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On the Normal Meromorphic Functions
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Abstract. Let F be a family of functions meromorphic in D such that all the
zeros of f ∈ F are of multiplicity at least k (a positive integer), and let E

be a set containing k + 4 points of the extended complex plane. If, for each

function f ∈ F , there exists a constant M and such that (1−|z|2)k|f (k)(z)|/(1+
|f(z)|k+1) ≤ M whenever z ∈ {f(z) ∈ E, z ∈ D}, then F is a uniformly normal

family in D, that is, sup{(1− |z|2)f#(z) : z ∈ D, f ∈ F} < ∞.
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1. Introduction

Let D denote the unit disk in the complex plane C. A function f meromorphic in
D is called a normal function [4], in the sense of Lehto and Virtanen, if there exist
a constant M(f) such that

(1− |z|2)f#(z) ≤ M(f),

for each z ∈ D, where f#(z) = |f ′(z)|/(1 + |f(z)|2) is called the spherical derivative
of f .

Suppose that F is a family of functions meromorphic in D such that each function
of F is a normal function, then, for each function f ∈ F , there exists a constant
M(f) such that

(1− |z|2)f#(z) ≤ M(f),

for each z ∈ D. In general, M(f) is a constant dependent on f , and we can not
conclude that {M(f), f ∈ F} is bounded. If {M(f), f ∈ F} is bounded, we give the
definition as follows.
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Definition 1.1. Let F be a family of meromorphic functions in the unit disc D. If

sup{(1− |z|2)f#(z) : z ∈ D, f ∈ F} < ∞,

we call the family F as a uniformly normal family in D.

Remark 1.1. The idea of this definition is suggested by Pang [5], and the concept
of uniformly normal family seems to be connected to normal invariant families as
defined by Hayman [2, p.163].

Remark 1.2. Clearly, if F is a uniformly normal family in D, then each function
f ∈ F must be a normal function. However, the following example shows that the
converse is not valid in general.

Example 1.1. Let F = {nz : n = 1, 2, 3, . . .}. Obviously, each f ∈ F is a normal

function in D. But F is not uniformly normal in D. In fact, let zn =
1
n
∈ D(n ≥

2), fn(z) = nz,

(1− |zn|2)f#
n (zn) =

(
1− 1

n2

)
n

2
→ +∞, (n →∞).

For a meromorphic function f in D and a positive integer n, the expression

|f (n)(z)|
1 + |f(z)|n+1

represents an extension of the spherical derivative of f . This expression is meaningful
when related to normal functions (for details, see [3]). In Xu [6], the author proved
the following result, which gives a partial answer to the question due to Lappan (see
[3]).

Theorem 1.1. Let f be a function meromorphic in D such that all the zeros of f
are of multiplicity at least n0(a positive integer). If there exists a constant M such
that

(1− |z|2)n0
|f (n0)(z)|

1 + |f(z)|n0+1
≤ M

for each z ∈ D, then f is a normal function.

In this paper, we prove the following theorem.

Theorem 1.2. Let F be a family of functions meromorphic in D such that all the
zeros of f ∈ F are of multiplicity at least k (a positive integer), and let E be a set
containing k + 4 points of the extended complex plane. If there exists a constant M
such that, for each function f ∈ F ,

(1− |z|2)k |f (k)(z)|
1 + |f(z)|k+1

≤ M

whenever z ∈ D and f(z) ∈ E, then F is a uniformly normal family in D.
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2. Lemmas

To prove our result, we need some lemmas. Here we shall use the following standard
notation of value distribution theory (see [1,2,7])

T (r, f),m(r, f), N(r, f), N(r, f), . . . .

We use N (2(r, f) to denote the Nevanlinna counting function of the poles of f with
multiplicity≥ 2. We denote by S(r, f) any function satisfying

S(r, f) = o{T (r, f)},
as r →∞, possibly outside a set with finite measure.

Lemma 2.1. [2, 7] Let f be a nonconstant transcendental meromorphic function,
and a1, a2, . . . , aq ∈ C

⋃
{∞}(q ≥ 3) such that ai 6= aj(i 6= j). Then

(q − 2)T (r, f) <

q∑
i=1

N

(
r,

1
f − ai

)
+ S(r, f).

Lemma 2.2. [2, 7] Let f be a nonconstant transcendental meromorphic function,
and k ∈ N. Then

T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f).

The following is the well-known Zalcman’s lemma [8].

Lemma 2.3. Let F be a family of meromorphic functions in D. If F is not normal
at a point z0 ∈ D, then there exists a sequence of functions fj ∈ F , a sequence of
complex numbers zj → z0 and a sequence of positive numbers ρj → 0, such that
fj(zj + ρjζ) spherically and uniformly converges to a non-constant meromorphic
function on each compact subset of C.

3. Proof of Theorem 1.2

Proof. Suppose that F is not a uniformly normal family in D. Then, we can find
fn ∈ F , zn ∈ D, such that

gn(z) = fn(zn + (1− |zn|2)z)

satisfies
lim

n→∞
g#

n (0) = lim
n→∞

(1− |zn|2)f#
n (zn) = ∞.

It follows that {gn(z)} is not normal at z = 0. Thus, by Lemma 2.3, there exist a
subsequence of functions gn(without loss generality, we may assume gn), a sequence
of points ζn ∈ D, ζn → 0, and a sequence of positive numbers ρn → 0 such that

Gn(ζ) = gn(ζn + ρnζ) = fn

(
zn + (1− |zn|2)ζn + (1− |zn|2)ρnζ

)
converges spherically and uniformly to a non-constant meromorphic function G(ζ)
on each compact subset of C. Since each function fn has only zeros of multiplicity
at least k, then the limit function G(k)(ζ) 6≡ 0.

Obviously, there exists a point ζ0 such that G(ζ0) ∈ E and |ζ0| < R, where R
is a positive number (for otherwise G is a constant, a contradiction). By Hurwitz’s
theorem, there exists a sequence of points ζ ′n, ζ ′n → ζ0 such that

fn

(
zn + (1− |zn|2)ζn + (1− |zn|2)ρnζ ′n

)
∈ E.
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For brevity, we use the notation ζ̂ ′n = zn +(1−|zn|2)ζn +(1−|zn|2)ρnζ ′n. According
to the assumptions and noting that ζ̂ ′n ∈ D (for n sufficiently large), we have(

1−
∣∣∣ζ̂ ′n∣∣∣2)k |f (k)

n (ζ̂ ′n)|
1 + |fn(ζ̂ ′n)|k+1

≤ M.

It follows that

|G(k)
n (ζ ′n)|

1 + |Gn(ζ ′n)|k+1
= ρk

n(1− |zn|2)k |f (k)
n (ζ̂ ′n)|

1 + |fn(ζ̂ ′n)|k+1
≤ ρk

nM

(
1− |zn|2

1− |ζ̂ ′n|2

)k

.

Since (1− |zn|2)/(1− |ζ̂ ′n|2) → 1 as n →∞, we have

|G(k)(ζ0)|
1 + |G(ζ0)|k+1

= 0.

From this, we know that: (a) ζ0 is a multiple pole of G(ζ), or (b) G(k)(ζ0) = 0.
Without loss of generality, we may assume E = {a1, a2, . . . , ak+4}. By Lemma

2.1, we have

(3.1) (k + 2)T (r, G) <

k+4∑
i=1

N

(
r,

1
G− ai

)
+ S(r, G),

where ai ∈ E(i = 1, 2, . . . , ak+4). By the above discussion, for each ai(i = 1, 2, . . . , k+
4), if G(ζ0) = ai, then either ζ0 is a multiple pole of G(ζ) (in this case ai = ∞) or
G(k)(ζ0) = 0. We distinguish two cases.
Case 1. ∞ ∈ E. Without loss of generality, we assume a1 = ∞. Then

N

(
r,

1
G− a1

)
≤ N (2(r, G),

and
k+4∑
i=2

N

(
r,

1
G− ai

)
≤ N

(
r,

1
G(k)

)
.

From (3.1), and using Nevanlinna first fundamental theorem (see [2,7]) and Lemma
2.2, we have

(k + 2)T (r, G) < N (2(r, G) + N
(
r, 1

G(k)

)
+ S(r, G)

≤ 1
2N(r, G) + T (r, G(k)) + S(r, G)

≤ 1
2N(r, G) + (k + 1)T (r, G) + +S(r, G)

≤ (k + 3
2 )T (r, G) + S(r, G),

that is,
1
2
T (r, G) < S(r, G).

This is impossible since G(ζ) is nonconstant.
Case 2. ∞ 6∈ E. Similarly as in Case 1, we have

(k + 2)T (r, G) ≤ N
(
r, 1

G(k)

)
+ S(r, G)

≤ T (r, G(k)) + S(r, G)
≤ (k + 1)T (r, G) + S(r, G).
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Thus T (r, G) ≤ S(r, G), a contradiction. Theorem 1.2 is thus proved.
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