
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 30(1) (2007), 111–120

Linear Differential Polynomials Sharing Three Values
with Finite Weight

Abhijit Banerjee

Department of Mathematics, Kalyani Government Engineering College,

West Bengal 741235, India
abanerjee kal@yahoo.co.in, abanerjee kal@rediffmail.com

Abstract. In the paper we study the uniqueness problem of two linear dif-
ferential polynomials with weighted sharing of three values which improve and

supplement a recent result of Lahiri-Banerjee [10].

2000 Mathematics Subject Classification: 30D35

Key words and phrases: Uniqueness, Weighted sharing, Linear differential poly-
nomial.

1. Introduction and definitions

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. If for some a ∈ C ∪ {∞}, f and g have same set of a-points with the same
multiplicities, we say that f and g share the value a CM (counting multiplicities)
and if we do not consider the multiplicities then f, g are said to share the value a IM
(ignoring multiplicities). We do not explain the standard notations and definitions
of the value distribution theory as these are available in [3].

Definition 1.1. [10] We denote by N(r, a; f = 1) the counting function of simple
a-points of f for a ∈ C ∪ {∞}.

Definition 1.2. [10] Let p be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f ≥ p) the counting function of those distinct a-points of f whose multiplic-
ities are not less than p.

Let a1, a2, . . . , an(an 6= 0) be finite complex numbers. In this paper we shall
denote by F and G the following two linear differential polynomials unless otherwise
stated.

F =
n∑

i=1

aif
(i) and G =

n∑
i=1

aig
(i)

In [4] the following result is proved.
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Theorem 1.1. [4] Let f and g be two nonconstant meromorphic functions. If
(i) f and g share ∞ CM;
(ii) F and G share 0, 1 CM;

(iii)

∑
a6=∞

δ(a; f)

1 + n(1−Θ(∞; f))
− 3(1−Θ(∞; f))

2
∑

a6=∞
δ(a; f)

>
1
2
,

where
∑

a6=∞
δ(a; f) > 0,

then either (a) F ≡ G or (b) F.G ≡ 1. If further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

In [1] Fang and Lahiri improved Theorem 1.1. To state their result we require
the following definition.

Definition 1.3. [5, 6] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and 1 + k times if m > k. If Ek(a; f) = Ek(a; g), we
say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is an a-
point of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity
m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only if it is an
a-point of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for all integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

With the notion of weighted sharing of values improving Theorem 1.1 the following
result was proved in [1].

Theorem 1.2. [1] Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞,∞),
(ii) F and G share (0, 1), (1,∞),
(iii)

∑
a6=∞

δ(a; f) > 1
2 ,

then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Recently Lahiri and Banerjee [10] reduced the weight of sharing values in Theorem
1.2 and proved the following two theorems.

Theorem 1.3. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 1),
(ii) F and G share (0, 1), (1, 6),
(iii)

∑
a6=∞

δ(a; f) > 1
2

then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.
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Theorem 1.4. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 0),

(ii) F and G share (0, 1), (1, 6), where F =
n∑

i=1

aif
(i), G =

n∑
i=1

aig
(i) and n ≥ 2,

(iii)
∑

a6=∞
δ(a; f) > 1

2

then either (a) F ≡ G or (b) F.G ≡ 1. If further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

In the present paper we investigate the situation of further reducing the weight
of the value 1 in the above two theorems.

We now give some more definitions.

Definition 1.4. [2] For a meromorphic function f we put

T0(r, f) =

r∫
1

T (t, f)
t

dt, N0(r, a; f) =

r∫
1

N(t, a; f)
t

dt,

m0(r, a; f) =

r∫
1

m(t, a; f)
t

dt, S0(r, f) =

r∫
1

S(t, f)
t

dt,

etc. where a ∈ C ∪ {∞}

Definition 1.5. [2] For a meromorphic function f we put

δ0(a; f) = 1− lim sup
r−→∞

N0(r, a; f)
T0(r, f)

= lim inf
r−→∞

m0(r, a; f)
T0(r, f)

.

Definition 1.6. [6, 9] Let f ,g share a value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).

Definition 1.7. [11] Let a, b ∈ C∪{∞}. We denote by N(r, a; f g = b) the counting
function of those a-points of f , counted according to multiplicity, which are b-points
of g.

Definition 1.8. [11] Let a, b ∈ C ∪{∞}. We denote by N(r, a; f g 6= b) the counting
function of those a-points of f , counted according to multiplicity, which are not the
b-points of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Hence-
forth we shall denote by H, Φ1, Φ2, Φ3 the following four functions.

H =
F

′′

F ′ −
2F

′

F − 1
− G

′′

G′ +
2G

′

G− 1
,

Φ1 =
F

′

F (F − 1)
− G

′

G(G− 1)
= (

F
′

F − 1
− G

′

G− 1
)− (

F
′

F
− G

′

G
),
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Φ2 =
F

′

F − 1
− G

′

G− 1
and Φ3 =

F
′

F
− G

′

G
.

Lemma 2.1. [11] For a meromorphic function f

lim
r−→∞

S0(r, f)
T0(r, f)

= 0

through all values of r.

Lemma 2.2. [8, 9] If F,G share (0, 0), (1, 0), (∞, 0) then
(i) T (r, F ) ≤ 3T (r, G) + S(r, F ),
(ii) T (r, G) ≤ 3T (r, F ) + S(r, G).

Lemma 2.2 shows that S(r, F ) = S(r, G) and we denote them by S(r).

Lemma 2.3. [13] Let F , G share (0, 0), (1, 0), (∞, 0) and H ≡ 0 then F , G share
(0,∞), (1,∞), (∞,∞).

Lemma 2.4. [7] Let F , G share (1, 1) and H 6≡ 0 then

N(r, 1;F = 1) = N(r, 1;G = 1) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.5. [14] Let f , g share (0, k1), (∞, k2) and (1, k3) where kj(j = 1, 2, 3)
are positive integers satisfying k1k2k3 > k1 + k2 + k3 + 2. Then

N(r, 0; f ≥ 2) + N(r,∞; f ≥ 2) + N(r, 1; f ≥ 2) = S(r).

Lemma 2.6. Let F , G share (0, 1), (1, 2), (∞, 1). If F 6≡ G and N(r,∞;F ) =
N(r,∞;G) = S(r) then for a = 0, 1 we get N(r, a;F ≥ 2) = N(r, a;G ≥ 2) = S(r)

Proof. We prove N(r, a;F ≥ 2) = S(r) for a = 0, 1 because the other can similarly
be proved. We suppose that N(r, a;F ) 6= S(r) for a = 0, 1 because otherwise the
case is trivial. Since F 6≡ G, it follows that Φi 6≡ 0 for i = 2, 3. Now

N(r, 0;F ≥ 2) ≤ N(r, 0;Φ2)(2.1)

≤ T (r, Φ2) + O(1)

= N(r,∞; Φ2) + S(r)

≤ N(r, 1;F ≥ 3) + N(r,∞;F ≥ 2) + S(r)

= N(r, 1;F ≥ 3) + S(r).

Again

2 N(r, 1;F ≥ 3) ≤ N(r, 1;F ≥ 3) + N(r, 1;F ≥ 2)(2.2)

≤ N(r, 0;Φ3)

≤ N(r,∞; Φ3) + S(r)

≤ N(r, 0;F ≥ 2) + N(r,∞;F ≥ 2) + S(r)

= N(r, 0;F ≥ 2) + S(r).

From (2.1) and (2.2) we get N(r, 0;F ≥ 2) = S(r) and hence from (2.2) we get
N(r, 1;F ≥ 2) = S(r). This proves the lemma.
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Lemma 2.7. Let F,G share (0, 1), (1, 1), (∞, 2). If F 6≡ G and N(r, 1;F ≥ 2) =
N(r, 1;G ≥ 2) = S(r) then for a = 0,∞ we get N(r, a;F ≥ 2) = N(r, a;G ≥ 2) =
S(r).

Proof. We prove N(r, a;F ≥ 2) = S(r) for a = 0,∞ because the other can similarly
be proved.We suppose that N(r, a;F ) 6= S(r) for a = 0,∞ because otherwise the
case is trivial. Since F 6≡ G, it follows that Φi 6≡ 0 for i = 1, 2. Now

2 N(r,∞;F ≥ 3) ≤ N(r,∞;F ≥ 3) + N(r,∞;F ≥ 2)(2.3)

≤ N(r, 0;Φ1)

≤ N(r,∞; Φ1) + S(r)

≤ N(r, 0;F ≥ 2) + N(r, 1;F ≥ 2) + S(r)

= N(r, 0;F ≥ 2) + S(r).

Again

N(r, 0;F ≥ 2) ≤ N(r, 0;Φ2)(2.4)

= N(r,∞; Φ2) + S(r)

≤ N(r,∞;F ≥ 3) + N(r, 1;F ≥ 2) + S(r)

= N(r,∞;F ≥ 3) + S(r).

From (2.3) and (2.4) we get N(r,∞;F ≥ 3) = S(r).
So from (2.4) we get N(r, 0;F ≥ 2) = S(r) and hence using (2.3) we have N(r,∞;F ≥
2) = S(r). This proves the lemma.

Lemma 2.8. Let F , G share (0, 1), (1,m), (∞, k) and N(r, 0;F ≥ 2) = N(r, 0;G ≥
2) = S(r). If F 6≡ G and mk − 1 > 0 then for a = 1,∞ we get N(r, a;F ≥ 2) =
N(r, a;G ≥ 2) = S(r).

Proof. We prove N(r, a;F ≥ 2) = S(r) for a = 1,∞ because the other can similarly
be proved. We suppose that N(r, a;F ) 6= S(r) for a = 1,∞ because otherwise the
case is trivial. Since F 6≡ G, it follows that Φi 6≡ 0 for i = 1, 3. Now

m N(r, 1;F ≥ m + 1) ≤ (m− 1) N(r, 1;F ≥ 1 + m) + N(r, 1;F ≥ 2)(2.5)

≤ N(r, 0;Φ3)

≤ N(r,∞; Φ3) + S(r)

≤ N(r,∞;F ≥ k + 1) + N(r, 0;F ≥ 2) + S(r)

= N(r,∞;F ≥ k + 1) + S(r).

Also

k N(r,∞;F ≥ k + 1) ≤ (k − 1) N(r,∞;F ≥ k + 1) + N(r,∞;F ≥ 2)(2.6)

≤ N(r, 0;Φ1)

≤ N(r,∞; Φ1) + S(r)

≤ N(r, 1;F ≥ m + 1) + N(r, 0;F ≥ 2) + S(r)

= N(r, 1;F ≥ m + 1) + S(r).
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From (2.5) and (2.6) we get (m− 1
k ) N(r, 1;F ≥ m + 1) ≤ S(r)

i.e. N(r, 1;F ≥ m + 1) = S(r). So from (2.6) we obtain N(r,∞;F ≥ 2) = S(r).
Again from (2.5) we get N(r, 1;F ≥ 2) = S(r).This completes the proof of the
lemma.

Lemma 2.9. [12] If N(r, 0; f (k)f 6= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r, 0; f (k)f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f < k) + kN(r, 0; f ≥ k) + S(r, f).

Lemma 2.10. For a meromorphic function F

N(r, 1;F ≥ k + 1) ≤ 1
k

N(r, 0;F ) +
1
k

N(r,∞;F )− 1
k

NN(r, 0;F
′
) + S(r, F ),

where NN(r, 0;F
′
) is the counting functions of those zeros of F

′
which are not the

zeros of F (F − 1).

Proof. Using Lemma 2.9 we get

N(r, 1;F ≥ k + 1)

≤ 1
k

N(r, 0;F
′
F = 1)

≤ 1
k

N(r, 0;F
′
F 6= 0)− 1

k
NN(r, 0;F

′
)

≤ 1
k

N(r, 0;F ) +
1
k

N(r,∞;F )− 1
k

NN(r, 0;F
′
) + S(r, F ).

This proves the lemma.

Lemma 2.11. Let f , g share (∞; 1), F , G share (0, 1), (1, 3) where F =
n∑

i=1

aif
(i),

G =
n∑

i=1

aig
(i) and n ≥ 2. If F 6≡ G, N(r, 0;F = 1) = N(r, 0;G = 1) = S(r) and

N(r,∞;F ≥ 4) = N(r,∞;G ≥ 4) = S(r) then for a = 0, 1,∞ we get N(r, a;F ≥
2) = N(r, a;G ≥ 2) = S(r).

Proof. We prove N(r, a;F ≥ 2) = S(r) for a = 0, 1,∞ because the other can
similarly be proved. We suppose that N(r, a;F ) 6= S(r) for a = 0, 1,∞ because
otherwise the case is trivial. Since F 6≡ G, it follows that Φi 6≡ 0 for i = 1, 2, 3.
Since f , g share (∞; 1) it follows that F , G share (∞, 3) and F , G has no simple or
double pole. i.e. N(r,∞;F ) = N(r,∞;G) = N(r,∞;F ≥ 3) = N(r,∞;G ≥ 3).
So from Lemma 2.10 we get

3 N(r,∞;F ≥ 4) + 2 N(r,∞;F = 3)

≤ N(r, 0;Φ1)

≤ N(r,∞; Φ1) + S(r)

≤ N(r, 1;F ≥ 4) + N(r, 0;F ≥ 2) + S(r)

≤ 1
3

N(r, 0;F = 1) +
4
3

N(r, 0;F ≥ 2)
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+
1
3

N(r,∞;F = 3) +
1
3

N(r,∞;F ≥ 4) + S(r),

i.e.
5
3

N(r,∞;F = 3) ≤ 4
3

N(r, 0;F ≥ 2) + S(r).(2.7)

Again using Lemma 2.10 we get

N(r, 0;F ≥ 2) ≤ N(r, 0;Φ2)

≤ N(r,∞; Φ2) + S(r)

≤ N(r, 1;F ≥ 4) + N(r,∞;F ≥ 4) + S(r)

≤ 1
3

N(r, 0;F = 1) +
1
3

N(r, 0;F ≥ 2)

+
1
3

N(r,∞;F = 3) + S(r)

≤ 1
3

N(r, 0;F ≥ 2) +
1
3

N(r,∞;F = 3) + S(r),

i.e.

N(r, 0;F ≥ 2) ≤ 1
2

N(r,∞;F = 3) + S(r).(2.8)

Using (2.8) in (2.7) we get
5
3

N(r,∞;F = 3) ≤ 2
3

N(r,∞;F = 3) + S(r)

i.e. N(r,∞;F = 3) = S(r), which implies N(r,∞;F ≥ 2) = S(r). Since N(r,∞;F ) =
N(r,∞;G) = N(r,∞;F ≥ 3) the remaining part of the lemma follows from Lemma
2.6. This completes the proof of the lemma.

Lemma 2.12. Let F , G share (0, 1), (1, 1), (∞, 1) and N(r,∞;F ) = N(r,∞;G) =
S(r) and

∑
a6=∞

δ(a; f) > 1
2 then δ0(0;F ) > 1

2 .

Proof. The lemma can be proved in the similar manner as followed in p. 34 [10].

Lemma 2.13. [9] Let F , G share (0, 0), (1, 0), (∞, 0) and H 6≡ 0. Then

N(r, H) ≤ N∗(r, 0;F,G) + N∗(r,∞;F,G) + N∗(r, 1;F,G)

+ NN(r, 0;F
′
) + NN(r, 0;G

′
),

where NN(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and NN(r, 0;G
′
) is similarly defined.

Lemma 2.14. Let F , G share (0, 1), (1, 1), (∞, 1) and H 6≡ 0. If N(r, a;F ≥ 2) =
N(r, a;G ≥ 2) = S(r) for a = 0, 1,∞ then δ0(0;F ) ≤ 1

2 .

Proof. Since F , G have only multiple poles, by the second fundamental theorem we
get

T (r, F ) + T (r, G) ≤ N(r, 0;F ) + N(r, 1;F ) + N(r,∞;F )(2.9)

+ N(r, 0;G) + N(r, 1;G) + N(r,∞;G)
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−NN(r, 0;F
′
)−NN(r, 0;G

′
) + S(r)

≤ 2 N(r, 0;F ) + 2 N(r,∞;F ≥ 2) + N(r, 1;F = 1)

+ N(r, 1;F ≥ 2) + T (r, G)−m(r, 1;G)

−NN(r, 0;F
′
)−NN(r, 0;G

′
) + S(r).

So using Lemmas 2.4 and 2.13 we note that

N(r, 1;F = 1) ≤ N(r, H) + S(r)(2.10)

≤ N∗(r, 0;F,G) + N∗(r,∞;F,G) + N∗(r, 1;F,G)

+ NN(r, 0;F
′
) + NN(r, 0;G

′
) + S(r)

≤ N(r, 0;F ≥ 2) + N(r,∞;F ≥ 2) + N(r, 1;F ≥ 2)

+ NN(r, 0;F
′
) + NN(r, 0;G

′
) + S(r)

≤ NN(r, 0;F
′
) + NN(r, 0;G

′
) + S(r).

Combining (2.9) and (2.10) we see that

T (r, F ) ≤ 2 N(r, 0;F ) + S(r)

≤ 2 N(r, 0;F ) + S(r).

On integration we get T0(r, F ) ≤ 2 N0(r, 0;F ) + S0(r, F )
So by Lemma 2.1 we get δ0(0;F ) ≤ 1

2 . This proves the lemma.

3. Theorems

This section discusses the main result of the paper.

Theorem 3.1. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 0),
(ii) F and G share (0, 2), (1, 3),
(iii)

∑
a6=∞

δ(a; f) > 1
2 ,

then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Theorem 3.2. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 0),

(ii) F and G share (0, 2), (1, 3), where F =
n∑

i=1

aif
(i) , G =

n∑
i=1

aig
(i) and n ≥ 2,

(iii)
∑

a6=∞
δ(a; f) > 1

2 ,

then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Theorem 3.3. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 0),
(ii) F and G share (0, 1), (1, 2),
(iii)

∑
a6=∞

δ(a; f) > 1
2 ,
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(iv) N(r,∞;F ) = N(r,∞;G) = S(r),
then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Theorem 3.4. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 1),
(ii) F and G share (0, 1), (1, 1),
(iii)

∑
a6=∞

δ(a; f) > 1
2 ,

(iv) N(r, 1;F ≥ 2) = N(r, 1;G ≥ 2) = S(r),
then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Theorem 3.5. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, k − 1),
(ii) F and G share (0, 1), (1,m), where mk − 1 > 0,
(iii)

∑
a6=∞

δ(a; f) > 1
2 ,

(iv) N(r, 0;F ≥ 2) = N(r, 0;G ≥ 2) = S(r),
then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Theorem 3.6. Let f and g be two nonconstant meromorphic functions. If
(i) f and g share (∞, 1),

(ii) F and G share (0, 1), (1, 3), where F =
n∑

i=1

aif
(i), G =

n∑
i=1

aig
(i) and n ≥ 2,

(iii)
∑

a6=∞
δ(a; f) > 1

2 ,

(iv) N(r, 0;F = 1) = N(r, 0;G = 1) = S(r) and N(r,∞;F ≥ 4) = N(r,∞;G ≥
4) = S(r),

then either (a) F ≡ G or (b) F.G ≡ 1. If, further, f has at least one pole or F has
at least one zero, the case (b) does not arise.

Example 3.1. Let f = 1
2ez (ez − 1), g = 1

2e−z
(

1
2 −

1
5e−z

)
Then F = f

′′ − 3f
′

=
ez (1− ez) G = g

′′ − 3g
′

= e−z (1− e−z). Clearly F , G share (0,∞), (1,∞) and
f , g share (∞,∞). Also δ(0; f) =

∑
a6=∞

δ(a; f) = 1
2 and N(r,∞;F ) = N(r,∞;F ≥

2) = N(r, 1;F ≥ 2) = N(r, 0;F ≥ 2) = 0. Hence we see that the condition (iii) in
Theorems 3.1–3.5 is sharp.

4. Proofs of the theorems

Proof of Theorem 3.1. Since f , g share (∞, 1), clearly F , G share (∞, 2). Suppose
H 6≡ 0 then F 6≡ G. So by Lemma 2.5 and Lemma 2.14 δ0(0;F ) ≤ 1

2 . But by
Lemma 2.12 this leads to a contradiction. So H ≡ 0. Hence by Lemma 2.3 F , G
share (0,∞), (1,∞), (∞;∞). Now the theorem follows from Theorem 1.2. This
proves the theorem.
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Proof of Theorem 3.2. Noting that F and G have no simple and double pole the
theorem can be proved in the line of the proof of Theorem 3.1. This proves the
theorem.
Proof of Theorem 3.3. Since f , g share (∞, 0), it follows that F , G share (∞, 1).
Suppose H 6≡ 0 then F 6≡ G. So by Lemma 2.6 and Lemma 2.14 δ0(0;F ) ≤ 1

2 . But
by Lemma 2.12 we have a contradiction. So H ≡ 0. Hence the theorem follows from
Lemma 2.3 and Theorem 1.2. This proves the theorem.
Proof of Theorem 3.4. Clearly F , G share (∞, 2). Suppose H 6≡ 0 then F 6≡ G.
Using Lemma 2.7 and Lemma 2.14 we have δ0(0;F ) ≤ 1

2 . Now the theorem can be
proved in the line of the proof of Theorem 3.3. This proves the theorem.
Proof of Theorem 3.5. It is clear from the given condition of the theorem F , G
share (∞, k). Suppose H 6≡ 0 then F 6≡ G.Using Lemma 2.8 and Lemma 2.14 we
get δ0(0;F ) ≤ 1

2 . Now proceeding in the same way as done in Theorem 3.3 we can
prove the theorem. This completes the proof of the theorem.
Proof of Theorem 3.6. According to the hypothesis F , G share (∞, 3). Suppose
H 6≡ 0 then F 6≡ G. Using Lemma 2.11 and Lemma 2.14 we get δ0(0;F ) ≤ 1

2 . Now
proceeding in the same manner as done in Theorem 3.3 we can prove the theorem.
This completes the proof of the theorem.
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