Coalescence of Difans and Diwheels

Diego Bravo and Juan Rada
Departamento de Matemáticas, Facultad de Ciencias Universidad de Los Andes, 5101 Mérida, Venezuela dbravo@ula.ve, juanrada@ula.ve

Abstract

A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal polynomial of A. We analyze the problem whether the coalescence of difans and diwheels is nonderogatory. Also, a formula for the characteristic polynomial of the coalescence of two directed graphs is presented.

2000 Mathematics Subject Classification: 05C50
Key words and phrases: Nonderogatory digraphs, coalescence of diagraph.

1. Introduction

A digraph (directed graph) $G=(V, E)$ is defined to be a finite set V and a set E of ordered pairs of elements of V. The sets V and E are called the set of vertices and arcs, respectively. If $(u, v) \in E$ then u and v are adjacent and (u, v) is an arc starting at vertex u and terminating at vertex v.

Suppose that $\left\{u_{1}, \ldots, u_{n}\right\}$ is the set of vertices of G. The adjacency matrix of G is denoted by A_{G}, and it is defined as the square matrix of order n whose entry $i j$ is the number of arcs starting at u_{i} and terminating at u_{j}. The characteristic polynomial of the digraph G is denoted by $\Phi_{G}(x)$ (or simply Φ_{G}) and it is defined as the characteristic polynomial of the adjacency matrix A_{G}, i.e., $\Phi_{G}(x)=\left|x I-A_{G}\right|$, where I is the identity matrix and $|M|$ denotes the determinant of M.

By the Cayley-Hamilton theorem, Φ_{G} is an annihilating polynomial of A_{G}, which means that $\Phi_{G}\left(A_{G}\right)=0$. The monic polynomial of least degree which annihilates A_{G} is called the minimal polynomial of G and will be denoted by $\mu_{G}(x)=\mu_{G}$. Recall that if

$$
\Phi_{G}(x)=\left(x-\lambda_{1}\right)^{q_{1}}\left(x-\lambda_{2}\right)^{q_{2}} \cdots\left(x-\lambda_{r}\right)^{q_{r}}
$$

where q_{1}, \ldots, q_{r} are positive integers then

$$
\mu_{G}(x)=\left(x-\lambda_{1}\right)^{p_{1}}\left(x-\lambda_{2}\right)^{p_{2}} \cdots\left(x-\lambda_{r}\right)^{p_{r}}
$$

where $1 \leq p_{i} \leq q_{i}$ for all $i=1, \ldots, r$. If $\Phi_{G}(x)=\mu_{G}(x)$ then G is a nonderogatory digraph. Otherwise, G is derogatory.

For example, dipaths P_{n}, dicycles C_{n} and windmills $M_{h}(r)$ (with $r=2$) are classes of nonderogatory digraphs $[1,2]$. Other examples are the difans F_{n} and the diwheels W_{n}, which were considered by Lam and Lim [4,5]. In particular, they treated the problem whether the complete product of nonderogatory digraphs is nonderogatory. More recently, Gan [5] showed that the complete product of difans and diwheels is nonderogatory. Motivated by these results we consider a well known operation between digraphs, the so-called coalescence or amalgamation between digraphs, and analyze the problem whether the coalescence of difans and diwheels is nonderogatory.

Although the characteristic polynomial of the coalescence of difans and diwheels can be calculated directly using the Coefficient Theorem for digraphs ([6],Theorem 1.2), we present in Section 2 a general formula for the characteristic polynomial of the coalescence of two digraphs.

2. Coalescence of digraphs

If G is a digraph, we denote the set of vertices of G by V_{G} and the set of arcs by E_{G}. Given $u \in V_{G}$, the digraph $G-u$ is the graph obtained from G by deleting the vertex u together with every arc which connects to u.

The definition of coalescense of non-directed graphs [6] can be extended to digraphs as follows.

Definition 2.1. Let G and H be two digraphs such that $u \in V_{G}$ and $v \in V_{H}$. The coalescence of the digraphs G and H with respect to the vertices u, v, denoted by $G \cdot H$, is the graph obtained from G and H by merging the vertices u and v as w. In other words,

$$
V_{G \cdot H}=V_{G-u} \cup V_{H-v} \cup\{w\}
$$

and two vertices in $G \cdot H$ are adjacent if they are adjacent in G or H, or if one is w and the other is adjacent to u or v in G or H.

The formula to calculate the characteristic polynomial of the coalescence of two non-directed graphs [1] also holds for digraphs, as we can see in Theorem 2.1. First we need a technical result about the determinant of a block matrix.

Lemma 2.1. Let $A \in \mathcal{M}_{p}(\mathbb{C})$ and $B \in \mathcal{M}_{q}(\mathbb{C})$. Consider the block matrix

$$
D=\left(\begin{array}{ccc}
A & y & 0 \\
\widetilde{y} & r & \widetilde{w} \\
0 & w & B
\end{array}\right)
$$

where y is a column vector of $\mathbb{C}^{p}, \widetilde{y}$ is a row vector of \mathbb{C}^{p}, w is a column vector of $\mathbb{C}^{q}, \widetilde{w}$ is a row vector of \mathbb{C}^{q} and $r \in \mathbb{C}$. If

$$
\widetilde{A}=\left(\begin{array}{cc}
A & y \\
\widetilde{y} & r
\end{array}\right) \text { and } \widetilde{B}=\left(\begin{array}{cc}
r & \widetilde{w} \\
w & B
\end{array}\right)
$$

then

$$
|D|=|\widetilde{A}||B|+|\widetilde{B}||A|-r|A||B| .
$$

Proof. We assume that $D=\left(d_{i j}\right)$. By the Laplace expansion by minors along the first row

$$
|D|=\sum_{j=1}^{p+1}(-1)^{1+j} d_{1 j} M_{1 j}
$$

where, for each $1 \leq j \leq p$,

$$
M_{1 j}=\left|\begin{array}{ccc}
A_{j}^{*} & y^{*} & 0^{*} \\
\widetilde{y}_{j} & r & \widetilde{w} \\
0_{j} & w & B
\end{array}\right| \text { and } M_{1, p+1}=\left|\begin{array}{cc}
A^{*} & 0^{*} \\
\widetilde{y} & \widetilde{w} \\
0 & B
\end{array}\right|=\left|\begin{array}{c}
A^{*} \\
\widetilde{y}
\end{array}\right||B|
$$

where ${ }^{*}$ means that we deleted the first row and the subscript j means that we deleted the j-th column. An induction argument implies that

$$
\left.M_{1 j}=\left|\begin{array}{cc}
A_{j}^{*} & y^{*} \\
\widetilde{y}_{j} & r
\end{array}\right||B|+|\widetilde{B}|\left|A_{j}^{*}\right|-r\left|A_{j}^{*}\right| \right\rvert\, B
$$

The result follows from the facts that

$$
|\widetilde{A}|=\sum_{j=1}^{p}(-1)^{1+j} d_{1 j}\left|\begin{array}{cc}
A_{j}^{*} & y^{*} \\
\widetilde{y}_{j} & r
\end{array}\right|+(-1)^{2+p} d_{1, p+1}\left|\begin{array}{c}
A^{*} \\
\widetilde{y}
\end{array}\right|
$$

and

$$
|A|=\sum_{j=1}^{p}(-1)^{1+j} d_{1 j}\left|A_{j}^{*}\right| .
$$

Now we can calculate the characteristic polynomial of the coalescence $G \cdot H$ of digraphs G and H.

Theorem 2.1. Let G and H be two digraphs such that $u \in V_{G}$ and $v \in V_{H}$. If $G \cdot H$ is the coalescence of the digraphs G and H with respect to the vertices u, v then

$$
\Phi_{G \cdot H}=\Phi_{G} \Phi_{H-v}+\Phi_{H} \Phi_{G-u}-x \Phi_{G-u} \Phi_{H-v}
$$

Proof. We order the vertices of $G \cdot H$ as

$$
\left\{u_{1}, u_{2}, \ldots, u_{p}=u=v=v_{p}, v_{p+1}, \ldots, v_{p+q-1}\right\}
$$

where $V_{G}=\left\{u_{1}, \ldots, u_{p}=u\right\}$ and $V_{H}=\left\{v=v_{p}, v_{p+1}, \ldots, v_{p+q-1}\right\}$. Let $\mathbf{0}_{j, k}$ be the $j \times k$ matrix with 0 in all entries. Then the adjacency matrix of $G \cdot H$ with respect to u, v is of the form

$$
A_{G \cdot H}=\left(\begin{array}{ccc}
A_{G-u} & y & \mathbf{0}_{p-1, q-1} \\
\widetilde{y} & 0 & \widetilde{w} \\
\mathbf{0}_{q-1, p-1} & w & A_{H-v}
\end{array}\right)
$$

where

$$
A_{G}=\left(\begin{array}{cc}
A_{G-u} & y \\
\widetilde{y} & 0
\end{array}\right) \text { and } A_{H}=\left(\begin{array}{cc}
0 & \widetilde{w} \\
w & A_{H-v}
\end{array}\right)
$$

are the adjacency matrices of G and H, respectively. Note that $y \in \mathbb{C}^{p-1}$ is a column vector whose j-th coordinate is 1 if there exists an arc from u_{j} to u and 0 otherwise. On the other hand, $\widetilde{y} \in \mathbb{C}^{p-1}$ is a row vector whose j-th coordinate is 1 if there
exists an arc from u to u_{j} and 0 otherwise. Similarly for $w, \widetilde{w} \in \mathbb{C}^{q-1}$. It follows from Lemma 2.1 that

$$
\begin{aligned}
\left|x I-A_{G \cdot H}\right|= & \left|\begin{array}{ccc}
x I-A_{G-u} & -y & 0 \\
-\widetilde{y} & x & -\widetilde{w} \\
0 & -w & x I-A_{H-v}
\end{array}\right| \\
= & \left|x I-A_{G}\right|\left|x I-A_{H-v}\right|+\left|x I-A_{H}\right|\left|x I-A_{G-u}\right| \\
& -x\left|x I-A_{G-u}\right|\left|x I-A_{H-v}\right| \\
= & \Phi_{G} \Phi_{H-v}+\Phi_{H} \Phi_{G-u}-x \Phi_{G-u} \Phi_{H-v} .
\end{aligned}
$$

3. Coalescence of difans and diwheels

In this section we consider the problem whether the coalescence of difans and diwheels is nonderogatory. Recall the following definitions:

- A dipath P_{n} is a digraph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$ for $i=1, \ldots, n-1$.
- A dicycle C_{n} is a digraph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ having $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$ for $i=1, \ldots, n-1$, and $\left(v_{n}, v_{1}\right)$.
- A difan F_{n} is a digraph consisting of a dipath P_{n-1} of $n-1$ vertices labelled $1,2, \ldots, n-1$, and an additional vertex n, where there is an arc from n to each of the other vertices of P_{n-1}. The vertex n is called the hub of the difan whereas the arc (n, k) from the hub to the vertex k of P_{n-1} is called a spoke. The vertices with labelling $1, \ldots, n-1$ are called the rim vertices of the difan.
- The diwheel W_{n} consists of a directed cycle C_{n-1} with additional arcs from an additional vertex n to each of the vertices in C_{n-1}. Vertex n is called the hub of the diwheel whereas the $\operatorname{arc}(n, k)$ from the hub to the vertex k of C_{n-1} is called a spoke. The vertices with labelling $1, \ldots, n-1$ are called the rim vertices of the diwheel.
The characteristic polynomials of these digraphs are well known:

$$
\begin{aligned}
& \Phi_{P_{n}}(x)=x^{n}, \\
& \Phi_{C_{n}}(x)=x^{n}-1, \\
& \Phi_{F_{n}}(x)=x^{n}, \\
& \Phi_{W_{n}}(x)=x^{n}-x .
\end{aligned}
$$

We will strongly rely on the following well known result from algebraic graph theory.
Theorem 3.1. [6, Theorem 1.9] Let A_{G} be the adjacency matrix of the digraph G with set of vertices $\left\{u_{1}, \ldots, u_{n}\right\}$. If $a_{i j}^{(k)}$ denotes the entry $i j$ of the power matrix $\left(A_{G}\right)^{k}$, then $a_{i j}^{(k)}$ is the number of diwalks of length k starting at vertex u_{i} and terminating at u_{j}.

Recall that a diwalk of length k in G is a sequence of vertices $v_{0} v_{1} \cdots v_{k}$ in which each $\left(v_{i-1}, v_{i}\right)$ is an arc of G.

Theorem 3.2. The coalescence $F_{r} \cdot W_{s}$ with respect to the hub u of the difan and the hub v of the diwheel is nonderogatory (see Figure 1).

Figure 1. Coalescence of F_{r} and W_{s}
Proof. First we note that $F_{r}-u=P_{r-1}$ and $W_{s}-v=C_{s-1}$. It follows from Theorem 2.1 that

$$
\begin{aligned}
\Phi_{F_{r} \cdot W_{s}} & =\Phi_{F_{r}} \Phi_{C_{s-1}}+\Phi_{W_{s}} \Phi_{P_{r-1}}-x \Phi_{C_{s-1}} \Phi_{P_{r-1}} \\
& =x^{r}\left(x^{s-1}-1\right)+\left(x^{s}-x\right) x^{r-1}-x\left(x^{s-1}-1\right) x^{r-1} \\
& =x^{r}\left(x^{s-1}-1\right)
\end{aligned}
$$

Hence the minimal polynomial is of the form

$$
\mu_{F_{r} \cdot W_{s}}=x^{k}\left(x^{s-1}-1\right)
$$

for some $1 \leq k \leq r$. We will show that $A^{r-1}\left(A^{s-1}-I\right) \neq 0$ or equivalently, $A^{r+s-2} \neq A^{r-1}$. To see this note that there exists a unique diwalk

$$
u \rightarrow v_{2} \rightarrow v_{3} \rightarrow \cdots \rightarrow v_{r-1} \rightarrow v_{r}
$$

of length $r-1$ in $F_{r} \cdot W_{s}$ from the vertex $u=v$ to v_{r} (see Fig. 1). Therefore, $a_{u v_{r}}^{(r-1)}=1$. On the other hand, it is clear that there are no diwalks from u to v_{r} of length $r+s-2$. Hence $a_{u v_{r}}^{(r+s-2)}=0$. Consequently, $\mu_{F_{r} \cdot W_{s}}=\Phi_{F_{r} \cdot W_{s}}$ and $F_{r} \cdot W_{s}$ is nonderogatory.

Theorem 3.3. The coalescence of F_{r} and F_{s} with respect to the hub u of F_{r} and the hub v of F_{s} is derogatory (see Fig. 2).
Proof. The characteristic polynomial of $F_{r} \cdot F_{s}$ is given by

$$
\begin{aligned}
\Phi_{F_{r} \cdot F_{s}} & =\Phi_{F_{r}} \Phi_{P_{s-1}}+\Phi_{F_{s}} \Phi_{P_{r-1}}-x \Phi_{P_{s-1}} \Phi_{P_{r-1}} \\
& =x^{r} x^{s-1}+x^{s} x^{r-1}-x x^{s-1} x^{r-1}=x^{r+s-1}
\end{aligned}
$$

Since the longest diwalk in $F_{r} \cdot F_{s}$ has length $\gamma=\max \{r-1, s-1\}$ then $A^{\gamma} \neq 0$ and $A^{\gamma+1}=0$. Consequently, $\mu_{F_{r} \cdot F_{s}}=x^{\gamma+1} \neq x^{r+s-1}=\Phi_{F_{r} \cdot F_{s}}$ and $F_{r} \cdot F_{s}$ is derogatory.

Theorem 3.4. The coalescence of W_{r} and W_{s} with respect to the hub vertices u and v of W_{r} and W_{s}, respectively, is derogatory (see Fig. 3).

Figure 2. Coalescence of F_{r} and F_{s}

Proof. The characteristic polynomial of $W_{r} \cdot W_{s}$ is given by

$$
\begin{aligned}
\Phi_{W_{r} \cdot W_{s}} & =\Phi_{W_{r}} \Phi_{C_{s-1}}+\Phi_{W_{s}} \Phi_{C_{r-1}}-x \Phi_{C_{s-1}} \Phi_{C_{r-1}} \\
& =\left(x^{r}-x\right)\left(x^{s-1}-1\right)+\left(x^{s}-x\right)\left(x^{r-1}-1\right)-x\left(x^{s-1}-1\right)\left(x^{r-1}-1\right) \\
& =x\left(x^{r-1}-1\right)\left(x^{s-1}-1\right) .
\end{aligned}
$$

Let us introduce some notations: denote by X and Y the adjacency matrices of the cycles C_{r-1} and C_{s-1}, respectively. Let J_{k} denote the $1 \times k$ matrix with 1 in all entries. Then the adjacency matrix A of $W_{r} \cdot W_{s}$ is given by the block matrix

$$
A=\left(\begin{array}{ccc}
0 & J_{r-1} & J_{s-1} \\
\mathbf{0}_{r-1,1} & X & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & Y
\end{array}\right) .
$$

Since $J_{r-1} X=J_{r-1}$ and $J_{s-1} Y=J_{s-1}$, it can be easily shown using induction that for every integer $k \geq 1$

$$
A^{k}=\left(\begin{array}{ccc}
0 & J_{r-1} & J_{s-1} \tag{3.1}\\
\mathbf{0}_{r-1,1} & X^{k} & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & Y^{k}
\end{array}\right)
$$

Consider two cases:
(a) $r=s$. In this case $\Phi_{W_{r} \cdot W_{r}}=x\left(x^{r-1}-1\right)^{2}$. Let $f(x)=x\left(x^{r-1}-1\right)$. Since $X^{r-1}=I$ it follows that

$$
A^{r}=A^{r-1} A=\left(\begin{array}{ccc}
0 & J_{r-1} & J_{s-1} \\
\mathbf{0}_{r-1,1} & I & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & I
\end{array}\right) A=A
$$

and then

$$
f(A)=A\left(A^{r-1}-I\right)=A^{r}-A=0
$$

which implies that $\mu_{W_{r} \cdot W_{r}}=x\left(x^{r-1}-1\right)$.
(b) $r \neq s$. Assume that $r<s$. Clearly,

$$
\Phi_{W_{r} \cdot W_{s}}=x\left(x^{r-1}-1\right)(x-1)\left(1+x+\cdots+x^{s-2}\right) .
$$

Let $g(x)=x\left(x^{r-1}-1\right)\left(1+x+\cdots+x^{s-2}\right)$. Since $Y^{s-1}=I$ it follows that

$$
Y^{r-1} \sum_{k=1}^{s-1} Y^{k}=Y^{r}+Y^{r+1}+\cdots+Y^{s-1}+Y+Y^{2}+\cdots+Y^{r-1}=\sum_{k=1}^{s-1} Y^{k}
$$

Consequently

$$
\begin{aligned}
& A^{r-1} \sum_{k=1}^{s-1} A^{k} \\
&=\left(\begin{array}{ccc}
0 & J_{r-1} & J_{s-1} \\
\mathbf{0}_{r-1,1} & I & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & Y^{r-1}
\end{array}\right)\left(\begin{array}{ccc}
0 & (s-1) J_{r-1} & (s-1) J_{s-1} \\
\mathbf{0}_{r-1,1} & \sum_{k=1}^{s-1} X^{k} & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & \sum_{k=1}^{s-1} Y^{k}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
0 & J_{r-1} \sum_{k=1}^{s-1} X^{k} & J_{s-1} \sum_{k=1}^{s-1} Y^{k} \\
\mathbf{0}_{r-1,1} & \sum_{k=1}^{s-1} X^{k} & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & Y^{r-1} \sum_{k=1}^{s-1} Y^{k}
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
0 & (s-1) J_{r-1} & (s-1) J_{s-1} \\
\mathbf{0}_{r-1,1} & \sum_{k=1}^{s-1} X^{k} & \mathbf{0}_{r-1, s-1} \\
\mathbf{0}_{s-1,1} & \mathbf{0}_{s-1, r-1} & \sum_{k=1}^{s-1} Y^{k}
\end{array}\right) \\
&=\sum_{k=1}^{s-1} A^{k} .
\end{aligned}
$$

Hence

$$
g(A)=\left(A^{r-1}-I\right)\left(\sum_{k=1}^{s-1} A^{k}\right)=A^{r-1}\left(\sum_{k=1}^{s-1} A^{k}\right)-\sum_{k=1}^{s-1} A^{k}=0
$$

and so $\mu_{W_{r} \cdot W_{s}} \neq \Phi_{W_{r} \cdot W_{s}}$. In both cases, $W_{r} \cdot W_{s}$ is derogatory.
Remark 3.1. In the proof of Theorem 3.4, it was shown that $\mu_{W_{r} \cdot W_{s}} \neq \Phi_{W_{r} \cdot W_{s}}$ in the case $r \neq s$. Actually, we can determine the minimal polynomial of $W_{r} \cdot W_{s}$ in this case. If $d=\operatorname{gcd}(r-1, s-1)$ then $\Phi_{W_{r} \cdot W_{s}}$ has exactly d repeated roots. In particular, if $d=1$, then

$$
\mu_{W_{r} \cdot W_{s}}=g(x)=x\left(x^{r-1}-1\right)\left(1+x+\cdots+x^{s-2}\right)
$$

Suppose that $d \geq 2$. Clearly $\Phi_{W_{r} \cdot W_{s}}$ has exactly $r+s-1-d$ distinct roots. Consider $(r+s-1-d)$-degree polynomial

$$
h(x)=-\sum_{i=0}^{\frac{r-1}{d}-1} x^{1+i d}+\sum_{j=0}^{\frac{r-1}{d}-1} x^{r+s-1-d(1+j)} .
$$

It is not difficult to show that for each $0 \leq i \leq \frac{r-1}{d}-1$ there exists a unique $0 \leq j \leq \frac{r-1}{d}-1$ such that

$$
X^{1+i d}=X^{r+s-1-d(1+j)} .
$$

Figure 3. Coalescence of W_{f} and W_{s}
Similarly for Y. Consequently, $h(X)=h(Y)=0$ which implies from relation (3.1), that $h(A)=0$. Hence $h(x)=\mu_{W_{r} \cdot W_{s}}$.

For example,

$$
\Phi_{W_{9} \cdot W_{13}}=x\left(x^{8}-1\right)\left(x^{12}-1\right)
$$

and

$$
\mu_{W_{9} \cdot W_{13}}=-x-x^{5}+x^{13}+x^{17} .
$$

Since $r=9$ and $s=13, X^{8}=I$ and $Y^{12}=I$, where X and Y are the adjacency matrices of C_{8} and C_{12}, respectively. Note that

$$
X^{13}=X^{5}, \quad X^{17}=X \quad \text { and } \quad Y^{13}=Y, \quad Y^{17}=Y^{5}
$$

Acknowledgement. Financial support was received from Consejo de Desarrollo Científico, Humanístico y Tecnológico de la Universidad de Los Andes (CDCHT, C-13490505B).

References

[1] C. S. Gan and V. C. Koo, On annihilating uniqueness of directed windmills, Proceedings of the ATCM (ATCM 2002), Melaka, Malaysia.
[2] J. Rada, Nonderogatory directed windmills, submitted.
[3] K. S. Lam, On digraphs with unique annihilating polynomial, PhD Thesis, University of Malaya, Kuala Lumpur, 1990.
[4] K. S. Lam and C. K. Lim, The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem, Discrete Mathematics 151, (1996,) 161-167.
[5] C. S. Gan, The complete product of annihilatingly unique digraphs, Int. J. Math. Math. Sci., (2005), 1327-1331.
[6] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs., Academic Press, New York, 1980.

