,W3,W4,W5}

is called a distinguished Frenet frame [1,3]. Thus we have from Theorem 2.1 that

〈T, T 〉 = 0, 〈N,N〉 = 0, 〈T,N〉 = 1, 〈T,Wi〉 = 0, 〈N,Wi〉 = 0,

〈Wi,Wj〉 = δij , fori, j = 1, 2, 3, 4, 5.

Taking the inner product of the 5th equation in (3.14) by X, we obtain

(3.15)
〈∇T W3, X〉 = −k5〈W1, X〉 − k6〈W2, X〉

+k8〈W4, X〉+ k9〈W5, X〉.

In addition, taking the derivative of equation (3.10) with respect to T , we set

〈∇T W3, X〉 = H
′

3〈T, X〉.

On the other hand, the equations (3.5),(3.8), and (3.12) leads to

〈W5, X〉 =
1
k9

{
H

′

3 + k6H2 − k8H4

}
〈T, X〉.

Thus H5 =
1
k9

{
H

′

3 + k6H2 − k8H4

}
is called the 5th harmonic curvature func-

tion.Thus

(3.16) 〈W5, X〉 = H5〈T, X〉.

Theorem 3.4. Assume that α ⊂ Lm+2 is a null generalized helix given by distin-
guished Frenet frame {T,N,W1,W2, ...,Wm} and curvature functions ki, 1 ≤ i ≤
2m. Let X be a unit and constant vector field (time-like or space-like) of Lm+2. If
the curve α has slope axis Sp{X} and harmonic curvatures are Hj , 6 ≤ j ≤ m, then

〈Wj , X〉 = Hj〈T, X〉, 6 ≤ j ≤ m,

where Hj is the jth harmonic curvature function and

Hj =
1

k2j−1
{H

′

j−2 + k2j−5Hj−4 + k2j−4Hj−3 − k2j−2Hj−1}.

Proof. Recall that 〈T, X〉 = constant for is a null helix α in Lm+2. We use the
induction method. For the case j = 6, we must show that 〈W6, X〉 = H6〈T, X〉.
From Theorem 3.1, Theorem 3.2, Theorem 3.3, we obtain

〈W1, X〉 = 0, 〈N, X〉 = H1〈T, X〉
〈Wi, X〉 = Hi〈T, X〉, 2 ≤ i ≤ 5.

Considering the inner product of the 6-th equation in (3.1) by X, we have

〈∇T W4, X〉 = −k7〈W2, X〉 − k8〈W3, X〉
+k10〈W5, X〉+ k11〈W6, X〉.

By using the values of (3.8), (3.10) and (3.13) in the equation above, we set

〈W6, X〉 =
1

k11
{H

′

4 + k7H2 + k8H3 − k10H5}〈T, X〉.
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Since

(3.17) H6 =
1

k11
{H

′

4 + k7H2 + k8H3 − k10H5}

that

(3.18) 〈W6, X〉 = H6〈T, X〉.

Indeed, since X ∈ {T,N,W1,W2, ...,W6}, it is clear that

X = 〈N, X〉T + 〈T, X〉N + 〈W2, X〉W2 + 〈W3, X〉W3

+ 〈W4, X〉W4 + 〈W5, X〉W5 + 〈W6, X〉W6.(3.19)

If we take the derivative of (3.19) with respect to T , then we obtain:

∇T X =〈∇T N, X〉T + 〈N, X〉∇T T + 〈∇T T, X〉N + 〈T, X〉∇T N

+ 〈∇T W2, X〉W2 + 〈W2, X〉∇T W2 + 〈∇T W3, X〉W3

+ 〈W3, X〉∇T W3 + 〈∇T W4, X〉W4 + 〈W4, X〉∇T W4

+ 〈∇T W5, X〉W5 + 〈W5, X〉∇T W5

+ 〈∇T W6, X〉W6 + 〈W6, X〉∇T W6.

Using (3.1) and the value of 〈W6, X〉 in (3.18) we obtain ∇T X = 0. This means
that X is a constant vector field.

Conversely, since X is a time-like or space-like vector field, 〈X, X〉 = ±1. Thus,
from (3.19),

±1 = 2〈N, X〉〈T, X〉+ 〈W2, X〉2 + 〈W3, X〉2

+〈W4, X〉2 + 〈W5, X〉2 + 〈W6, X〉2

or by using Theorem 3.1, Theorem 3.2, Theorem 2.3 and equation (3.18), we set

(3.20) 1 = 2H1 +
6∑

i=2

H2
i .

By taking the derivative of (3.20),

(3.21) 2H
′

1 + 2H2H
′

2 + 2H3H
′

3 + 2H4H
′

4 + 2H5H
′

5 + 2H6H
′

6 = 0.

Additionally, from (3.1), we may derive the following results

(3.22)

〈∇T W2, X〉 = −k3〈T, X〉+ k6〈W3, X〉+ k7〈W4, X〉,
〈∇T W3, X〉 = −k6〈W2, X〉+ k8〈W4, X〉+ k10〈W5, X〉,
〈∇T W5, X〉 = −k9〈W3, X〉 − k10〈W4, X〉,
〈∇T W6, X〉 = −k11〈W4, X〉.

Using the equation 〈Wi, X〉 = Hi〈T, X〉, 2 ≤ i ≤ 5 and equation (3.18) it is clear
that

〈∇T Wi, X〉 = H
′

i 〈T, X〉, 2 ≤ i ≤ 6.
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Thus from (3.22) , we have

(3.23)

H
′

2 = −k3 + k6H3 + k7H4,

H
′

3 = −k6H2 + k8H4 + k9H5,

H
′

5 = −k9H3 − k10H4,

H
′

6 = −k11H4.

If we put the equalities at (3.23) in equation (3.21) , we obtain

0 = H2{k6H3 + k7H4}+ H3{−k6H2 + k8H4 + k9H5}
+H4H

′

4 + H5{−k9H3 − k10H4}+ H6{−k11H4}

or

(3.24) H6 =
1

k11
{H

′

4 − k10H5 + k8H3 + k7H2}.

Thus the theorem holds for the case j = 6. Assuming that the theorem holds for the
case j < p, let us show that the theorem also holds for the case j = p. This assume
that

(3.25) 〈Wp−1, X〉 = Hp−1〈T, X〉

and

(3.26) 〈Wp−2, X〉 = Hp−2〈T, X〉.

If we take the derivative of (3.26) with respect to T , then, we obtain

(3.27) 〈∇T Wp−2, X〉 = H
′

p−2〈T, X〉.

If the value of ∇T Wp−2 in (3.1) supersede in (3.27), the inference is

H
′

p−2〈T, X〉 = −k2p−5〈Wp−4, X〉 − k2p−4〈Wp−3, X〉
+k2p−2〈Wp−1, X〉+ k2p−1〈Wp, X〉.

Since 〈Wp−4, X〉 = Hp−4〈T, X〉, 〈Wp−3, X〉 = Hp−3〈T, X〉, 〈Wp−1, X〉 = Hp−1〈T, X〉,
we have

{k2p−5Hp−4 + k2p−4Hp−3 − k2p−2Hp−1 + H
′

p−2}〈T, X〉 = k2p−1〈Wp, X〉

or

〈Wp, X〉 =
1

k2p−1
{k2p−5Hp−4 + k2p−4Hp−3 − k2p−2Hp−1 + H

′

p−2}〈T, X〉,

where

Hp =
1

k2p−1
{k2p−5Hp−4 + k2p−4Hp−3 − k2p−2Hp−1 + H

′

p−2}.

Thus 〈Wp, X〉 = Hp〈T, X〉.

Definition 3.1. Assume that α ⊂ Lm+2 is a null generalized helix given by dis-
tinguished Frenet frame T,N,W1,W2, ...,Wm and curvature functions ki, 1 ≤ i ≤
2m− 1, then higher ordered harmonic curvatures of α are as follows
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(3.28) Hi =



−k2

k1
, i = 1

H
′

1

k3
, i = 2

−k4

k5
H2, i = 3

1
k7
{H

′

2 + k3 − k6H3}, i = 4
1
k9
{H

′

3 + k6H2 − k8H4}, i = 5
1

k2m−1
{H

′

m−2 + k2m−5Hm−4

+ k2m−4Hm−3 − k2m−2Hm−1},
5 < i ≤ m

4. The Characterization of Null Generalized Helices in Lm+2

Theorem 4.1. Suppose that α ⊂ Lm+2 is a null curve given by distinguished Frenet
frame {T,N,W1,W2, ...,Wm}. Let {H1,H2, ...,Hm} be harmonic curvatures of α.
Then a null curve α is a general helix in Lm+2 if and only if 2H1 +

∑m
i=2 H2

i is a
constant.

Proof. (⇒) Let α ⊂ Lm+2 be a general null helix, then, for α whose slope axis
Sp{X} we know that 〈T, X〉 = constant. Also from Theorem 3.1, Theorem 3.2,
Theorem 3.3 and Theorem 3.4 we know that

〈Wj , X〉 = Hj〈T, X〉, 2 ≤ j ≤ m.

In addition since X ∈ {T,N,W1,W2, ...,Wm}, it can be written as:

X = λ1T + λ2N + λ3W1 + ... + λm+2Wm

or
X = 〈N, X〉T + 〈T, X〉N + 〈W2, X〉W2 + ... + 〈Wm, X〉Wm.

Now, assume that X is a time-like (or space-like) vector field, then since 〈X, X〉= ±1,
it is clear that:

±1 = 〈X, X〉 = 2〈N, X〉+ 〈W2, X〉2 + ... + 〈Wm, X〉2

or

±1 = 2〈T, X〉〈N, X〉+
m∑

i=2

〈Wi, X〉2

or, since 〈N, X〉 = H1〈T, X〉,

±1 = 2H1〈T, X〉2 +
m∑

i=2

〈Wi, X〉2

which, in view of 〈Wi, X〉 = Hi〈T, X〉, 2 ≤ j ≤ m, leads to

±1 = 〈2H1 +
m∑

i=2

H2
i 〉 〈T, X〉2.
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Thus

2H1 +
m∑

i=2

Hi
2 = ± 1

〈T, X〉2
.

Since 〈T, X〉 = constant, 2H1 +
∑m

i=2 Hi
2 is a constant.

(⇐) We assume that 2H1 +
m∑

i=2

Hi
2 is a constant. We show that α ⊂ Lm+2 be a

general null helix. In order to show this, we must indicate that the following vector
field X is a constant vector field in Lm+2.

X = 〈N, X〉T + 〈T, X〉N +
m∑

i=2

Hi〈T, X〉.

If we take the derivative of X in respect to T , then using Theorem 2, Theorem 3,
Theorem 4 and Theorem 5, we obtain:

∇T X = 〈∇T N, X〉T + 〈N, X〉∇T T + 〈T, X〉∇T N

+
m∑

i=2

{H ′

iWi + Hi∇T Wi}〈T, X〉

or
∇T X =

{
k3H2T + k1H1W1 + k2W1 + k3W2 + H

′

2W2

+ H2(−k3T − k4W1 + k6W3 + k7W4) + H
′

3W3

+ H3(−k5W1 − k6W2 + k8W4 + k9W5)

+
m∑

i=4

[(k2i+3Hi+2 − k2i−1Hi−2 − k2iHi−1)Wi

+ Hi(−k2i−1Wi−2 − k2iWi−1)]} 〈T, X〉
and calculating this, we obtain ∇T X = 0. Thus X is a constant vector field.
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