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1. Introduction

In 1975, Handelman and Lawrence [4] introduced the notion of (right) strongly prime
ring motivated by the notion of primitive group ring and characterized strongly prime
rings. According to Handelman and Lawrence, a ring is (right) strongly prime if for
each nonzero element r of R, there is a finite subset S(r)(right insulator for r) of R
such that for t ∈ R, {rst : s ∈ S(r)} = {0} implies t = 0.

In this paper we generalize this notion for an arbitrary semiring and study some
of its properties. In Section 2, we give some basic definitions and results. In Section
3, we introduce the notion of right strongly prime semiring and study some of its
properties. In Section 4, we define super sp-system and characterize strongly prime
radical by using the notion of super sp-system.

2. Preliminaries

Definition 2.1. A nonempty set S is said to form a semiring with respect to two
binary compositions, addition (+) and multiplication (.) defined on it, if the following
conditions are satisfied.

(i) (S, +) is a commutative semigroup with zero,
(ii) (S, .) is a semigroup,
(iii) for any three elements a, b, c ∈ S the left distributive law a.(b+ c) = a.b+a.c

and the right distributive law (b + c).a = b.a + c.a both hold and
(iv) s.0 = 0.s = 0 for all s ∈ S.
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If S contains the multiplicative identity 1, then S is called a semiring with identity.

Definition 2.2. A nonempty subset I of a semiring S is called a left ideal of S if
(i) a, b ∈ I implies a + b ∈ I and (ii) a ∈ I, s ∈ S implies s.a ∈ I.

Similarly we can define right ideal of a semiring. A nonempty subset I of a
semiring S is an ideal if it is a left ideal as well as a right ideal of S.

Definition 2.3. [5] An ideal I of a semiring S is called a k-ideal if b ∈ S, a+ b ∈ I
and a ∈ I implies b ∈ I.

Definition 2.4. [4] Let A be a nonempty subset of a semiring S. Right annihilator
of A in S, denoted by annR(A), is defined by annR(A) = {s ∈ S : As = (0)}.

Lemma 2.1. annR(A) is a right k-ideal of S.

Definition 2.5. [1] A semiring S is called a prime semiring if for any two ideals
H and K of S and HK = (0) implies either H = (0) or K = (0).

Definition 2.6. A non-trivial commutative semiring S is called a semiintegral do-
main if ab = 0 implies either a = 0 or b = 0.

Throughout this paper S∗ denotes the set of all nonzero elements of S, i.e. S∗ =
S − {0}.

3. Right strongly prime semiring

Definition 3.1. Let r ∈ S∗. Right insulator for r is a finite subset S(r) of S such
that annR({rs : s ∈ S(r)}) = (0).

Definition 3.2. A semiring S is called a right strongly prime if every nonzero
element of S has a right insulator. That is, for each r ∈ S∗ there is a finite subset
S(r) of S such that for t ∈ S, {rst : s ∈ S(r)} = {0} ⇒ t = 0.

Proposition 3.1. A right strongly prime semiring is prime.

Proof. Suppose S is a right strongly prime semiring and HK = (0), where H and
K are two ideals of S. Suppose H 6= (0). Then there exists an element a ∈ H such
that a 6= 0. Since a is a nonzero element of S, a has a right insulator S(a). Let
b ∈ K. Then aS(a)b ⊆ Hb ⊆ HK = (0). Now aS(a)b = (0) implies b = 0. Therefore
K = (0). Hence S is a prime semiring.

Theorem 3.1. A semiring S with identity is right strongly prime if and only if every
nonzero ideal of S contains a finitely generated left ideal whose right annihilator is
zero.

Proof. Suppose S is a right strongly prime semiring and I is a nonzero ideal of S.
Let r(6= 0) ∈ I. So r ∈ S∗. Since S is a right strongly prime semiring, so r has
a right insulator S(r)(say). Then rS(r) ⊆ I. Here rS(r) is finite. Let L be the
left ideal of S generated by rS(r), i.e. L = SrS(r). So L ⊆ I. Let Lt = 0. Now
rS(r)t ⊆ SrS(r)t = Lt = 0 (since 1 ∈ S). Now rS(r)t = 0 =⇒ t = 0, since S(r) is a
right insulator for r. Thus I contains the finitely generated left ideal L whose right
annihilator is zero.
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Conversely, suppose the condition holds. Let r ∈ S∗. Now 〈r〉 is a nonzero ideal
of S. By the given condition there exists a finite subset F of 〈r〉, such that right
annihilator of the left ideal L generated by F is zero. Since F ⊆ 〈r〉, so the elements
of the set F are of the form

∑
r′irri, where r′i or ri may be equal to 1. We construct a

set S(r) in such a way that if r′1rr1+r′2rr2+ ...+r′mrrm ∈ F then r1, r2, ...rm ∈ S(r).
So let S(r) = {r1, r2, ...rk}. We now prove that S(r) is a right insulator for r. Let
rS(r)t = 0, i.e. rrit = 0 for i = 1, 2, ..., k. Then SFt = 0. Since right annihilator of
L(= SF ) is zero, so SFt = 0 =⇒ t = 0. Therefore rS(r)t = 0 =⇒ t = 0. Thus S(r)
is a right insulator for r. Hence S is a right strongly prime semiring.

Theorem 3.2. A semiring S is right strongly prime if and only if every nonzero
ideal of S contains a finite subset G such that annR(G) = (0).

Proof. Suppose S is a right strongly prime semiring and I is any nonzero ideal of S.
Let a(6= 0) ∈ I. Since S is a right strongly prime semiring, a has a right insulator
F . Let G = aF . Then G is a finite subset of I and annR(G) = (0).

Conversely, suppose that every nonzero ideal of S contains a finite subset whose
right annihilator is zero. Let a be any nonzero element of S. Then the ideal 〈a〉
contains a finite subset G such that annR(G) = (0). Now the elements of G are of
the forms

∑
xiax′i, ax′′i , x′′′i a or na. Also ay 6= 0 for some y ∈ S, otherwise Gy = 0

for all nonzero elements of S, a contradiction, since annR(G) = (0). Let us consider
the ideal 〈ay〉 of S. Then by condition there exists a finite subset H of 〈ay〉 such
that annR(H) = (0). Here elements of H are of the forms

∑
x′iayxi, ayx′′i , x′′′i ay or

nay. We construct a set H ′ from the elements of H in such a way that if x′1ayx1 +
x′2ayx2+...+x′mayxm ∈ H then ayx1, ayx2, ...ayxm ∈ H ′, also ay ∈ H ′. So let H ′ =
{ay, ayx1, ayx2, ..., ayxk}. Then annR(H ′) = (0). [Suppose annR(H ′) 6= (0). Then
there exists x(6= 0) such that x ∈ annR(H ′). Then ayx = 0 = ayxix for i = 1, 2, ..., k.
So Hx = 0, a contradiction, since annR(H) = (0)]. Let F = {y, yx1, yx2, ..., yxk}.
Then F is a right insulator for a. Hence S is a right strongly prime semiring.

Proposition 3.2. Every simple semiring with unity is right strongly prime.

Proof. Let S be a simple semiring with unity 1. Since S is simple, so S is the only
nonzero ideal of S. Now G = {1} is a finite subset of S and annR(G) = (0) which
implies that S is a right strongly prime semiring.

Definition 3.3. [2] A class ρ of semirings is called hereditary if I is an ideal of a
semiring S and S ∈ ρ implies I ∈ ρ.

Proposition 3.3. The class of all right strongly prime semirings is hereditary.

Proof. Let S be a right strongly prime semiring and I be an ideal of S. We now
prove that I is a right strongly prime semiring. Let a be a nonzero element of I. If
aI = (0) then for any finite subset G of S we have (0) 6= I ⊆ annR(aG)[x ∈ I ⇒
aGx ⊆ aI = (0), so x ∈ annR(aG)], a contradiction by Theorem 3.2, since S is a
right strongly prime semiring. Hence there exists an element y ∈ I such that ay 6= 0.
Then by Theorem 3.2 there exists a finite subset H of 〈ay〉 such that annR(H) = (0).
As in the proof of the Theorem 3.2 we may assume H = {ay, ayx1, ayx2, ..., ayxk}
for some x1, x2, ..., xk ∈ S. Hence the subset F = {y, yx1, yx2, ..., yxk} of I is a right
insulator for a ∈ I. Hence I is a right strongly prime semiring.
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Definition 3.4. When a particular finite subset F of a semiring S is a insulator
for every nonzero element of S, then F is called a uniform insulator for S. If S
contains a uniform insulator then S is called a uniformly strongly prime semiring.

Definition 3.5. A semiring S is said to be a bounded right strongly prime semir-
ing of bound n (denoted by SPr(n)) if each nonzero element of S has an insulator
containing not more than n elements and at least one element has no insulator with
fewer than n elements. Here n is called the uniform bound of S.

Proposition 3.4. A semi-integral domain is a bounded right strongly prime of bound
1.

Proof. For each nonzero element r of a semi-integral domain, {r} is a right insulator
for r.

Definition 3.6. A semiring S is said to satisfy the descending chain condition
(DCC) for left (right) ideals if for each sequence of left (right) ideals A1, A2, ... of
S with A1 ⊇ A2 ⊇ ..., there exists a positive integer n (depending on the sequence)
such that An = An+1 = ....

Proposition 3.5. If S is a prime semiring with DCC on right annihilators, then S
is a right strongly prime semiring.

Proof. Let s ∈ S∗ and consider the collection of right annihilator ideals of the form
annR({sr : r ∈ I}) where I runs over all finite subsets of S. By the condition, above
collection has a minimal element M and let I be the corresponding finite subset.
We now prove that M = (0). If possible let M 6= (0) and m(6= 0) ∈ M . Since S
is prime there exists an element q ∈ S such that sqm 6= 0. Let I ′ = I ∪ {q} and
M ′ = annR({sr : r ∈ I ′}). Then M ′ 6⊆ M , a contradiction. So M = (0). Therefore
I is a right insulator for s. Thus every nonzero element of S has a right insulator.
Hence S is a right strongly prime semiring.

Proposition 3.6. If S is an n × n matrix semiring over a semi-integral domain,
then S is bounded strongly prime of bound n. Also S has uniform bound n2.

Proof. Let A = (aij)n×n ∈ S∗. Then at least one aij(1 ≤ i, j ≤ n) is nonzero.
Suppose apq 6= 0. We now prove that {Eqi}n

i=1 is a right insulator for apq, where
Eij denotes the n × n elementary matrix with (i, j)-th component 1 and all other
elements is zero. Let B = (bij)n×n. Now AEqiB = 0 =⇒ apqbij = 0 for 1 ≤ j ≤
n =⇒ bij = 0(1 ≤ j ≤ n), since S is a matrix semiring over a semi-integral domain,
which shows that {Eqi}n

i=1 is a right insulator for A. Also the element E11 ∈ S∗ has
an insulator {E1j}n

j=1 and no insulator of E11 contains less than n elements. Hence
S is a bounded strongly prime semiring of bound n. Here {Eij}n

i,j=1 is a uniform
insulator of every element of S. So S has uniform bound n2.

Remark 3.1. If D is a division semiring then Mn(D) is a bounded strongly prime
with bound exactly n and Mn(D) is also uniformly strongly prime of bound n2.

Proposition 3.7. Right strongly primeness is a Morita invariant.

Proof. First we prove that if e is a nonzero element of a semiring S, then eSe is
a subsemiring of S. Clearly eSe is a nonempty subset of S. Let es1e, es2e ∈ eSe.
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Then es1e + es2e = e(s1 + s2)e ∈ S and (eSe)(eSe) ⊆ eSe. So eSe is a subsemiring
of S. Again let S be a right strongly prime semiring. We now prove that eSe is a
right strongly prime semiring. Let ese ∈ (eSe)∗. Then ese ∈ S∗. Since S is a right
strongly prime semiring, so ese has a right insulator {fi} (say) in S,
i.e esefit = 0 for all i, t ∈ S =⇒ t = 0....(1).
Then {efie} is a right insulator for ese in eSe, since (ese)(efie)(ete) = 0, where
ete ∈ eSe =⇒ esefiete = 0 for all i =⇒ ete = 0 by (1). So eSe is a right strongly
prime semiring.

Now we prove that if S is a right strongly prime semiring then Mn(S) is also
a right strongly prime semiring. Let B be a nonzero matrix in Mn(S) and let its
(p, q)-th component bpq is nonzero. Let {tk} be a right insulator for bpq in S. Let
A be a nonzero matrix with nonzero (i, j)-th component aij . Then bpqtkaij 6= 0
for some tk ∈ {tk}. Now (p, j)-th component of B(tkEqj)A is bpqtkaij . So A 6=
0 =⇒ B(tkEqj)A 6= 0 for some tk ∈ {tk}. Contrapositively, B(tkEqj)A = 0 for all
tk ∈ {tk} =⇒ A = 0. Therefore {tkeij}i,j,k is a right insulator for B. Hence Mn(S)
is a right strongly prime semiring.

Definition 3.7. [2] A nonzero ideal I of a semiring S is called an essential ideal
of S if for any nonzero ideal J of S, I ∩ J 6= (0).

Definition 3.8. Singular ideal of a semiring S is (denoted by Z(S)) the ideal com-
posed of elements whose right annihilator is an essential right ideal.

Proposition 3.8. The singular ideal of a right strongly prime semiring is zero.

Proof. Suppose S is a right strongly prime semiring and s ∈ Z(S) ∩ S∗. Since S
is a right strongly prime semiring, so s has a right insulator {si}k

i=1(say). Since
Z(S) is an ideal, ssi ∈ Z(S). So right annihilator Ei of ssi is an essential right
ideal (i.e. ssiEi = (0)). Thus ssi(∩k

j=1Ej) ⊆ ssiEi = (0) for all i, since Ei is the
right insulator for ssi. We know the intersection of finitely many essential ideals is
nonzero i.e. ∩k

j=1Ej 6= (0). This contradicts the fact that {si}k
i=1 is a right insulator

for s. Hence Z(S) ∩ S∗ = φ i.e. Z(S) = (0).

Definition 3.9. An ideal I of a semiring S is said to be right strongly prime if
a 6∈ I, then there is a finite set F ⊆ 〈a〉 such that Fb ⊆ I =⇒ b ∈ I.

Definition 3.10. [3] Let I be a proper ideal of a semiring S. Then the congruence
on S, denoted by ρI and defined by sρIs

′ if and only if s + a1 = s′ + a2 for some
a1, a2 ∈ I, is called the Bourne congruence on S defined by the ideal I.

We denote the Bourne congruence (ρI) class of an element r of S by r/ρI or
simply by r/I and denote the set of all such congruence classes of S by S/ρI or
simply by S/I.

It should be noted that for any s ∈ S and for any proper ideal I of S, s/I is not
necessarily equal to s + I = {s + a : a ∈ I} but surely contains it.

Definition 3.11. [3] For any proper ideal I of S if the Bourne congruence ρI ,
defined by I, is proper i.e. 0/I 6= S then we define the addition and multiplication
on S/I by a/I + b/I = (a + b)/I and (a/I)(b/I) = (ab)/I for all a, b ∈ S. With
these two operations S/I forms a semiring and is called the Bourne factor semiring
or simply the factor semiring.
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Proposition 3.9. A k-ideal I of a semiring S is a right strongly prime ideal if and
only if S/I is a right strongly prime semiring.

Proof. Suppose I is a right strongly prime ideal of S. Let P/I be any nonzero ideal
of S/I. Then there exists a/I(6= 0/I) ∈ S/I such that a/I ∈ P/I. Then a 6∈ I.
Since I is a right strongly prime ideal, so there exists a finite subset F of 〈a〉 such
that Fb ⊆ I =⇒ b ∈ I. Now F/I is a finite subset of P/I. Let F/I.b/I = 0/I.
Then Fb/I = 0/I =⇒ Fb ⊆ I, since I is a k-ideal =⇒ b ∈ I i.e. b/I = 0/I. So by
Theorem 3.2 S/I is a right strongly prime semiring.

Conversely, suppose S/I is a right strongly prime semiring and let a 6∈ I. Then
a/I 6= 0/I and 〈a〉/I is a nonzero ideal of S/I. So there exists a finite subset F/I
of 〈a〉/I such that right annihilator of F/I is zero. Let F/I = {f1/I, f2/I, ..., fk/I}
and F ∗ = {f1, f2, ..., fk}. Then F ∗ is a finite subset of 〈a〉. Suppose F ∗b ⊆ I. Then
F ∗b/I = 0/I i.e. F ∗/I.b/I = 0/I =⇒ F/I.b/I = 0/I which implies that b/I = 0/I
i.e. b ∈ I. Hence I is a right strongly prime ideal of S.

4. Right strongly prime radical

Definition 4.1. A subset G of a semiring S is called an sp-system if for any g ∈ G
there is a finite subset F ⊆ 〈g〉 such that Fz ∩G 6= φ for all z ∈ G.

Proposition 4.1. An ideal I of a semiring S is a right strongly prime if and only
if S − I is an sp-system.

Proof. Let I be a right strongly prime ideal of S. Let g ∈ S−I. Then g 6∈ I. So there
exists a finite subset F of 〈g〉 such that Fb ⊆ I implies b ∈ I i.e. Fz ∩ (S − I) 6= φ
for all z ∈ S − I.

Conversely, suppose S − I is an sp-system. Let a 6∈ I. Then a ∈ S − I. So there
exists a finite subset F of 〈a〉 such that Fz ∩ (S − I) 6= φ for all z ∈ S − I. Let
Fb ⊆ I. Then Fb ∩ (S − I) = φ. If possible let b 6∈ I. Then b ∈ S − I which implies
that Fb ∩ (S − I) 6= φ, a contradiction. Hence b ∈ I. Therefore I is a right strongly
prime ideal of S.

Definition 4.2. Right strongly prime radical of a semiring S is defined by SP (S) =
∩{I : I is a right strongly prime ideal of S}.

Definition 4.3. A pair of subsets (G, P ) where P is an ideal of a semiring S and
G is a nonempty subset of S is called a super sp-system of S if G ∩ P contains no
nonzero element of S and for any g ∈ G there is a finite subset F of 〈g〉 such that
Fz ∩G 6= φ for all z 6∈ P .

Remark 4.1. An ideal I of a semiring S is a right strongly prime ideal if and only
if (S − I, I) is a super sp-system of S.

Theorem 4.1. For any semiring S, SP (S) = {x ∈ S : whenever x ∈ G and (G, P )
is a super sp-system for some ideal P of S then 0 ∈ G}...(∗).

Proof. Let x ∈ SP (S). If possible let x ∈ G where (G, P ) is a super sp-system and
0 6∈ G. Then G ∩ P = φ. By Zorn’s lemma choose an ideal Q with P ⊆ Q and Q is
maximal with respect to G∩Q = φ. We now prove that Q is a right strongly prime
ideal of S. Let a 6∈ Q. Then there is a g ∈ G such that 〈g〉 ⊆ Q + 〈a〉. Since (G, P )
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is a super sp-system there exists a finite subset F = {f1, f2, ..., fk} ⊆ 〈g〉 such that
Fz ∩ G 6= φ for all z 6∈ P . Since F ⊆ Q + 〈a〉 each fi is of the form fi = qi + ai

for some qi ∈ Q and ai ∈ 〈a〉. Let F ∗ = {a1, a2, ..., ak}. Then F ∗ ⊆ 〈a〉. Let z ∈ S
such that F ∗z ⊆ Q. Then Fz ⊆ Q. If z 6∈ Q then Fz ∩G 6= φ, because P ⊆ Q. But
this contradicts G ∩Q = φ. Hence z ∈ Q must hold. So Q is a right strongly prime
ideal. But x 6∈ Q, since x ∈ G, which is a contradiction. Hence 0 ∈ G.

Conversely, suppose x belongs to the R.H.S. of (∗). If possible, let x 6∈ SP (S).
Then there exists a right strongly prime ideal I of S such that x 6∈ I. Then (S−I, I)
is a super sp-system where x ∈ S − I but 0 6∈ S − I, a contradiction. Hence the
converse inclusion follows.
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