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Abstract. Let N(n) be a Poisson random variable with parameter n. An in-
finite urn model is defined as follows: N(n) balls are independently placed in

an infinite set of urns and each ball has probability pk > 0 of being assigned

to the k-th urn. We assume that pk ≥ pk+1 for all k and
∞X

k=1

pk = 1.

Let Un be the number of occupied urns after N(n) balls have been thrown.
Dutko showed in 1989 that under the condition lim

n→∞
V ar(Un) = ∞ we have

Un − E(Un)p
V ar(Un)

d−→ N (0, 1) as n→∞ where N (0, 1) is the standard normal ran-

dom variable. However, Dutko did not give a bound of his approximation. So

in this paper, we give uniform and non-uniform bounds of the approximation.
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1. Introduction and main result

In their paper, Milenkovie and Compton [4] said that there are a lot of application
on urn model, since many problems in the area of physics, communication theory,
computer science, combinatorial analysis of algorithms can be described in terms
of distributing balls (object) into specified urn models in physics are the so called
Maxwell-Boltzman, Bose-Einstein and Fermi-Dirac model. In computer science,
urn models are used for database performance evaluations and for modeling and
analyzing algorithms. Two well known examples of the latter kind are hashing and
sorting algorithms. In communication theory, some transmission channels can be
described in terms of contagion urn models. There are many problems in the area of
network analysis that can be described in terms of urn models (see for more detail
on Milenkovie and Compton and references there in).

Let N(n) be a Poisson random variable with parameter n, i.e., P (N(n) = k)=
e−nnk

k!
for k = 0, 1, 2, . . . . An infinite urn model is defined as follows: N(n) balls are
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independently placed in an infinite set of urns and each ball has probability pk > 0
of being assigned to the k-th urn. We assume that pk ≥ pk+1 for all k and that
∞∑

k=1

pk = 1. Let Zn be the number of occupied urns after n balls have been thrown.

And Un is the number of accupied urns after N(n) balls have been thrown. Since
the number of urns is infinite and the number of throws is random, we cannot apply
the usual central limit theorem to Un. Karlin(1967) gave the condition on (pk) for

the convergence of
Zn − E(Zn)

bn
to N (0, 1) where N (0, 1) is the standard normal

random variable and b2
n ∼ V ar(Zn). Dutko [2] considered in case of the number of

balls to be thrown into the urns is Poisson distributed with mean n and showed that

V ar(Un) =
∞∑

k=1

(e−npk − e−2npk)

and under the condition

lim
n→∞

V ar(Un) = ∞,(1.1)

we have

Un − E(Un)√
V ar(Un)

d→ N (0, 1) as n →∞.(1.2)

However, Dutko did not give a bound of his approximation. So in this work,
we give uniform and non-uniform bounds of (1.2) by using Stein’s method. In
1972, Stein [5] gave a new technique to find a bound in normal approximation. His
technique relied instead on the elementary differential equation. Chen and Shao [1]
combined truncation with Stein’s method and by taking the concentration inequality
approach to find uniform and non-uniform bounds on Berry-Esseen theorem. In
this paper, we use the technique in Chen and Shao [1] to obtain bounds on the
convergence of (1.2). Here are our main results.

Theorem 1.1. Let Fn and Φ be the distribution functions of
Un − E(Un)√

V ar(Un)
and

N (0, 1) respectively. Then

sup
x∈R

|Fn(x)− Φ(x)| ≤ 6.66√
V ar(Un)

(1.3)

and

|Fn(x)− Φ(x)| ≤ C

(1 + |x|)3
√

V ar(Un)
(1.4)

for some C > 0.

Furthermore, under the condition (1.1) we have the bounds in (1.3) and (1.4) tend
to zero.
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Theorem 1.2. Let Fn and Φ be defined as in Theorem 1.1. Then

sup
x∈R

|Fn(x)− Φ(x)| ≤ 3.24√
V ar(Un)

.(1.5)

Dutko [2] gave examples that make lim
n→∞

V ar(Un) = ∞, for examples, pk =
C

klog k

and pk =
C

kr
where C is a normalizing constant and r > 1.

2. Proof of main theorems

Let Snk = number of balls in the k-th urn after n throws, and
Tn,k = number of balls in the k-th urn after N(n) throws.

The random variables {Tn,k}, k = 1, 2, ... are mutually independent Poisson random
variables with respective mean {npk}([2], p. 1259), so that

P (Tn,k = r) =
e−npk(npk)r

r!
for r = 0, 1, 2, . . . .(2.1)

and

E(I(Tn,k)) = 1− e−npk .(2.2)

Note that

Zn =
∞∑

k=1

I(Snk), where I(u) =

{
1, if u > 0,

0, if u = 0,

and

Un =
∞∑

k=1

I(Tn,k).

From Dutko [2] we know

V ar(I(Tn,k)) = e−npk − e−2npk , E(Un) =
∞∑

k=1

(1− e−npk),

V ar(Un) =
∞∑

k=1

(e−npk − e−2npk)

and both of E(Un) and V ar(Un) are finite.
Let

Xnk =
I(Tn,k)− E(I(Tn,k))√

V ar(Un)
.(2.3)

Then

Un − E(Un)√
V ar(Un)

=
∞∑

k=1

Xnk,

E(
∞∑

k=1

Xnk) = 0 and V ar(
∞∑

k=1

Xnk) = 1.

To prove Theorem 1.1, we need the following theorems.
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Theorem 2.1. Let Y1, Y2, . . . be independent random variables with zero means and
∞∑

i=1

EY 2
i = 1 and W =

∞∑
i=1

Yi. Then

sup
x∈R

|P (W ≤ x)− Φ(x)| ≤ 6.66
∞∑

i=1

{EY 2
i I{|Yi|≥1} + E|Yi|3I{|Yi|<1}}.

where IA : Ω → R be defined by

IA(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

Theorem 2.2. Under the assumptions of Theorem 2.1, we have

|P (W ≤ x)− Φ(x)| ≤ C
∞∑

i=1

{
EY 2

i I{|Yi|≥1+|x|}

(1 + |x|)2
+

E|Yi|3I{|Yi|<1+|x|}

(1 + |x|)3

}
for some a constant C > 0.

Proofs of Theorem 2.1 and Theorem 2.2 are similar to the arguments in the proof
of Chen and Shao Theorems [1].

Proof of Theorem 1.1. It is easy to see that (1.3) and (1.4) follow from Theorem 2.1,
Theorem 2.2 and the fact that

E|Xnk|2I{|Xnk|≥1} ≤ E|Xnk|3I{|Xnk|≥1} and

E|Xnk|2I{|Xnk|≥1+|x|} ≤
E|Xnk|3I‖Xnk|≥1+|x|}

1 + |x|
.

To complete the proof of Theorem 1.1, it suffices to show that
∞∑

k=1

E|Xnk|3 ≤
1√

V ar(Un)
.(2.4)

By (2.1) and (2.2), we have

P
(
Xnk =

e−npk − 1√
V ar(Un)

)
= P (I(Tn,k) = 0) = e−npk and

P
(
Xnk =

e−npk√
V ar(Un)

)
= 1− P (I(Tn,k) = 0) = 1− e−npk .

Hence,

E |Xnk|3 =
∑

x∈Im(Xnk)

|x|3P (Xnk = x)

=
(1− e−npk)3

(V ar(Un))
3
2

e−npk +
e−3npk

(V ar(Un))
3
2
(1− e−npk)

=
−2e−4npk + 4e−3npk − 3e−2npk + e−npk

(V ar(Un))
3
2
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which implies
∞∑

k=1

E|Xnk|3 = An + Bn + Cn

where

An =

2
∞∑

k=1

e−2npk(e−npk − e−2npk)

(V ar(Un))
3
2

,

Bn =

−2
∞∑

k=1

e−npk(e−npk − e−2npk)

(V ar(Un))
3
2

and

Cn =

∞∑
k=1

(e−npk − e−2npk)

(V ar(Un))
3
2

.

Since An + Bn < 0,
∞∑

k=1

E|Xnk|3 ≤ Cn =
1√

V ar(Un)
.(2.5)

Proof of Theorem 1.2. Let W =
∞∑

k=1

Xnk, W (k) = W −Xnk and

Kk(t) = EXnk{I{0≤t≤Xnk} − I{Xnk≤t<0}}.
Hence

∞∑
k=1

∫ ∞

−∞
Kk(t)dt =

∞∑
k=1

EX2
nk = 1.(2.6)

Let f be a real-value, bounded, continuous and piecewise differentiable function
defined on the real line. Then

EWf(W )

= E(
∞∑

k=1

Xnkf(W ))

=
∞∑

k=1

EXnkf(W )

=
∞∑

k=1

E{Xnkf(W (k) + Xnk)−Xnkf(W (k))}

=
∞∑

k=1

EXnk

∫ Xnk

0

f ′(W (k) + t)dt
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=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)Xnk{I{0≤t≤Xnk} − I{Xnk≤t<0}}dt

=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)E{Xnk(I{0≤t≤Xnk} − I{Xnk≤t<0})}dt

=
∞∑

k=1

E

∫ ∞

−∞
f ′(W (k) + t)Kk(t)dt(2.7)

where we have used the fact that
∞∑

k=1

E|Xnkf(W )| ≤ (sup f)
∞∑

k=1

E|Xnk| =
2(sup f)√
V ar(Un)

∞∑
k=1

(e−npk − e−2npk)

= 2
√

V ar(Un) < ∞

and Lebesgue Dominated Convergence Theorem (LDC) in the second equality. Let
f in (2.7) be the unique bound solution fx of the Stein equation

f ′(ω)− ωf(ω) = I{ω≤x} − Φ(x)

i.e.,

fx(ω) =

{√
2πe

1
2 ω2

Φ(ω)[1− Φ(x)], if ω ≤ x;√
2πe

1
2 ω2

Φ(x)[1− Φ(ω)], if ω > x

(see [5], p. 22).
Then

EWfx(W ) =
∞∑

k=1

E

∫ ∞

−∞
{(W (k) + t)fx(W (k) + t) + I{W (k)+t≤x} − Φ(x)}Kk(t)dt

and
∞∑

k=1

∫ ∞

−∞
P (W (k) + t ≤ x)Kk(t)dt− Φ(x)

=
∞∑

k=1

E

∫ ∞

−∞
{Wfx(W )− (W (k) + t)fx(W (k) + t)}Kk(t)dt.(2.8)

From the fact that

|(ω + u)fx(ω + u)− (ω + v)fx(ω + v)| ≤ (|ω|+
√

2π

4
)(|u|+ |v|) for all real

ω, u and v,

([3], p. 247) and (2.3) we have

E
∞∑

k=1

∫ ∞

−∞
|Wf(W )− (W (k) + t)f(W (k) + t)|Kk(t)dt

≤
∞∑

k=1

∫ ∞

−∞
E(|W (k)|+

√
2π

4
)(|Xnk|+ |t|)Kk(t)dt
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≤ (1 +
√

2π

4
)
∞∑

k=1

∫ ∞

−∞
(E|Xnk|+ |t|)Kk(t)dt

≤ (1 +
√

2π

4
)
∞∑

k=1

{E|Xnk|EX2
nk + 0.5E|Xnk|3}

≤ 2.44
∞∑

k=1

E|Xnk|3

≤ 2.44√
V ar(Un)

(by (2.5)).(2.9)

Since

|Xnk| = |I(Tn,k)− E(I(Tn,k))√
V ar(Un)

| ≤ 1√
V ar(Un)

,

Kk(t) = 0 for |t| > 1√
V ar(Un)

and
∞∑

k=1

∫ ∞

−∞
P (W (k) + t ≤ x)Kk(t)dt

=
∞∑

k=1

∫
|t|≤ 1√

V ar(Un)

P (W −Xnk + t ≤ x)Kk(t)dt

≥
∞∑

k=1

∫
|t|≤ 1√

V ar(Un)

P (W ≤ x− 2√
V ar(Un)

)Kk(t)dt

= P (W ≤ x− 2√
V ar(Un)

).(2.10)

Combining (2.8)–(2.10) we have

P (W ≤ x− 2√
V ar(Un)

)− Φ(x− 2√
V ar(Un)

)

≤ Φ(x)− Φ(x− 2√
V ar(Un)

) +
2.44√

V ar(Un)

≤ 2√
2π

√
V ar(Un)

+
2.44√

V ar(Un)

≤ 3.24√
V ar(Un)

.(2.11)

Since x is arbitrary, by (2.11),

P (W ≤ x)− Φ(x) ≤ 3.24√
V ar(Un)

.
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By using the same argument one can show that

P (W ≤ x)− Φ(x) ≥ −3.24√
V ar(Un)

.

Hence

|Fn(x)− Φ(x)| ≤ 3.24√
V ar(Un)

.

Remark 2.1. The following remarks can be made:
(i) From (1.3) and (2.4) we see that in case of uniform bound, the result in

Theorem 1.2 is better than Theorem 1.1.
(ii) In proving Theorem 2.1 and Theorem 2.2 we have to used the fact that

∞∑
k=1

EXnk = E(
∞∑

k=1

Xnk) and
∞∑

k=1

EX2
nk = E(

∞∑
k=1

X2
nk) which follow from

LDC and the fact that
∞∑

k=1

E|Xnk| ≤ 2
√

V ar(Un) < ∞ and
∞∑

k=1

EX2
nk = 1.
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