BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

A Note on ψ -Operator

Shyampada Modak and Chhanda Bandyopadhyay

Department of Mathematics, University of Burdwan, Burdwan-713104, W.B, India spmodak2000@yahoo.co.in

Abstract. Studing ψ -operator closely, we introduce a new type of sets and consider the interrelation of such sets with some generalized open sets already known in literature.

2000 Mathematics Subject Classification: 54A05

Key words and phrases: **I**-dense sets, codense ideal, semi-open sets, preopen sets, semi-preopen sets.

1. Introduction

An ideal \mathbf{I} as we know is a nonempty collection of subsets of X closed with respect to finite union and hereditary. For a subset A of X, $A^* = \{ x \in X \colon U \cap A \notin \mathbf{I}, \text{ for every} U \in \tau (x) \text{ where } \tau (x) \text{ is the collection of all nonempty open sets containing } x \}$. A^* is a closed subset for any $A \subset X$ [5]. Now theory of ideals gets a new dimension in case it satisfies $\mathbf{I} \cap \tau = \{\emptyset\}$ [2]. Such ideals have been termed as 'codense ideal' by Dontchev, Ganster and Rose in 1999 who have also defined a set $D \subset X$ as \mathbf{I} -dense if $D^* = X$ [2]. Eventually \mathbf{I} is codense if and only if $X = X^*$. With the help of ()*-operator, another operator called Ψ -operator is defined as $\Psi(A) = X - (X - A)^*$ [3]. In this paper we have used the Ψ -operator to define an interesting generalized open sets and study its properties. A topological space with an ideal \mathbf{I} is denoted by (X, τ, \mathbf{I}) .

2. Set operator Ψ

In this section we discuss a few properties of the set operator Ψ . We first prove:

Theorem 2.1. Let (X, τ, \mathbf{I}) be a topological space, then $U \subset \Psi(U)$ for every open set U of (X, τ) .

Proof. We know that $\Psi(U) = X - (X - U)^*$. Now $(X - U)^* \subset \operatorname{cl}(X - U) = X - U$, since X - U is closed. Therefore $X - (X - U)^* \supset X - (X - U) = U$ implying $U \subset \Psi(U)$.

Now we give an example of a set A which is not open but satisfies $A \subset \Psi(A)$.

Received: November 24, 2005; Accepted: June 6, 2006.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, c\}\}, \mathbf{I} = \{\emptyset, \{c\}\}$. Now $\Psi(\{a\}) = X - \{X - \{a\}\}^* = X - \{b, c\}^* = X - \{b\} = \{a, c\}$. Therefore $\{a\} \subset \Psi(\{a\})$, but $\{a\}$ is not open.

Corollary 2.1. Let (X, τ, \mathbf{I}) be a space, then int $A \subset \Psi(A)$ for any subset A of X.

Proof. We know that int A is open, then, by Theorem 2.1,

(2.1) $\operatorname{int} A \subset \Psi(\operatorname{int} A).$

Again int $A \subset A$, therefore (see [3])

(2.2)
$$\Psi(\operatorname{int} A) \subset \Psi(A).$$

From (2.1) and (2.2), int $A \subset \Psi(A)$.

Our next result on Ψ -operator seems to be interesting.

Theorem 2.2. Let (X, τ, \mathbf{I}) be a space, where \mathbf{I} is codense. Then for $A \subset X$, $\Psi(A) \subset A^*$.

Proof. Suppose $\alpha \in \Psi(A)$ but $\alpha \notin A^*$. Then there exists a nonempty neighborhood U_{α} of α such that $U_{\alpha} \cap A \in \mathbf{I}$. Since $\alpha \in \Psi(A)$, therefore $\alpha \in \bigcup \{M \in \tau : M - A \in \mathbf{I}\}$ [3], which implies that there exists $V \in \tau$ such that $\alpha \in V$ and $V - A \in \mathbf{I}$. Now $U_{\alpha} \cap V$ is a neighborhood of α . Now $U_{\alpha} \cap V \cap A \in \mathbf{I}$, by heredity. Again $U_{\alpha} \cap V - A \in \mathbf{I}$, by heredity. Write $U_{\alpha} \cap V = (U_{\alpha} \cap V \cap A) \cup (U_{\alpha} \cap V - A) \in \mathbf{I}$, by finite additivity. Since $U_{\alpha} \cap V$ is nonempty open, a contradiction to \mathbf{I} being codense. Therefore $\alpha \in A^*$. This implies that $\Psi(A) \subset A^*$.

Corollary 2.2. Let (X, τ, \mathbf{I}) be a topological space, where \mathbf{I} is codense. Then for $A \subset X$, $\Psi(A) \subset \operatorname{cl} A$.

Proof. This follows from Theorem 2.2 and the fact that $A^* \subset cl A$ for any $A \subset X$.

We shall now prove Theorem 2.3. Some of the results in the theorem have been proved by Hamlett and Jankovic [3]. However using Theorem 2.2 and Corollary 2.2, the proofs have become much simpler.

Theorem 2.3. Let (X, τ, \mathbf{I}) be a topological space and \mathbf{I} be codense. Then

- (i) for any $A \subset X$, $\Psi(A) \subset \operatorname{int} \operatorname{cl} A$.
- (ii) for any closed subset $A, \Psi(A) \subset A$.
- (iii) for any $A \subset X$, int cl $A = \Psi$ (int cl A).
- (iv) for any regular open subset $A, A = \Psi(A)$.
- (v) for any $U \in \tau$, $\Psi(U) \subseteq \operatorname{int} \operatorname{cl} U \subseteq U^*$.
- (vi) for $J \in \mathbf{I}$, $\Psi(J) = \emptyset$.

Proof.

- (i) From Corollary 2.2 $\Psi(A) \subset \operatorname{cl} A$. Since $\Psi(A)$ is open, then $\Psi(A) \subset \operatorname{int} \operatorname{cl} A$.
- (ii) Proof is obvious.
- (iii) Now for any set A, Ψ (int cl A) \subset cl int cl A, by Corollary 2.2. Since Ψ (int cl A) is open, Ψ (int cl A) \subset int cl int cl A implying

(2.3)
$$\Psi(\operatorname{int} \operatorname{cl} A) \subset \operatorname{int} \operatorname{cl} A$$

Since $\operatorname{int} \operatorname{cl} A$ is open, therefore by Theorem 2.1

(2.4)
$$\operatorname{int} \operatorname{cl} A \subset \Psi (\operatorname{int} \operatorname{cl} A).$$

From (2.3) and (2.4), int $\operatorname{cl} A = \Psi$ (int $\operatorname{cl} A$)

- (iv) If A is regular open, therefore $A = \operatorname{int} \operatorname{cl} A$. Now from (iii), $A = \Psi(A)$.
- (v) By Corollary 2.2, $\Psi(U) \subset \operatorname{cl} U$. Since $\Psi(A)$ is open, therefore

(2.5)
$$\Psi(U) \subset \operatorname{int} \operatorname{cl} U$$

Here **I** is codense and U is open, therefore $U^* = \operatorname{cl} U$ implies that

(2.6)
$$\operatorname{int} \operatorname{cl} U \subset U^*$$

- From (2.5) and (2.6), $\Psi(U) \subset \operatorname{int} \operatorname{cl} U \subset U^*$.
- (vi) Proof is follows from Theorem 2.2.

We now prove Theorem 2.4.

Theorem 2.4. Let (X, τ, \mathbf{I}) be a topological space. Then for each $x \in X$, $X - \{x\}$ is \mathbf{I} -dense if and only if $\Psi(\{x\}) = \emptyset$.

Proof. Proof follows from the definition of **I**-dense set, since $\Psi(\{x\}) = \emptyset$ if and only if $(X - \{x\})^* = X$.

3. Ψ - C set

In this section, using Ψ -operator, we discuss a new class of sets which happens to contain the class of all open sets.

Definition 3.1. Let (X, τ, \mathbf{I}) be a topological space and $A \subset X$, A is said to be a Ψ -C set if $A \subset \operatorname{cl} \Psi(A)$. The collection of all Ψ -C sets in (X, τ, \mathbf{I}) is denoted by $\Psi(X, \tau)$.

Theorem 3.1. Let (X, τ, \mathbf{I}) be a topological space. If $A \in \tau$ then $A \in \Psi(X, \tau)$.

Proof. The proof follows from Theorem 2.1. From Theorem 3.1 it follows that $\tau \subset \Psi(X, \tau)$ holds in a topological space (X, τ, \mathbf{I}) .

Now we give an example which shows that the reverse inclusion is not true.

Example 3.1. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c, d\}\}, \mathbf{I} = \{\emptyset, \{c\}\}$ denoting $C(\tau)$ the closed sets in (X, τ) . Therefore $C(\tau) = \{\emptyset, X, \{a, b\}\}$. Now $\Psi(\{a, d\}) = X - \{b, c\}^* = X - \{a, b\} = \{c, d\}$. Thus $\operatorname{cl} \Psi(\{a, d\}) = X$. Therefore $\{a, d\} \subset \operatorname{cl} \Psi(\{a, d\})$, but $\{a, d\}$ is not open in τ .

We give an example which shows that any closed set in (X, τ, \mathbf{I}) may not be a Ψ -C set.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}, \mathbf{I} = \{\emptyset, \{a\}\}, C(\tau) = \{\emptyset, X, \{a, c\}, \{c\}, \{a\}\}$. Now $\Psi(\{a\}) = X - \{b, c\}^* = X - \{a, b, c\} = \emptyset$. Therefore $\{a\}$ is closed in (X, τ) but $\{a\} \notin \operatorname{cl} \Psi(\{a\})$.

Now we prove that the arbitrary union of Ψ -C sets is a Ψ -C.

Theorem 3.2. Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of nonempty Ψ -C sets in a topological space (X, τ, \mathbf{I}) then $\bigcup_{\alpha} A_{\alpha} \in \Psi(X, \tau)$.

Proof. For each α ,

$$A_{\alpha} \subset \operatorname{cl} \Psi(A_{\alpha}) \subset \operatorname{cl} \Psi\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right).$$

This implies that

$$\bigcup_{\alpha} A_{\alpha} \subset \operatorname{cl} \Psi\left(\bigcup_{\alpha} A_{\alpha}\right).$$

Thus $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \Psi(X, \tau).$

Following example shows that intersection of two Ψ -*C* sets in (X, τ, \mathbf{I}) may not be a Ψ -*C* set.

Example 3.3. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, \mathbf{I} = \{\emptyset, \{c\}\}, C(\tau) = \{\emptyset, X, \{b, c, d\}, \{a, d\}, \{d\}\}.$ Now $\Psi(\{a, d\}) = X - \{b, c\}^* = X - \{b, c, d\} = \{a\}.$ Therefore $\operatorname{cl} \Psi(\{a, d\}) = \{a, d\}$, implies that $\{a, d\} \subset \operatorname{cl} \Psi(\{a, d\}).$ Again $\Psi(\{b, c, d\}) = X - \{a\}^* = X - \{a, d\} = \{b, c\},$ implies that $\operatorname{cl} \Psi(\{b, c, d\}) = \{b, c, d\}.$ Therefore $\{b, c, d\} \subset \operatorname{cl} \Psi(\{b, c, d\}).$ Now $\{b, c, d\} \cap \{a, d\} = \{d\}$ and $\Psi(\{d\}) = X - \{a, b, c\}^* = X - \{a, b, c, d\} = \emptyset.$ Therefore $\{d\} \not\subset \operatorname{cl} \Psi(\{d\}).$

Recall that a subset $A \subset X$ is semi-open set if $A \subset \operatorname{cl} \operatorname{int} A$. The collection of all semi-open sets in a topological space (X, τ) is denoted by $SO(X, \tau)$.

Now we give the relation between SO (X, τ) and $\Psi(X, \tau)$ in (X, τ) .

Theorem 3.3. Let (X, τ, \mathbf{I}) be a topological space, then SO $(X, \tau) \subset \Psi(X, \tau)$.

Proof. Let $A \in SO(X, \tau)$, therefore $A \subset \operatorname{clint} A$. We know that $\operatorname{int} A \subset \Psi(A)$ by Corallary 2.1. Therefore $\operatorname{clint} A \subset \operatorname{cl} \Psi(A)$. Thus $A \subset \operatorname{clint} A \subset \operatorname{cl} \Psi(A)$. Hence the theorem.

That the reverse inclusion of the above theorem fails to hold follows from Example 3.1 where $\{a, d\} \in \Psi(X, \tau)$ where as $\{a, d\}$ is not a semi-open set.

Now we recall the definition of a semi-preopen set.

Definition 3.2. [1] A subset A of X is said to be a semi-preopen set if $A \subset$ clint cl A. The collection of all semi-preopen sets in (X, τ) is denoted by SPO (X, τ) .

Theorem 3.3 and Example 3.4 show that if **I** is codense $\Psi(X, \tau)$ in general is a larger class than the class of semi-open sets in (X, τ) . However we shall show that the class of semi-preopen sets forms even a larger class than the class of Ψ -C sets.

Theorem 3.4. Let A be a Ψ -C set in a topological space (X, τ, \mathbf{I}) , where \mathbf{I} is codense. Then $A \in SPO(X, \tau)$.

Proof. Proof follows directly from Theorem 2.3(i), since $\Psi(A) \subset \operatorname{cl} A$ implies $A \subset \operatorname{cl} \operatorname{int} \operatorname{cl} A$.

By the above theorem we get $\Psi(X,\tau) \subset SPO(X,\tau)$. However the inequality in the other direction fails to hold.

Example 3.4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$, $\mathbf{I} = \{\emptyset, \{a\}\}$ and $C(\tau) = \{\emptyset, X, \{c\}\}$. Now $\Psi(\{a\}) = X - \{b, c\}^* = X - \{a, b, c\} = \emptyset$. Therefore $\{a\} \not\subset \operatorname{cl} \Psi(\{a\})$, i.e., $\{a\}$ is not a Ψ -C set. But $\{a\} \subset \operatorname{clint} \operatorname{cl} \{a\}$, therefore $\{a\}$ is a semi-preopen set.

Corollary 3.1. SO $(X, \tau) \subset \Psi(X, \tau) \subset SPO(X, \tau)$, when **I** is a codense ideal.

Proof. The proof follows from Theorem 3.3 and Theorem 3.4.

Recall that Njastad in 1965 defined a set $A \subset X$ to be an α -set if $A \subset \operatorname{int} \operatorname{cl} \operatorname{int} A$ [6]. Denote the collection of all α -sets as τ^{α} .

In Example 3.3 it has been shown that intersection of two Ψ -C sets may not be a Ψ -C set. However we show that the intersection of a Ψ -C set and an α -set is also a Ψ -C set.

Theorem 3.5. Let (X, τ, \mathbf{I}) be a topological space and $A \in \Psi(X, \tau)$. If $U \in \tau^{\alpha}$, then $U \cap A \in \Psi(X, \tau)$.

Proof. First we note that if G is open, for any $A \subset X, G \cap cl A \subset cl(G \cap A)$, as well as that $\Psi(A \cap B) = \Psi(A) \cap \Psi(B)$. Hence if $U \in \tau^{\alpha}$ and $A \in \Psi(X, \tau)$ we have therefore $U \cap A \subset int(cl(int U)) \cap cl \Psi(A) \subset int(cl(\Psi(U)) \cap cl \Psi(A)) = cl(int(cl(\Psi(U)) \cap \Psi(A))) = cl((U \cap \Psi(A)))) = cl(\Psi(U) \cap \Psi(A)) = cl(\Psi(U \cap A))$ and hence $U \cap A \in \Psi(X, \tau)$.

From Theorem 3.5 we get the following corollary.

Corollary 3.2. Let (X, τ, \mathbf{I}) be a topological space and $A \in \Psi(X, \tau)$. If $U \in \tau$, then $U \cap A \in \Psi(X, \tau)$.

Proof. It follows from the fact that $\tau \subset \tau^{\alpha}$.

It is obvious that if $A \in \mathbf{I}$ is nonempty, where \mathbf{I} is codense, then $A \notin \Psi(X, \tau)$. [It follows from (vi) of Theorem 2.3].

However the following example shows that the converse need not hold.

Example 3.5. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, \mathbf{I} = \{\emptyset, \{c\}\}$ and $C(\tau) = \{\emptyset, X, \{b, c, d\}, \{a, d\}, \{d\}\}$. Now $\Psi(\{a, c\}) = X - \{b, d\}^* = X - \{b, c, d\} = \{a\}$. Therefore $cl \Psi(\{a, c\}) = \{a, d\}$. Thus $\{a, c\} \notin \Psi(X, \tau)$, where as $\{a, c\} \notin \mathbf{I}$. Also recalling that $\Psi(A) = X - (X - A)^*$, from the definition of \mathbf{I} -dense set it follows that $\Psi(A) = \emptyset$ if and only if (X - A) is \mathbf{I} - dense. Therefore for a topological space (X, τ, \mathbf{I}) if \mathbf{I} is codense $A \neq \emptyset, A \notin \Psi(X, \tau)$ if $A \in \mathbf{I}$ or (X - A) is \mathbf{I} -dense.

Calling a set D to be relatively **I**-dense in a set A if for every relatively nonempty open set $U \cap A$, $U \in \tau$, it is true that $(U \cap A) \cap D \notin \mathbf{I}$. We now prove Theorm 3.6 giving a necessary and sufficient condition for $A \notin \Psi(X, \tau)$.

Theorem 3.6. A set A does not belong to $\Psi(X, \tau)$ if and only if there exists $x \in A$ such that there is a neighborhood V_x of x for which X - A is relatively \mathbf{I} -dense in V_x .

Proof. Let $A \notin \Psi(X, \tau)$. We are to show that there exists an element $x \in A$ and a neighborhood V_x of x satisfying that (X - A) is relatively **I**-dense in V_x . Since $A \not\subset \operatorname{cl} \Psi(A)$, there exists $x \in X$ such that $x \in A$ but $x \notin \operatorname{cl} \Psi(A)$. Hence there exists a neighborhood V_x of x such that $V_x \cap \Psi(A) = \emptyset$. This implies that $V_x \cap (X - (X - A)^*) = \emptyset$, therefore $V_x \subset (X - A)^*$. Let U be any nonempty open set in V_x . Since $V_x \subset (X - A)^*$, therefore $U \cap (X - A) \notin \mathbf{I}$. This implies that (X - A) is relatively **I**-dense in V_x .

Converse part follows by reversing the argument.

Acknowledgement. The authors are thankful to the referees for their useful suggestions.

References

- [1] D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik 39(4)(1987), 367–376.
- [2] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl. 93(1)(1999), 1–16.
- [3] T. R. Hamlett and D. Janković, Ideals in topological spaces and the set operator ψ, Boll. Un. Mat. Ital. B (7) 4(4)(1990), 863–874.
- [4] D. Janković and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. B (7) 6(3)(1992), 453–465.
- [5] K. Kuratowski, Topology, Warszawa, 1933.
- [6] O. Njästad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.