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Abstract. A directed graph G is nonderogatory if its adjacency matrix A is

nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal
polynomial of A. We analyze the problem whether the coalescence of difans and

diwheels is nonderogatory. Also, a formula for the characteristic polynomial of
the coalescence of two directed graphs is presented.
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1. Introduction

A digraph (directed graph) G = (V,E) is defined to be a finite set V and a set E
of ordered pairs of elements of V . The sets V and E are called the set of vertices
and arcs, respectively. If (u, v) ∈ E then u and v are adjacent and (u, v) is an arc
starting at vertex u and terminating at vertex v.

Suppose that {u1, . . . , un} is the set of vertices of G. The adjacency matrix of
G is denoted by AG, and it is defined as the square matrix of order n whose entry
ij is the number of arcs starting at ui and terminating at uj . The characteristic
polynomial of the digraph G is denoted by ΦG (x) (or simply ΦG) and it is defined as
the characteristic polynomial of the adjacency matrix AG, i.e., ΦG (x) = |xI −AG|,
where I is the identity matrix and |M | denotes the determinant of M .

By the Cayley-Hamilton theorem, ΦG is an annihilating polynomial of AG, which
means that ΦG (AG) = 0. The monic polynomial of least degree which annihilates
AG is called the minimal polynomial of G and will be denoted by µG (x) = µG.
Recall that if

ΦG (x) = (x− λ1)
q1 (x− λ2)

q2 · · · (x− λr)
qr

where q1, . . . , qr are positive integers then

µG (x) = (x− λ1)
p1 (x− λ2)

p2 · · · (x− λr)
pr

where 1 ≤ pi ≤ qi for all i = 1, . . . , r. If ΦG (x) = µG (x) then G is a nonderogatory
digraph. Otherwise, G is derogatory.
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For example, dipaths Pn, dicycles Cn and windmills Mh (r) (with r = 2) are
classes of nonderogatory digraphs [1,2]. Other examples are the difans Fn and the
diwheels Wn, which were considered by Lam and Lim [4,5]. In particular, they
treated the problem whether the complete product of nonderogatory digraphs is
nonderogatory. More recently, Gan [5] showed that the complete product of difans
and diwheels is nonderogatory. Motivated by these results we consider a well known
operation between digraphs, the so-called coalescence or amalgamation between di-
graphs, and analyze the problem whether the coalescence of difans and diwheels is
nonderogatory.

Although the characteristic polynomial of the coalescence of difans and diwheels
can be calculated directly using the Coefficient Theorem for digraphs ([6],Theorem
1.2), we present in Section 2 a general formula for the characteristic polynomial of
the coalescence of two digraphs.

2. Coalescence of digraphs

If G is a digraph, we denote the set of vertices of G by VG and the set of arcs by
EG. Given u ∈ VG, the digraph G− u is the graph obtained from G by deleting the
vertex u together with every arc which connects to u.

The definition of coalescense of non-directed graphs [6] can be extended to di-
graphs as follows.

Definition 2.1. Let G and H be two digraphs such that u ∈ VG and v ∈ VH . The
coalescence of the digraphs G and H with respect to the vertices u, v, denoted by
G · H, is the graph obtained from G and H by merging the vertices u and v as w.
In other words,

VG·H = VG−u ∪ VH−v ∪ {w}
and two vertices in G ·H are adjacent if they are adjacent in G or H, or if one is
w and the other is adjacent to u or v in G or H.

The formula to calculate the characteristic polynomial of the coalescence of two
non-directed graphs [1] also holds for digraphs, as we can see in Theorem 2.1. First
we need a technical result about the determinant of a block matrix.

Lemma 2.1. Let A ∈Mp (C) and B ∈Mq (C). Consider the block matrix

D =

 A y 0
ỹ r w̃
0 w B


where y is a column vector of Cp, ỹ is a row vector of Cp, w is a column vector of
Cq, w̃ is a row vector of Cq and r ∈ C. If

Ã =
(

A y
ỹ r

)
and B̃ =

(
r w̃
w B

)
,

then
|D| =

∣∣∣Ã∣∣∣ |B|+ ∣∣∣B̃∣∣∣ |A| − r |A| |B| .
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Proof. We assume that D = (dij). By the Laplace expansion by minors along the
first row

|D| =
p+1∑
j=1

(−1)1+j
d1jM1j

where, for each 1 ≤ j ≤ p,

M1j =

∣∣∣∣∣∣
A∗

j y∗ 0∗

ỹj r w̃
0j w B

∣∣∣∣∣∣ and M1,p+1 =

∣∣∣∣∣∣
A∗

ỹ
0∗

w̃
0 B

∣∣∣∣∣∣ =
∣∣∣∣ A∗

ỹ

∣∣∣∣ |B|
where * means that we deleted the first row and the subscript j means that we
deleted the j-th column. An induction argument implies that

M1j =
∣∣∣∣ A∗

j y∗

ỹj r

∣∣∣∣ ∣∣ B
∣∣+ ∣∣∣B̃∣∣∣ ∣∣ A∗

j

∣∣− r
∣∣ A∗

j

∣∣ ∣∣ B.
∣∣

The result follows from the facts that∣∣∣Ã∣∣∣ = p∑
j=1

(−1)1+j
d1j

∣∣∣∣ A∗
j y∗

ỹj r

∣∣∣∣+ (−1)2+p
d1,p+1

∣∣∣∣ A∗

ỹ

∣∣∣∣
and

|A| =
p∑

j=1

(−1)1+j
d1j

∣∣A∗
j

∣∣ .
Now we can calculate the characteristic polynomial of the coalescence G · H of

digraphs G and H.

Theorem 2.1. Let G and H be two digraphs such that u ∈ VG and v ∈ VH . If G ·H
is the coalescence of the digraphs G and H with respect to the vertices u, v then

ΦG·H = ΦGΦH−v + ΦHΦG−u − xΦG−uΦH−v.

Proof. We order the vertices of G ·H as

{u1, u2, . . . , up = u = v = vp, vp+1, . . . , vp+q−1}

where VG = {u1, . . . , up = u} and VH = {v = vp, vp+1, . . . , vp+q−1}. Let 0j,k be the
j × k matrix with 0 in all entries. Then the adjacency matrix of G ·H with respect
to u, v is of the form

AG·H =

 AG−u y 0p−1,q−1

ỹ 0 w̃
0q−1,p−1 w AH−v


where

AG =
(

AG−u y
ỹ 0

)
and AH =

(
0 w̃
w AH−v

)
are the adjacency matrices of G and H, respectively. Note that y ∈ Cp−1 is a column
vector whose j-th coordinate is 1 if there exists an arc from uj to u and 0 otherwise.
On the other hand, ỹ ∈ Cp−1 is a row vector whose j-th coordinate is 1 if there
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exists an arc from u to uj and 0 otherwise. Similarly for w, w̃ ∈ Cq−1. It follows
from Lemma 2.1 that

|xI −AG·H | =

∣∣∣∣∣∣
xI −AG−u −y 0

−ỹ x −w̃
0 −w xI −AH−v

∣∣∣∣∣∣
= |xI −AG| |xI −AH−v|+ |xI −AH | |xI −AG−u|
− x |xI −AG−u| |xI −AH−v|

= ΦGΦH−v + ΦHΦG−u − xΦG−uΦH−v.

3. Coalescence of difans and diwheels

In this section we consider the problem whether the coalescence of difans and di-
wheels is nonderogatory. Recall the following definitions:

• A dipath Pn is a digraph with vertex set {v1, . . . , vn} and arcs (vi, vi+1) for
i = 1, . . . , n− 1.

• A dicycle Cn is a digraph with vertex set {v1, . . . , vn} having arcs (vi, vi+1)
for i = 1, . . . , n− 1, and (vn, v1).

• A difan Fn is a digraph consisting of a dipath Pn−1 of n−1 vertices labelled
1, 2, . . . , n − 1, and an additional vertex n, where there is an arc from n to
each of the other vertices of Pn−1. The vertex n is called the hub of the
difan whereas the arc (n, k) from the hub to the vertex k of Pn−1 is called
a spoke. The vertices with labelling 1, . . . , n − 1 are called the rim vertices
of the difan.

• The diwheel Wn consists of a directed cycle Cn−1 with additional arcs from
an additional vertex n to each of the vertices in Cn−1. Vertex n is called
the hub of the diwheel whereas the arc (n, k) from the hub to the vertex k
of Cn−1 is called a spoke. The vertices with labelling 1, . . . , n− 1 are called
the rim vertices of the diwheel.

The characteristic polynomials of these digraphs are well known:

ΦPn
(x) = xn,

ΦCn (x) = xn − 1,

ΦFn (x) = xn,

ΦWn
(x) = xn − x.

We will strongly rely on the following well known result from algebraic graph theory.

Theorem 3.1. [6, Theorem 1.9] Let AG be the adjacency matrix of the digraph G

with set of vertices {u1, . . . , un}. If a
(k)
ij denotes the entry ij of the power matrix

(AG)k
, then a

(k)
ij is the number of diwalks of length k starting at vertex ui and

terminating at uj.

Recall that a diwalk of length k in G is a sequence of vertices v0v1 · · · vk in which
each (vi−1, vi) is an arc of G.

Theorem 3.2. The coalescence Fr ·Ws with respect to the hub u of the difan and
the hub v of the diwheel is nonderogatory (see Figure 1).
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Figure 1. Coalescence of Fr and Ws

Proof. First we note that Fr − u = Pr−1 and Ws − v = Cs−1. It follows from
Theorem 2.1 that

ΦFr·Ws = ΦFrΦCs−1 + ΦWsΦPr−1 − xΦCs−1ΦPr−1

= xr
(
xs−1 − 1

)
+ (xs − x)xr−1 − x

(
xs−1 − 1

)
xr−1

= xr
(
xs−1 − 1

)
.

Hence the minimal polynomial is of the form

µ
Fr·Ws

= xk
(
xs−1 − 1

)
for some 1 ≤ k ≤ r. We will show that Ar−1

(
As−1 − I

)
6= 0 or equivalently,

Ar+s−2 6= Ar−1. To see this note that there exists a unique diwalk

u → v2 → v3 → · · · → vr−1 → vr

of length r − 1 in Fr · Ws from the vertex u = v to vr (see Fig. 1). Therefore,
a
(r−1)
uvr = 1. On the other hand, it is clear that there are no diwalks from u to vr of

length r + s − 2. Hence a
(r+s−2)
uvr = 0. Consequently, µ

Fr·Ws
= ΦFr·Ws

and Fr ·Ws

is nonderogatory.

Theorem 3.3. The coalescence of Fr and Fs with respect to the hub u of Fr and
the hub v of Fs is derogatory (see Fig. 2).

Proof. The characteristic polynomial of Fr · Fs is given by

ΦFr·Fs = ΦFrΦPs−1 + ΦFsΦPr−1 − xΦPs−1ΦPr−1

= xrxs−1 + xsxr−1 − xxs−1xr−1 = xr+s−1.

Since the longest diwalk in Fr · Fs has length γ = max {r − 1, s− 1} then Aγ 6= 0
and Aγ+1 = 0. Consequently, µFr·Fs = xγ+1 6= xr+s−1 = ΦFr·Fs and Fr · Fs is
derogatory.

Theorem 3.4. The coalescence of Wr and Ws with respect to the hub vertices u
and v of Wr and Ws, respectively, is derogatory (see Fig. 3).
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Figure 2. Coalescence of Fr and Fs

Proof. The characteristic polynomial of Wr ·Ws is given by

ΦWr·Ws = ΦWrΦCs−1 + ΦWsΦCr−1 − xΦCs−1ΦCr−1

= (xr − x)
(
xs−1 − 1

)
+ (xs − x)

(
xr−1 − 1

)
− x

(
xs−1 − 1

) (
xr−1 − 1

)
= x

(
xr−1 − 1

) (
xs−1 − 1

)
.

Let us introduce some notations: denote by X and Y the adjacency matrices of the
cycles Cr−1 and Cs−1, respectively. Let Jk denote the 1 × k matrix with 1 in all
entries. Then the adjacency matrix A of Wr ·Ws is given by the block matrix

A =

 0 Jr−1 Js−1

0r−1,1 X 0r−1,s−1

0s−1,1 0s−1,r−1 Y

 .

Since Jr−1X = Jr−1 and Js−1Y = Js−1, it can be easily shown using induction that
for every integer k ≥ 1

(3.1) Ak =

 0 Jr−1 Js−1

0r−1,1 Xk 0r−1,s−1

0s−1,1 0s−1,r−1 Y k

 .

Consider two cases:
(a) r = s. In this case ΦWr·Wr = x

(
xr−1 − 1

)2. Let f (x) = x
(
xr−1 − 1

)
. Since

Xr−1 = I it follows that

Ar = Ar−1A =

 0 Jr−1 Js−1

0r−1,1 I 0r−1,s−1

0s−1,1 0s−1,r−1 I

A = A

and then
f (A) = A

(
Ar−1 − I

)
= Ar −A = 0

which implies that µWr·Wr
= x

(
xr−1 − 1

)
.

(b) r 6= s. Assume that r < s. Clearly,

ΦWr·Ws
= x

(
xr−1 − 1

)
(x− 1)

(
1 + x + · · ·+ xs−2

)
.

Let g (x) = x
(
xr−1 − 1

) (
1 + x + · · ·+ xs−2

)
. Since Y s−1 = I it follows that

Y r−1
s−1∑
k=1

Y k = Y r + Y r+1 + · · ·+ Y s−1 + Y + Y 2 + · · ·+ Y r−1 =
s−1∑
k=1

Y k.
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Consequently

Ar−1
s−1∑
k=1

Ak

=

 0 Jr−1 Js−1

0r−1,1 I 0r−1,s−1

0s−1,1 0s−1,r−1 Y r−1




0 (s− 1) Jr−1 (s− 1) Js−1

0r−1,1

s−1∑
k=1

Xk 0r−1,s−1

0s−1,1 0s−1,r−1

s−1∑
k=1

Y k



=


0 Jr−1

s−1∑
k=1

Xk Js−1

s−1∑
k=1

Y k

0r−1,1

s−1∑
k=1

Xk 0r−1,s−1

0s−1,1 0s−1,r−1 Y r−1
s−1∑
k=1

Y k



=


0 (s− 1) Jr−1 (s− 1) Js−1

0r−1,1

s−1∑
k=1

Xk 0r−1,s−1

0s−1,1 0s−1,r−1

s−1∑
k=1

Y k


=

s−1∑
k=1

Ak.

Hence

g (A) =
(
Ar−1 − I

)(s−1∑
k=1

Ak

)
= Ar−1

(
s−1∑
k=1

Ak

)
−

s−1∑
k=1

Ak = 0

and so µWr·Ws
6= ΦWr·Ws

. In both cases, Wr ·Ws is derogatory.

Remark 3.1. In the proof of Theorem 3.4, it was shown that µWr·Ws 6= ΦWr·Ws

in the case r 6= s. Actually, we can determine the minimal polynomial of Wr ·Ws

in this case. If d = gcd (r − 1, s− 1) then ΦWr·Ws
has exactly d repeated roots. In

particular, if d = 1, then

µWr·Ws
= g (x) = x

(
xr−1 − 1

) (
1 + x + · · ·+ xs−2

)
Suppose that d ≥ 2. Clearly ΦWr·Ws has exactly r+s−1−d distinct roots. Consider
(r + s− 1− d)-degree polynomial

h (x) = −

r−1
d −1∑
i=0

x1+id +

r−1
d −1∑
j=0

xr+s−1−d(1+j).

It is not difficult to show that for each 0 ≤ i ≤ r−1
d − 1 there exists a unique

0 ≤ j ≤ r−1
d − 1 such that

X1+id = Xr+s−1−d(1+j).
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Figure 3. Coalescence of Wf and Ws

Similarly for Y . Consequently, h (X) = h (Y ) = 0 which implies from relation (3.1),
that h (A) = 0. Hence h (x) = µWr·Ws

.
For example,

ΦW9·W13 = x
(
x8 − 1

) (
x12 − 1

)
and

µW9·W13 = −x− x5 + x13 + x17.

Since r = 9 and s = 13, X8 = I and Y 12 = I, where X and Y are the adjacency
matrices of C8 and C12, respectively. Note that

X13 = X5, X17 = X and Y 13 = Y, Y 17 = Y 5.
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Cient́ıfico, Humańıstico y Tecnológico de la Universidad de Los Andes (CDCHT,
C-13490505B).

References

[1] C. S. Gan and V. C. Koo, On annihilating uniqueness of directed windmills, Proceedings of the
ATCM (ATCM 2002), Melaka, Malaysia.

[2] J. Rada, Nonderogatory directed windmills, submitted.
[3] K. S. Lam, On digraphs with unique annihilating polynomial, PhD Thesis, University of Malaya,

Kuala Lumpur, 1990.
[4] K. S. Lam and C. K. Lim, The characteristic polynomial of ladder digraph and an annihilating

uniqueness theorem, Discrete Mathematics 151, (1996,) 161–167.
[5] C. S. Gan, The complete product of annihilatingly unique digraphs, Int. J. Math. Math. Sci.,

(2005), 1327–1331.
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