
BULLETIN of the
Malaysian Mathematical

Sciences Society
http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 30(2) (2007), 159–183

Time-dependent Backward Stochastic
Evolution Equations

AbdulRahman Al-Hussein

Department of Mathematics, College of Science, Al-Qasseem University,

P.O. Box 237, Buraidah 81999, Saudi Arabia
alhusseinqu@hotmail.com

Abstract. We consider the following infinite dimensional backward stochastic

evolution equation:
−dY (t) = (A(t) Y (t) + f(t, Y (t), Z(t))) dt− Z(t) dW (t),

Y (T ) = ξ,

where A(t), t ≥ 0, are unbounded operators that generate a strong evolution
operator U(t, r), 0 ≤ r ≤ t ≤ T. We prove under non-Lipschitz conditions

that such an equation admits a unique evolution solution. Some examples and

regularity properties of this solution are given as well.
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1. Introduction

The aim of this paper is to study the following class of infinite dimensional equations:{
− dY (t) = (A(t) Y (t) + f(t, Y (t), Z(t))) dt− Z(t) dW (t),
Y (T ) = ξ,

(1.1)

which we shall call briefly backward stochastic evolution equations and denote them
by BSEEs. Here W is a cylindrical Wiener process on a separable Hilbert space
H, and the operators A(t), t ≥ 0, are unbounded linear operators on a separable
Hilbert spaceK, depending measurably on t and generate a strong evolution operator
U(t, r), 0 ≤ r ≤ t ≤ T. The main hypothesis is the following: ∃ k > 0 such that
∀ y, y′ ∈ K and ∀ z, z′ ∈ L2(H;K)

|f(t, y, z)− f(t, y′, z′)|2 ≤ c(|y − y′|2) + k |z − z′|2,
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where c is a continuous and nondecreasing concave function from R+ to R+ such
that c(0) = 0, c(x) > 0 for x > 0 and∫ a

0+

dx

c(x)
= ∞,

for any sufficiently small a > 0; cf. the hypotheses (H1) and (H2) in Section 3.
The space L2(H;K) is the Hilbert space of all Hilbert-Schmidt operators from H
to K endowed with the following norm: |Φ|L2(H;K) = (

∑∞
j=1 |Φ ej |2K)1/2, for any

arbitrary orthonormal base {ej}∞j=1 of H. This hypothesis is weaker than being f
globally Lipschitz.

Our aim is to look for a pair (Y,Z) of progressively measurable processes taking
values in K × L2(H;K) such that

Y (t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds

−
∫ T

t

U(s, t) Z(s) dW (s), 0 ≤ t ≤ T.(1.2)

In [10] equations of the type (1.1) with A(t), t ≥ 0, taken as a second order
differential operator A, i.e. A(t) = A for each t ≥ 0, were studied when the mapping
f is globally Lipchitz. See for instance the BSEE (3.5) below. Thus our results here
generalize those in [10]. This time independent case under non-Lipschitz conditions
was studied in details in [1], which appeared also in the recent work of Mahmoudov
and McKibben in [12] with essentially the same proof of the existence part.

BSEEs somehow can be looked at as a generalization of the usual backward
stochastic differential equations introduced by Pardoux and Peng in [16] and also
those in [3]. On the other hand, BSEEs should be linked with the study of infinite
dimensional PDEs as suggested in [17] and as seen from the work in [3] and [5].
Moreover BSEEs are useful in studying stochastic Hamilton-Jacobi-Bellman equa-
tions as gleaned from the work in [19]. An application of the so-called backward
stochastic partial differential equations is given in the Example 3.3 in Section 3.

We should remark at this point that the presence of the operator A(t), t ≥ 0,
prevents, in general, the solution Y of (1.1) from being a semimartingale. This is
due to the unboundedness of A(t) as operators. However in Section 4 we shall show
that the solution Y of (1.1) is continuous. On the other hand, by adding more
regularity conditions on the mappings ξ and f and A (when A is time independent)
it was shown in [4] that the solution (Y,Z) of (1.1) is a strong solution and not
just evolution. This makes Y a semimartingale. See also the discussion following
Theorem 3.1. Independently, other restrictive conditions on A(·) are assumed in [5]
to show also that such a solution Y is a semimartingale.

The outline of the paper is as follows. In Section 2 we collect some necessary
preliminary information on Wiener processes and stochastic integration. Section 3
is devoted to establishing the proof of existence and uniqueness of the solution of the
BSEE (1.1). Some examples are given in Section 3. Then in Section 4 we provide
some regularity properties of these solutions.
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2. Notations and preliminaries

Let (Ω,F ,P) be a complete probability space. Denote by N the collection of P -
null sets of F . Let {ej}∞j=1 be a complete orthonormal system in H. Suppose that
{W (t), 0 ≤ t ≤ T} is a cylindrical Wiener process on H, written formally as an
infinite sum:

W (t) =
∞∑

j=1

wj(t) ej ,

where wj(·) , j = 1, 2, . . . , are i.i.d. Brownian motions in R. By using
this formal expansion we define what we call the completed natural filtra-
tion of W by σ{wj(s), 0 ≤ s ≤ t, j = 1, . . . ,∞} ∨N , t ≥ 0. It was shown in
[2] that σ{wj(s), 0 ≤ s ≤ t, j = 1, . . . ,∞} ∨N = Ft , for each t ≥ 0, where
Ft = σ{l ◦W (s) , 0 ≤ s ≤ t , l ∈ H∗} ∨ N .

For a separable Hilbert space H̃ let L2
F (0, T ; H̃) denote the space of all {Ft, 0 ≤

t ≤ T} - progressively measurable processes f̃ with values in H̃ such that

E

[∫ T

0

∣∣∣f̃(s)
∣∣∣2
H̃
ds

]
<∞.

Thus L2
F (0, T ; H̃) is a Hilbert space with the norm:

||f̃ || =

(
E

[∫ T

0

∣∣∣f̃(s)
∣∣∣2
H̃
ds

])1/2

.

For elements Ψ of L2
F (0, T ;L2(H;K)) we define the stochastic integral∫ T

0

Ψ(s) dW (s) := lim
N→∞

N∑
j=1

∫ T

0

(Ψ(s) ej) dwj(s).

This limit is known to exists P- a.s. since

E


∣∣∣∣∣∣

N∑
j=1

∫ T

0

(ψ(s) ej) dwj(s)

∣∣∣∣∣∣
2

K

 =
N∑

j=1

E

[∫ T

0

|Ψ(s) ej |2K ds

]

→
∞∑

j=1

E

[∫ T

0

|Ψ(s) ej |2Kds

]
<∞,(2.1)

as N → ∞. Thus
∫ T

0
Ψ(s) dW (s) is well-defined and belongs to L2(Ω,FT ,P;K).

Moreover
∫ ·
0
Ψ(s) dW (s) can also be constructed as a limit in the above respect

and is a square integrable martingale with values in K. More details on stochas-
tic integration can be found for example in [8,14,15,22]. The following martingale
representation theorem was proved in [2, Theorem 3.1].

Theorem 2.1. Suppose that W is a cylindrical Wiener process on H with natural
filtration {Ft , t ≥ 0}. Assume that {M(t), 0 ≤ t ≤ T} is a martingale in K with
respect to {Ft , t ≥ 0}, which is square integrable, i.e. sup

0≤t≤T
E [ |M(t)|2K ] < ∞.
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Then there exists a unique stochastic process R ∈ L2
F (0, T ;L2(H;K) ) such that, for

all 0 ≤ t ≤ T, we have P - a.s.

(2.2) M(t) = M(0) +
∫ t

0

R(s) dW (s).

In particular, M has a continuous modification.

3. Backward stochastic evolution equations

In this section we are concerned with finding a unique solution to the BSEE (1.1).
Before going into that business we need to introduce the following definitions.

Definition 3.1. A two parameter family of bounded linear operators {U(s, t), 0 ≤
t ≤ s ≤ T} on K is called an evolution system if the following holds.

(i) U(s, s) = I, 0 ≤ s ≤ T,
(ii) U(s, r) U(r, t) = U(s, t), 0 ≤ t ≤ r ≤ s,
(iii) (s, t) 7→ U(s, t) is strongly continuous for 0 ≤ t ≤ s.

The mapping U (or U(s, t), 0 ≤ t ≤ s ≤ T ) is usually called an evolution operator
or a two-parameters semigroup.

Definition 3.2. A strong evolution operator is an evolution operator U(s, t), 0 ≤
t ≤ s ≤ T, for which there exists a closed and densely defined linear operator A(s),
with domain D(A(s)), s ≥ 0, such that

U(s, t)(D(A(t))) ⊂ D(A(s)), s > t,

and
∂

∂s
(U(s, t) y) = A(s) U(s, t) y, s > t, y ∈ D(A(t)).

The family {A(s), 0 ≤ s ≤ T} is called the infinitesimal generator of U(s, t), 0 ≤
t ≤ s ≤ T.

For example, the C0 - semigroup {eA s, 0 ≤ s ≤ T} of infinitesimal generator A,
defines a strong evolution operator by U(s, t) := eA (s−t) with infinitesimal generator
A(s) = A, 0 ≤ s ≤ T.

The operator A appearing in the BSEE (1.1) will be assumed to depend in a
measurable way on time, i.e. [0, T ] 3 s 7→ A(s) y ∈ K is Borel measurable for all
y ∈ K. Moreover all {A(s), s ≥ 0} will be assumed to be closed and densely defined
linear operators, which generate a strong evolution operator U(s, t), 0 ≤ t ≤ s ≤ T.
We assume also that [0, T ]2 → L(K), (s, t) 7→ U(s, t) is measurable. We refer the
reader to [24,20,18] for the existence of such evolution operators and to [11,18,9]
for the properties and the examples. See also the Example 3.3 in Section 3. In
fact a general method of obtaining evolution operators is given in the following
perturbation result, which is taken from [20].

Proposition 3.1. Let U(s, t) be an evolution operator and let C : [0, T ] → L(K) be
point measurable and essentially bounded. Then the operator integral equation

S(s, t)y = U(s, t)y +
∫ s

t

U(s, r)C(r)S(r, t)y dr, y ∈ K,
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has a unique solution S(s, t) in the class of strongly continuous bounded linear op-
erators on K, and moreover, S(s, t) is the unique solution of

S(s, t)y = U(s, t)y +
∫ s

t

S(s, r)C(r)U(r, t)y dr, y ∈ K.

The operator S is called the perturbation of U by C.

An evolution solution (or simply a solution) of (1.1) is a pair (Y,Z) ∈
L2
F (0, T ;K)× L2

F (0, T ;L2(H;K)) such that the following equality holds a.s.

Y (t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds

−
∫ T

t

U(s, t) Z(s) dW (s), 0 ≤ t ≤ T.(3.1)

Our assumptions are the following.

• (H1) f is a mapping from [0, T ]×Ω×K×L2(H;K) to K that is P⊗B(K)⊗
B(L2(H;K))/B(K) - measurable and satisfies

f(·, 0, 0) ∈ L2
F (0, T ;K),

where P is the σ - algebra of all F∗ - progressively measurable subsets of
[0, T ]× Ω.

• (H2) ∃ k > 0 such that ∀ y, y′ ∈ K and ∀ z, z′ ∈ L2(H;K)

|f(t, y, z)− f(t, y′, z′)|2K ≤ c(|y − y′|2K) + k |z − z′|2L2(H;K) ,

for a.e. (ω, t) ∈ Ω × [0, T ], where c is a concave nondecreasing continuous
function from R+ to R+ such that c(0) = 0, c(x) > 0 for all x > 0 and∫ a

0+

dx

c(x)
= ∞,

for any sufficiently small (and so for all) a > 0.

Examples of such a function c is c(x) = αx, for some α > 0, and the following
two functions which are introduced in [13]:

c1(x) =
{
x log(x−1) (0 ≤ x ≤ δ)
δ log(δ−1) + ċ1(δ−) (x− δ) (x > δ)

c2(x) =
{
x log(x−1) log log(x−1) (0 ≤ x ≤ δ)
δ log(δ−1) log log(δ−1) + ċ2(δ−) (x− δ) (x > δ)

with δ ∈ (0, 1) being sufficiently small. The following example will be used in the
Example 3.3. Assume that h : R → [0,∞) is defined by:

h(x) =


0 (x = 0)
|x|
√

log(1 + 1
|x| ) (0 < |x| < δ)

δ
√

log(1 + 1
δ ) (|x| ≥ δ).

(3.2)
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Define

c3(x) =

 0 (x = 0)
x log(1 + 1

x ) (0 < x < 1)
log 2 (x ≥ 1).

(3.3)

Then c3 satisfies the properties in (H2), is not Lipschitz and, moreover,

(3.4) |h(x)− h(x′)|2 ≤ c3(|x− x′|2) ∀ x, x′ ∈ R.
We refer the reader to [7] for the proof.

To the best of our knowledge introducing a condition as in (H2) in the study of
the uniqueness of solutions of stochastic differential equations is due to Yamada and
Watanabe in [25,26].

Our main theorem is the following.

Theorem 3.1. Let ξ ∈ L2(Ω,FT ,P;K) be given. Assume that f satisfies
(H1) and (H2). Then there exists a unique solution of (1.1) in L2

F (0, T ;K) ×
L2
F (0, T ;L2(H;K)).

Note that if the operators A(t), t ≥ 0, in (1.1) are taken to be a second order
differential operator A, i.e. A(t) = A for all t ≥ 0, the equation (1.1) becomes{

− dY (t) = (A Y (t) + f(t, Y (t), Z(t))) dt− Z(t) dW (t),
Y (T ) = ξ,

(3.5)

with a solution (Y, Z) given by

Y (t) = eA (T−t) ξ +
∫ T

t

eA (s−t) f(s, Y (s), Z(s)) ds

−
∫ T

t

eA (s−t) Z(s) dW (s) , 0 ≤ t ≤ T.(3.6)

Thus solutions of the equations (3.5) are actually mild solutions. In [4] we studied
the regularity of such mild solutions. In particular it was shown that a weak solution
and a strong solution exist for the equation (3.5). Unfortunately, it is not clear how
one can get the same for the evolution case (the equation (1.1)). In fact the existence
of strong solutions requires usually the commutativity between the operator A(s) and
the evolution operator U(s, t), which does not hold in general. We mention here that
for an operator which generates a weak forward adjoint and a weak backward adjoint
the existence of weak and strong solutions of some forward stochastic evolution
equations is derived in [9]. Now since we are dealing here with time dependent
backward equations such an approach seems not to work, and so a different approach
is really needed. To the best of our knowledge such a problem has not yet been
studied for BSEEs. However we can still deal with the case of the following example.

Example 3.1. Let A be a second order operator on K, possibly unbounded, which
generates a C0-semigroup {eA t, t ≥ 0} onK. Assume that for each t ∈ [0, T ], A(t) =
A + C(t), where C : [0, T ] → L(K) is point measurable1 and essentially bounded.
Then A(t) generates a strong evolution operator U(t, r), 0 ≤ r ≤ t ≤ T, given by
the perturbation of etA by C(t) in the sense of the Proposition 3.1.

1e.g. Borel measurable.
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Consider the following BSEE:{
− dY (t) = ( (A+ C(t) ) Y (t) + f(t, Y (t), Z(t)) ) dt− Z(t) dW (t),
Y (T ) = ξ.

(3.7)

If the conditions in Theorem 3.1 hold, we conclude by applying Proposition 3.1 that
the unique evolution solution

Y (t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds

−
∫ T

t

U(s, t) Z(s) dW (s), 0 ≤ t ≤ T,

is the unique (up to modification) solution of the equation

Y (t) = eA (T−t) ξ +
∫ T

t

eA (s−t) C(s)Y (s) ds

+
∫ T

t

eA (s−t) f(s, Y (s), Z(s)) ds−
∫ T

t

eA (s−t) Z(s) dW (s),

where 0 ≤ t ≤ T. That is (Y, Z) is a mild solution of the following BSEE:{
− dY (t) = (A Y (t) + f̃(t, Y (t), Z(t)) ) dt− Z(t) dW (t), 0 ≤ t ≤ T,
Y (T ) = ξ,

where f̃(t, y, z) := f(t, y, z)+C(t) y. Those mild solutions are discussed in details in
[1].

Now before we go directly to the proof of Theorem 3.1 let us introduce some
lemmas which will help to establish it. The following lemma is a special case of the
theorem when the mappings f and g in (3.1) do not depend on Y and Z.

Lemma 3.1. If f ∈ L2
F (0, T ;K) and ξ ∈ L2(Ω,FT ,P;K), there exists a unique pair

(Y, Z) ∈ L2
F (0, T ;K)× L2

F (0, T ;L2(H;K)) such that

(3.8) Y (t) = U(T, t)ξ +
∫ T

t

U(s, t) f(s) ds−
∫ T

t

U(s, t) Z(s) dW (s),

for each t ∈ [0, T ] a.s. Furthermore ∀ t ∈ [0, T ],

(3.9) E [ |Y (t)|2K ] ≤ 2M2(T − t) E

[∫ T

t

|f(s)|2Kds

]
+ 2M2 E [ |ξ|2K ]

and

E

[∫ T

t

|Z(s)|2L2(H;K) ds

]
≤ 8M2(T − t) E

[∫ T

t

|f(s)|2K ds

]
+

8M2 E [ |ξ|2K
]
,(3.10)

where
M := sup

0≤t≤s≤T
||U(s, t) || .

The proof of this lemma can be achieved in a similar way to that in [10, Lemma
2.1]. We shall sketch it here for completeness.



166 AbdulRahman Al-Hussein

Proof. Uniqueness: Let both (Y1, Z1) and (Y2, Z2) be two solutions of (3.8). Then
for arbitrary t ∈ [0, T ]

(3.11) Y1(t)− Y2(t) =
∫ T

t

U(s, t) (Z1(s)− Z2(s)) dW (s).

By applying conditional expectation E [ · | Ft] to both sides of (3.11) and using the
continuity of Y1 and Y2, cf. Proposition 4.1 below, we obtain

Y1(t) = Y2(t), ∀ t ∈ [0, T ] a.s.

Hence by a simple use of (2.1), we find that Z1(t) = Z2(t), for all t ∈ [0, T ] a.s.
Existence: Define

(3.12) Y (t) = E [ U(T, t)ξ +
∫ T

t

U(s, t) f(s) ds | Ft ], 0 ≤ t ≤ T.

Hence (3.9) follows immediately from Jensen’s inequality (see [21]) and the assump-
tion (H1).

To construct Z(·) we mimic the method of [10] as follows. Since for each s ∈
[0, T ], f(s) and ξ belong to L2(Ω,FT ,P;K), it follows by using the martingale
representation theorem (Theorem 2.1) that there exist two processes z1(s) and z2 in
L2
F (0, T ;L2(H;K)), such that

(3.13) E [f(s)|Ft] = E [f(s)] +
∫ t

0

z1(s)(r) dW (r), 0 ≤ t ≤ s,

and

(3.14) E [ξ|Ft] = E [ξ] +
∫ t

0

z2(r) dW (r), 0 ≤ t ≤ T.

It is not difficult to see that z1(·)(·) is B([0, T ])⊗P - measurable.
Now let

(3.15) Z(t) := U(T, t) z2(t) +
∫ T

t

U(s, t) z1(s)(t) ds,

for any 0 ≤ t ≤ T . It is then easy to check that (3.8) holds. The estimate (3.10)
follows from (3.15), (3.13) and (3.14).

From here on, unless if it is necessarily needed, we will suppress writing norms
subscripts. The following example illustrates the above lemma.

Example 3.2. Coping with the above setting, let H = Rd,K = L2(Rd; R) and
A = 1

2 ∆. Consider the following BSEE:

−dY (t) =
1
2

∆Y (t) dt+ Z(t) dW (t),

Y (T ) = Φ ∈ L2(Ω,FT ,P;K).

In this case,

Y (t, x) = ( e
1
2 ∆(T−t) E [Φ] )(x) + (

∫ t

0

(e
1
2 ∆(T−t) z2(s)) dW (s) )(x)

and
Z(t)(·) = (e

1
2 ∆(T−t) z2(t))(·),
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t ∈ [0, T ], x ∈ Rd. The process z2 is given as in the lemma through the martingale
representation theorem. Note that if Φ is regular enough, z2 can be calculated
explicitly according to the Clark-Ocone theorem as in [2].

This example is actually a very special case of the Example 3.3 below.

Remark 3.1. We have also some high moments inequalities for the solution of the
BSEE (3.8) as follows. Let p > 2. By using the fact that

Y (t) = E [ U(T, t)ξ +
∫ T

t

U(s, t) f(s) ds | Ft ], 0 ≤ t ≤ T,

we see that

E [ |Y (t)|p] ≤ 2p−1Mp E [ |ξ|p] + 2p−1Mp(T − t)p−1 E

[∫ T

t

|f(s)|p ds

]
,

which yields

E

[
|
∫ T

t

U(s, t) Z(s) dW (s)|p
]
≤ 3p−1 Mp(2p−1 + 1) E [ |ξ|p]

+ 3p−1 Mp(T − t)p−1(2p−1 + 1) E

[∫ T

t

|f(s)|p ds

]
,

for all t ∈ [0, T ].
These two inequalities become useful when the right hand side of each is finite.

Proposition 3.2. Let ξ ∈ L2(Ω,FT ,P;K) and let f : Ω × [0, T ] × L2(H;K) → K
be a mapping satisfying (H1) and (H2). Then the following BSEE:{

− dY (t) = (A(t) Y (t) + f(t, Z(t))) dt− Z(t) dW (t),
Y (T ) = ξ,

(3.16)

has a unique evolution solution (Y, Z).

By using Lemma 3.1 the proof of this proposition is direct and is similar to that of
[10, Proposition 2.5] since the mapping f in (3.16) does not depend on the variable
Z, so we prefer to omit it and tell briefly about it. It is simply achieved by show-
ing that the following sequence {(Yn(t), Zn(t)) : 0 ≤ t ≤ T, n ≥ 1} of elements of
L2
F (0, T ;K)×L2

F (0, T ;L2(H;K)), which is defined in the following equation (3.17),
is Cauchy and then proving that its limit is the solution of (3.16). This sequence is
defined recursively as follows: Z0 ≡ 0,

Yn(t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Zn−1(s)) ds−∫ T

t

U(s, t) Zn(s) dW (s), 0 ≤ t ≤ T.(3.17)

We now study the BSEE (1.1). With the help of Proposition 3.2 we first introduce
the following iteration scheme, from which we will be able to construct the solution
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of (1.1). Let Y0(t) ≡ 0 and let {(Yn(t), Zn(t)) : 0 ≤ t ≤ T, n ≥ 1} be a sequence in
L2
F (0, T ;K)× L2

F (0, T ;L2(H;K)) defined by

Yn(t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Yn−1(s), Zn(s)) ds−∫ T

t

U(s, t) Zn(s) dW (s), 0 ≤ t ≤ T.(3.18)

Our aim is to show that these solutions {(Yn, Zn)} converge as n → ∞ to derive
the solution of the original BSEE (1.1). Before doing so we need to give some vital
estimates as in the following two lemmas.

Lemma 3.2. Assume that the hypotheses (H1) and (H2) hold. Then there exist
two positive constants C1 and C2 such that, for all t ∈ [0, T ] and for all n ≥ 1, the
solution of (3.18) satisfies

E [ |Yn(t)|2 ] ≤ C1 and E

[∫ T

0

|Zn(s)|2 ds

]
≤ C2 .

Proof. By applying Lemma 3.1 to the equation (3.18) we see that

E [ |Yn(t)|2 ] ≤ 2M2(T − t) E

[∫ T

t

|f(s, Yn−1(s), Zn(s))|2 ds

]
+2M2 E [ |ξ|2 ](3.19)

and

E

[∫ T

t

|Zn(s)|2 ds

]
≤ 8M2(T − t) E

[∫ T

t

|f(s, Yn−1(s), Zn(s))|2 ds

]
+ 8M2 E [ |ξ|2 ],(3.20)

for all t ∈ [0, T ]. Since c is concave, there exist a, b > 0 such that c(x) ≤ a + b x.
Thus by using (H2) we find that

E

[∫ T

t

|f(s, Yn−1(s), Zn(s))|2 ds

]
≤

C3 + 2 b E

[∫ T

t

|Yn−1(s)|2 ds

]
+ 2k E

[∫ T

t

|Zn(s)|2 ds

]
,(3.21)

where C3 := 2 a T + 2 E [
∫ T

0
|f(s, 0, 0)|2 ds]. In particular (3.19) and (3.20) take the

following shapes:

E [ |Yn(t)|2 ] ≤ 2M2(T − t)C3 + 4M2(T − t) b E

[∫ T

t

|Yn−1(s)|2 ds

]

+4M2(T − t) kE

[∫ T

t

|Zn(s)|2 ds

]
+ 2M2 E

[
|ξ|2

]
(3.22)
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and

E

[∫ T

t

|Zn(s)|2 ds

]
≤

8M2 E [ |ξ|2 ] + 8M2(T − t)C3 + 16M2(T − t) b E

[∫ T

t

|Yn−1(s)|2 ds

]

+16M2(T − t) k E

[∫ T

t

|Zn(s)|2 ds

]
.(3.23)

Take η ∈ (0, T ) with 32M2k η < 1. Assume that t ∈ [T − η , T ]. We observe from
(3.23) that

E

[∫ T

t

|Zn(s)|2 ds

]
≤

8M2 E [ |ξ|2 ] + 8M2η C3 + 16M2 η b E

[∫ T

t

|Yn−1(s)|2 ds

]

+
1
2

E

[∫ T

t

|Zn(s)|2 ds

]
,(3.24)

or in particular

(3.25) E

[∫ T

t

|Zn(s)|2 ds

]
≤ C3

2k
+ 16M2 E [ |ξ|2 ] +

b

k
E

[∫ T

t

|Yn−1(s)|2 ds

]
.

Similarly from (3.22) we get

E [ |Yn(t)|2 ] ≤ C3

16k
+

b

8k
E

[∫ T

t

|Yn−1(s)|2 ds

]

+
1
8

E

[∫ T

t

|Zn(s)|2 ds

]
+ 2M2 E [ |ξ|2 ],(3.26)

from which and from (3.25), we obtain

(3.27) E
[
|Yn(t)|2

]
≤ C4 + C5 E

[∫ T

t

|Yn−1(s)|2 ds

]
,

∀ n ≥ 1. The constants C4, C5 are
C3

8k
+ 4M2 E

[
|ξ|2

]
and

b

4k
respectively.

Fix now an integer m ≥ 1. If 1 ≤ n ≤ m, we then have

E [ | Yn(t)|2 ] ≤ C4 + C5 E

[∫ T

t

sup
1≤q≤m

E [ |Yq(s)|2 ] ds

]
.
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By Gronwall’s inequality we deduce that

sup
1≤q≤m

E [ |Yq(t)|2 ] ≤ C4 e
C5(T−t)

< C4 e
C5T =: C6 .

Since m is arbitrary, we get that

(3.28) E [ | Yn(t)|2 ] ≤ C6 ,

∀ n ≥ 1 and ∀ t ∈ [T − η , T ].
On the other hand, by re-writing (3.25) in the following form:

(3.29) E

[∫ T

t

|Zn(s)|2 ds

]
≤ C7 +

b

k
E

[∫ T

t

|Yn−1(s)|2 ds

]
,

where C7 :=
C3

2k
+ 16M2 E [ |ξ|2 ] and using (3.28) we see that

(3.30) E

[∫ T

t

|Zn(s)|2 ds

]
≤ C7 +

b

k
C6T =: C8 .

Next we assume that t ∈ [T − 2η , T − η] and η satisfies 32M2k η < 1. Since

Yn(t) = Yn(T − η) +
∫ T−η

t

f(s, Yn(s), Zn(s)) ds

−
∫ T−η

t

Zn(s) dW (s),

for all t ∈ [T − 2η , T − η], we obtain in the same way in which we derived the
inequalities (3.28) and (3.30) the following results.

(3.31) E [ |Yn(t)|2 ] ≤ C ′6 ,

and

E

[∫ T−η

t

|Zn(s)|2 ds

]
≤ C3

2k
+ 16M2C6 +

b

k
C ′6 (T − η − t)

< C ′8 ,(3.32)

∀ t ∈ [T − 2 η , T − η] and ∀ n ≥ 1, where C ′6 :=
(
C3

8k
+ 4M2C6

)
eC5T and

C ′8 :=
C3

2k
+ 16M2C6 +

b T

k
C ′6 .

The rest of the proof can now be achieved by repeating this procedure for
all tiny intervals [ (T − (l+ 1) η )∨ 0 , T − l η ] where 0 ≤ l ≤ q, l is integer of length
at most η (with 32M2k η < 1) and q is the largest integer such that q < T

η . This
completes the proof.

Lemma 3.3. If the hypotheses (H1), (H2) hold, then there exist two constants
C9 > 0 and C10 > 0 such that ∀ 0 ≤ t ≤ T and ∀ n,m ≥ 1, we have

(3.33) E [ |Yn+m(t)− Yn(t)|2 ] ≤ C9

∫ T

t

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds
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and

E

[∫ T

t

|Zn+m(s)− Zn(s)|2 ds

]
≤

C10

∫ T

t

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds.(3.34)

Proof. Note that

Yn+m(t)− Yn(t) =∫ T

t

U(s, t)[f(s, Yn+m−1(s), Zn+m(s))− f(s, Yn−1(s), Zn(s))] ds

−
∫ T

t

U(s, t)[Zn+m(s)− Zn(s)] dW (s).(3.35)

Thus by using Lemma 3.1 we deduce the following two inequalities:

E [ |Yn+m(t)− Yn(t)|2 ] ≤

M2(T − t) E

[∫ T

t

c( |Yn+m−1(s)− Yn−1(s)|2) ds

]

+M2(T − t) k E

[∫ T

t

|Zn+m(s)− Zn(s)|2 ds

]
,(3.36)

E

[∫ T

t

|Zn+m(s)− Zn(s)|2 ds

]
≤

8M2(T − t) E

[∫ T

t

c( |Yn+m−1(s)− Yn−1(s)|2) ds

]

+ 8M2(T − t) k E

[∫ T

t

|Zn+m(s)− Zn(s)|2 ds

]
.(3.37)

As done in the proof of Lemma 3.2 we divide the interval [0, T ] into tiny sub-intervals
of length η which satisfies 0 ≤ η ≤ T and 16M2ηk < 1. Let t ∈ [T − η , T ]. Then
(3.37) becomes

E

[∫ T

t

|Zn+m(s)− Zn(s)|2 ds

]
≤

1
k

E

[∫ T

t

c(|Yn+m−1(s)− Yn−1(s)|2) ds

]
.(3.38)

Consequently by using (3.36) and (3.38) we get

(3.39) E [ |Yn+m(t)− Yn(t)|2 ] ≤ C11

∫ T

t

E [ c( |Yn+m−1(s)− Yn−1(s)|2)] ds,
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with C11 :=
9

16 k
. Jensen’s inequality gives that

(3.40) E [ |Yn+m(t)− Yn(t)|2 ] ≤ C11

∫ T

t

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ]) ds,

for all t ∈ [T − η , T ] and n,m ≥ 1.
Next assume that t ∈ [T − 2η , T − η] and rewrite (3.35) as follows:

Yn+m(t)− Yn(t) =
U(T − η, t)(Yn+m(T − η)− Yn(T − η))

+
∫ T−η

t

U(s, t)[f(s, Yn+m−1(s), Zn+m(s))− f(s, Yn−1(s), Zn(s))] ds

−
∫ T−η

t

U(s, t)[Zn+m(s)− Zn(s)] dW (s).(3.41)

Applying Lemma 3.1 to the equation (3.41) and using the assumption (16M2ηk < 1),
the inequality (3.40) and Jensen’s inequality imply that

E

[∫ T−η

t

|Zn+m(s)− Zn(s)|2 ds

]
≤(

1
2k

) ∫ T−η

t

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ]) ds

+ 8M2 C11

∫ T

T−η

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ]) ds

≤
(

1
2k

+ 8M2 C11

) ∫ T

t

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ]) ds,(3.42)

∀ t ∈ [T − 2η , T − η] and ∀ n,m ≥ 1.
Again by using Lemma 3.12 together with (3.40), (3.42) and Jensen’s inequality

we deduce that

E [ |Yn+m(t)− Yn(t)|2 ] ≤ C12

∫ T

t

c(E [|Yn+m−1(s)− Yn−1(s)|2 ]) ds,(3.43)

∀ t ∈ [T − 2η , T − η] and ∀ n,m ≥ 1, where C12 :=
3

16k
+3M2C11 . Therefore (3.33)

holds for all t ∈ [T − 2η , T ].
On the other hand, note that (3.38) and (3.42) prove (3.34) for the case where

t ∈ [T − 2η , T ].
Finally by considering the argument stated at the end of the preceding lemma,

we conclude that the two inequalities (3.33) and (3.34) follow for each t ∈ [0, T ].

Lemma 3.4. Under the hypotheses (H1) and (H2) there exists a constant C13 > 0
such that for all t ∈ [0, T ] and n,m ≥ 1,

E [ |Yn+m(t)− Yn(t)|2 ] ≤ C13 (T − t).

2or simply by taking conditional expectation on (3.41) and using Jensen’s inequality.
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Proof. From Lemma 3.3 and Lemma 3.2 it follows that

E [ |Yn+m(t)− Yn(t)|2 ] ≤ C9

∫ T

t

c(4C1) ds

= C13 (T − t),(3.44)

where C13 := C9 c(4 C1).
Let us now state the following inequality due to Bihari’s, which we will need in

our proof below. We refer the reader to [6, p. 83] for its proof.

Proposition 3.3 (Bihari’s inequality). Let u and v be two positive continuous func-
tions defined on [0, T ]. Assume that c : R+ → R+ is a nonnegative nondecreasing
continuous function. If for some positive constants C and D,

u(t) ≤ C +D

∫ t

0

v(s) c(u(s)) ds, 0 ≤ t ≤ T,

then

u(t) ≤ G−1(G(C) +D

∫ t

0

v(s) ds),

for all such t ∈ [0, T ] that G(C) +
∫ t

0
v(s) ds ∈ Dom(G−1), where

G(r) :=
∫ r

1

ds

c(s)
, r > 0,

and G−1 is the inverse function of G.
In particular if the constant C = 0 and limr→0+ G(r) = −∞, then

u(t) = 0, 0 ≤ t ≤ T.

We are now ready to establish the proof of Theorem 3.1. We shall argue mainly
like [13].
Proof of Theorem 3.1. Existence: Recall the sequence {Yn} which is defined re-
cursively in the equation (3.18). Recall also the two constants C9 and C13 from
Lemma 3.3 and Lemma 3.4. We claim first that

(3.45) sup
t∈[0,T ]

E [ |Yn+m(t)− Yn(t)|2 ] → 0, as n,m→∞.

We need to prepare some results in order to be able to derive this claim. Let c̄ be
the function C9 c, defined on R+ and ζ1 ∈ [0, T ] be such that c̄(C13 (T−t)) ≤ C13 for
all ζ1 ≤ t ≤ T. Define recursively the following deterministic sequence: for 0 ≤ t ≤ T,

ϕ1(t) = C13 (T − t),

ϕn+1(t) =
∫ T

t

c̄(ϕn(s)) ds, n = 1, 2, . . . .

For a fixed k ≥ 1 we have ∀ t ∈ [ζ1, T ] and ∀ n ≥ 2,

(3.46) E [ |Yn+k(t)− Yn(t)|2 ] ≤ ϕn−1(t) ≤ · · · ≤ ϕ1(t).

This is actually proved by induction using Lemma 3.4 and Lemma 3.3 as follows.
The case n = 2 follows directly from Lemma 3.4. If (3.46) holds for some fixed
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n > 2, then

E [ |Yn+1+k − Yn+1(t)|2 ] ≤
∫ T

t

c̄( E [ |Yn+k(s)− Yn(s)|2 ] ) ds

≤
∫ T

t

c̄(ϕn−1(s)) ds = ϕn(t)

≤
∫ T

t

c̄(ϕn−2(s)) ds = ϕn−1(t).

Thus (3.46) holds for all n ≥ 2.
On the other hand, by the monotonicity of ϕn(t) the sequence {ϕn(t) : t ∈

[ζ1, T ], n ≥ 1} attains a limit {ϕ(t) : t ∈ [ζ1, T ]}. Moreover from the definition of
ϕn(t) and the dominated convergence theorem we obtain

ϕ(t) = lim
n→∞

∫ T

t

c̄(ϕn(s)) ds =
∫ T

t

c̄(ϕ(s)) ds, t ∈ [ζ1, T ],

which shows that ϕ is continuous on [ζ1, T ]. Now applying Bihari’s inequality yields
ϕ(t) = 0 for all t ∈ [ζ1, T ]. It follows that

(3.47) lim
n,m→∞

sup
t∈[ζ1,T ]

E [ |Yn+m(t)− Yn(t)|2 ] ≤ lim
n→∞

sup
t∈[ζ1,T ]

ϕn(t) = ϕ(ζ1) = 0.

This proves the claim (3.45) in the case where t ∈ [ζ1, T ]. In particular {Yn}n≥1 is a
Cauchy sequence in L2

F (ζ1, T ;K). Call its limit {Y (t), ζ1 ≤ t ≤ T}. Moreover from
(3.34) and (3.47) we find that

E

[∫ T

ζ1

|Zn+m(s)− Zn(s)|2 ds

]

≤ C10

∫ T

ζ1

c( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds → 0, as n,m→∞.

So {Zn}n≥1 is also a Cauchy sequence in L2
F (ζ1, T ;L2(H;K)). Denote its limit by

{Z(t), ζ1 ≤ t ≤ T}. Therefore (3.18), (H2) and the convergence of Yn to Y show
that

E

 ∣∣∣∣∣
∫ T

t

U(s, t) Zn(s) dW (s)−
∫ T

t

U(s, t) Z(s) dW (s)

∣∣∣∣∣
2
 =

E

 ∣∣∣∣∣Yn(t)− Y (t) +
∫ T

t

U(s, t) ( f(s, Yn(s), Zn(s))− f(s, Y (s), Z(s)) ) ds

∣∣∣∣∣
2


≤ 2 E [ |Yn(t)− Y (t)|2 ] + 2M2 T E

[∫ T

t

c(|Yn(s)− Y (s)|2) ds

]

+2M2 T kE

[∫ T

t

|Zn(s)− Z(s)|2 ds

]
→ 0,

as n →∞, for all t ∈ [ζ1 , T ]. Note that the convergence of the second term follows
from Jensen’s inequality and the continuity of the function c . Now we can pass
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to the limit as n → ∞ in (3.18) to see particularly that (Y,Z) solves our original
BSEE (1.1) on the interval [ζ1 , T ].

The second step is to try to extend this solution to make it defined on the whole
interval [0, T ]. For this we define

ζ2 := inf

{
ζ ∈ [0, T ] : sup

ζ≤t≤T
E [ |Yn+m(t)− Yn(t)|2 ] → 0, as n,m→∞

}
.

We claim that

(3.48) sup
ζ2≤t≤T

E [ |Yn+m(t)− Yn(t)|2 ] → 0, as n,m→∞, ∀m ≥ 1.

Let us now prove this claim. It is clear from (3.47) that 0 ≤ ζ2 ≤ ζ1 < T. Let ε > 0
and choose λ ∈ (0, T − ζ2) so that C13 λ <

ε

2
. Since c̄(0) = 0, ∃ θ ∈ (0, ε) such

that T c̄(θ) <
ε

2
. Let N ≥ 1 be sufficiently large so that if ζ2 + λ ≤ t ≤ T, then

E [ |Yn+m(t) − Yn(t)|2 ] < θ, ∀ n ≥ N and ∀ m ≥ 1. By using Lemma 3.3 and
Lemma 3.2 and noting that C13 = c̄(4C1) we see that, if n ≥ N + 1, m ≥ 1 and
t ∈ [ζ2 , ζ2 + λ], then

E [ |Yn+m(t)− Yn(t)|2 ] ≤
∫ ζ2+λ

ζ2

c̄( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds

+
∫ T

ζ2+λ

c̄( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds

≤ λC13 + (T − ζ2 − λ) c̄(θ)

≤ ε

2
+
ε

2
= ε.

Therefore we obtain

sup
ζ2≤t≤T

E [ |Yn+m(t)− Yn(t)|2 ] < ε, ∀ n ≥ N + 1 and m ≥ 1.

Hence the claim (3.48) follows.
Thirdly, remark that by proving that ζ2 = 0 the proof of the claim (3.45) finishes

and so the theorem as shown earlier. So the rest of the proof is devoted to proving
this fact. Let us suppose otherwise that ζ2 > 0. Then by using the claim (3.48) we
can choose a sequence of decreasing numbers {an}n≥1 such that an → 0 as n→∞
and

(3.49) sup
ζ2≤t≤T

E [ |Yn+m(t)− Yn(t)|2 ] < an , ∀ n ≥ 1.

If 0 ≤ t ≤ ζ2 and n ≥ 1, then by Lemma 3.3 and (3.49) we derive that

E [ |Yn+m(t)− Yn(t)|2 ] ≤
∫ T

t

c̄( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds

≤

(∫ ζ2

t

+
∫ T

ζ2

)
c̄( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds

≤
∫ ζ2

t

c̄( E [ |Yn+m−1(s)− Yn−1(s)|2 ] ) ds+ T c̄(an−1)
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≤ (ζ2 − t)C13 + T c̄(an−1).(3.50)

Pick now δ ∈ (0, ζ2) and j ≥ 1 so that

(3.51) C13 δ + T c̄(aj) ≤ 4C1

and define a sequence of functions {ψk(t), ζ2 − δ ≤ t ≤ ζ2 , k ≥ 1} by

ψ1(t) = C13 δ + T c̄(aj) ≤ 4C1 ,

ψk+1(t) = T c̄(aj+1) +
∫ ζ2

t

c̄(ψk(s)) ds, k ≥ 1.

We claim that for fixed l ≥ 1 if ζ2 − δ ≤ t ≤ ζ2 and k ≥ 1, then

(3.52) E [ |Yl+j+k(t)− Yj+k(t)|2 ] ≤ ψk(t) ≤ · · · ≤ ψ1(t).

This claim is obvious when k = 1 since

E [ |Yl+j+1(t)− Yj+1(t)|2 ] ≤ (ζ2 − t)C13 + T c̄(aj)
= ψ1(t).

Also as we did in (3.50) we find by using Lemma 3.3, (3.51) and the definition of
C13 = c̄(4C1) that, if k = 2, then

E [ |Yl+j+2(t)− Yj+2(t)|2 ]

≤ T c̄(aj+1) +
∫ ζ2

t

c̄( E [ |Yl+j+1(s)− Yj+1(s)|2 ] ) ds

≤ T c̄(aj+1) +
∫ ζ2

t

c̄(ψ1(s)) ds = ψ2(t)

≤ T c̄(aj) + C13 (ζ2 − t) = ψ1(t).

The last inequality here comes from aj+1 ≤ aj and the monotonicity of c̄. Thus
(3.52) holds for k = 1, 2. Assume now that (3.52) is true for some k > 2. Again by
using Lemma 3.3 and (3.49) we get similarly that

E [ |Yl+j+k+1(t)− Yj+k+1(t)|2 ]

≤ T c̄(aj+k) +
∫ ζ2

t

c̄( E [ |Yl+j+k(s)− Yj+k(s)|2 ] ) ds

= T c̄(aj+k) +
∫ ζ2

t

c̄(ψk(s)) ds = ψk+1(t)

≤ T c̄(aj+k−1) +
∫ ζ2

t

c̄(ψk−1(s)) ds = ψk(t).

Hence (3.52) holds for k + 1 as well, and so (3.52) holds for every k ≥ 1.
Finally we are ready to show that ζ2 = 0. Note that it follows from (3.52) that

for each t ∈ [ζ2− δ , ζ2], the sequence ψk(t) attains a limit defined on [ζ2− δ , ζ2], say
ψ(t). Now since

ψ(t) = lim
k→∞

ψk+1(t) = lim
k→∞

[
T c̄(aj+k) +

∫ ζ2

t

c̄(ψk(s)) ds

]
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=
∫ ζ2

t

c̄(ψ(s)) ds,

for all t ∈ [ζ2 − δ , ζ2], it follows from Bihari’s inequality that ψ(t) = 0 on ζ2 − δ ≤
t ≤ ζ2 . Thus (3.52) again implies that

sup
ζ2−δ≤t≤ζ2

E [ |Yl+j+k(t)− Yj+k(t)|2 ] ≤ ψk(ζ2 − δ) → 0,

as j, k →∞. But l ≥ 1 is arbitrary. Thus

sup
ζ2−δ≤t≤ζ2

E [ |Yn+m(t)− Yn(t)|2 ] → 0,

as n,m→∞. This together with (3.48) gives

sup
ζ2−δ≤t≤T

E [ |Yn+m(t)− Yn(t)|2 ] → 0,

contradicting the definition of ζ2 . Hence ζ2 = 0 as required.
Uniqueness: Suppose that (Y, Z) and (Y ′, Z ′) are two solutions of (1.1). Then

Y (t)− Y ′(t) =
∫ T

t

U(s, t) [f(s, Y (s), Z(s))− f(s, Y ′(s), Z ′(s))] ds

−
∫ T

t

U(s, t) [Z(s)− Z ′(s)] dW (s),(3.53)

where t ∈ [0, T ]. Denote Ỹ (t) = Y (t) − Y ′(t), Z̃(t) = Z(t) − Z ′(t) and f̃(t) =
f(t, Y (t), Z(t)) − f(t, Y ′(t), Z ′(t)), t ∈ [0, T ]. The hypotheses (H1) and (H2) and
Jensen’s inequality give:

E

[∫ T

0

|f̃(s)|2 ds

]
≤ c( E

[∫ T

0

|Ỹ (s)|2 ds

]
) + E

[∫ T

0

k |Z̃(s)|2 ds

]
<∞,

as c(x) ≤ a x + b, for some a, b > 0. The equation (3.53) is then similar to the
equation (3.8) in Lemma 3.1. Consequently we obtain

E
[
|Ỹ (t)|2

]
≤ 2M2 (T − t) E

[∫ T

t

|f̃(s)|2 ds

]

≤ 2M2 (T − t) E

[∫ T

t

c( |Ỹ (s)|2) ds

]

+ 2M2 (T − t) k E

[∫ T

t

|Z̃(s)|2 ds

]
(3.54)

and

E

[∫ T

t

|Z̃(s)|2 ds

]
≤ 8M2 (T − t) E

[∫ T

t

|f̃(s)|2 ds

]

≤ 8M2 (T − t) E

[∫ T

t

c(|Ỹ (s)|2) ds

]
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+ 8M2 (T − t) k E

[∫ T

t

|Z̃(s)|2 ds

]
.(3.55)

As we did in the proof of Lemma 3.2 we can also apply the trick of partitioning
to the two inequalities (3.54) and (3.55) by using a fixed small scale η ∈ (0, T ) with
16M2 η k < 1. Using this we find eventually that if (T − (l+ 1) η)∨ 0 ≤ t ≤ T − l η
for some 0 ≤ l ≤ q, then ∃ C(l) > 0, a constant that possibly depends on l, such
that

E [ |Ỹ (t)|2 ] ≤ C(l)
∫ T

t

c( E [ |Ỹ (s)|2 ] ) ds(3.56)

and

E

[∫ T

0

|Z̃(s)|2 ds

]
≤ C(l)

∫ T

0

c( E [ |Ỹ (s)|2 ] ) ds.(3.57)

Recall that q is the largest integer such that q < T
η . Hence summing over 0 ≤ l ≤ q

in (3.56) and applying Bihari’s inequality afterwards imply that Ỹ (t) = 0 a.s. ∀ t ∈
[0, T ]. From this and from (3.57) we conclude that E

∫ T

0
|Z̃(s)|2 ds = 0. This com-

pletes the proof.
We close this section by giving the following example.

Example 3.3. LetK = L2(Rd; R). Assume that a is a bounded nonnegative definite
d× d real matrix defined on [0, T ]×Rd, and that b : [0, T ]×Rd → Rd is a bounded
function, for which there exist numbers α > 0 and 0 < γ ≤ 1 and C <∞ such that

(i) < θ, a(t, x)θ >Rd ≥ α |θ|2Rd for all (t, x) ∈ [0, T ]× Rd and θ ∈ Rd,
(ii) |a(t, x)− a(s, x)|L2(Rd) + |b(t, x)− b(s, y)|Rd ≤ C (|x− y|γRd + |t− s|γ) for all

(t, x), (s, y) ∈ [0, T ]× Rd.

Define

A(t) =
1
2

d∑
i,j=1

aij(t, x)
∂2

∂ xi∂ xj
+

d∑
i=1

bi(t, x)
∂

∂ xi
.

Then there exists a unique positive function p(t, x; s, y), 0 ≤ t < s and x, y ∈ Rd,
which is continuous jointly with respect to all its variables and has the property that
if φ ∈ C∞0 (Rd), then for each s > 0 the function

f(t, x) =
∫
p(t, x; s, y)φ(y) dy ( =: (U(s, t)φ)(x) )

is in C1,2
b ([0, T ]× Rd) and satisfies{

∂f
∂t +A(t)f = 0, 0 ≤ t < s,
f(s, ·) = φ .

We refer the reader to Theorem 3.2.1 and Corollary 3.1.2 in [23] for more details.
As it can be seen from the definition of U(s, t) given above it is shown in [23,

Corollary 3.1.2] that U(s, t) is an evolution operator or a time-inhomogenous semi-
group in the language of [23], which is denoted by Tt,s .

Note that the condition (i) implies actually that A(t) satisfies the coercivity prop-
erty; cf. [5].



Time-dependent Backward Stochastic Evolution Equations 179

Now let H be a separable real Hilbert space (e.g. L2(Rn; R)) and consider the
following problem:

− dY (t, x) =

1
2

 d∑
i,j=1

aij(t, x)
∂2

∂ xi∂ xj
Y (t, x)


+

d∑
i=1

(
bi(t, x)

∂

∂ xi
Y (t, x)

)
+f(Y (t), Z(t))(x)

] ]
dt− (Z(t) dW (t))(x),

Y (T, x) = φ(x),

(3.58)

where φ ∈ L2(Ω,FT ,P;K) and f : K × L2(H;K) → K is the mapping:

f(y, z)(x) = (h(|y|) +
√
k |z| ) v(x),

for some fixed element v of K (e.g. v(x) = e−
1
2 |x|

2
, x ∈ Rd), and for some positive

constant k. The mapping h is the one defined in (3.2).3

From (3.4), the triangle inequality and the monotonicity of c3 , which is defined
in (3.3), we conclude that f satisfies the condition (H2) with c being the function
c3 . Thus, in particular, the equation (3.58) can be considered as a BSEE of the type
of the equation (1.1). It follows then from Theorem 3.1 that there exists a unique
solution (Y, Z) of (3.58) in L2

F (0, T ;K)× L2
F (0, T ;L2(H;K)).

4. Regularity properties of the solutions of BSEEs

We note that if, for each s, A(s) (or A for the BSEE (3.5)) is bounded, then
{U(s, 0)}s≥0 is a group, and so from (3.1) the solution Y of the BSEE (1.1) is a semi-
martingale that has a continuous version. In this section we shall discuss in general
the continuity in t of the solution Y of the BSEE (1.1) and provide some apriori es-
timates for E [ supt∈[0,T ] |Y (t)|2 ] and for E [ sup0≤t≤T |

∫ T

t
U(s, t) Z(s) dW (s) |2 ].

Proposition 4.1. Let f ∈ L2
F (0, T ;K) and ξ ∈ L2(Ω,FT ,P;K). Then the solution

Y of the following BSEE:{
− dY (t) = A Y (t) dt+ f(t) dt− Z(t) dW (t)
Y (T ) = ξ

(4.1)

has a version which is continuous almost surely as a process in K.

Proof. Note first that the solution of (4.1) is given by

(4.2) Y (t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s) ds−
∫ T

t

U(s, t) Z(s) dW (s).

For convenience we shall show that each term of (4.2) is continuous in t.
Since {Ft , 0 ≤ t ≤ T} is the Wiener filtration, then according to Theorem

2.1, E [ ξ | Ft] is continuous in t for each t ∈ [0, T ]. Consequently E [U(T, t) ξ| Ft] =

3It is also possible to let f depend on ω and on t.
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U(T, t) E [ ξ | Ft] is also continuous in t. For the same reason E [U(s, t) f(s)| Ft] is
continuous in t for each t ≤ s ≤ T. Moreover, since

E

[∫ T

t

U(s, t) f(s) ds | Ft

]
=
∫ T

t

(U(s, t) E [f(s)| Ft]) ds,

then E
[ ∫ T

t
U(s, t) f(s) ds | Ft

]
is continuous in t.

But

Y (t) = E [ U(T, t) ξ | Ft] + E

[∫ T

t

U(s, t) f(s) ds | Ft

]
.

Hence Y is continuous.
As a result from this proof and from (4.2) we obtain also the continuity of∫ T

t
U(s, t)Z(s) dW (s). Thus we conclude immediately the following continuity prop-

erty of the solution of the BSEE (1.1).

Corollary 4.1. The solution Y (t) , 0 ≤ t ≤ T, of the BSEE (1.1), which is given by
the form (3.1), and the integral

∫ T

t
U(s, t)Z(s) dW (s) are almost surely continuous

in t.

The following proposition provides some estimates for the solution (Y, Z) of the
BSEE (1.1).

Proposition 4.2. Under the same conditions as in Theorem 3.1 the solution (Y,Z)
of (1.1) satisfies

(4.3) E
[

sup
0≤t≤T

|Y (t)|2
]
<∞,

and

(4.4) E

 sup
0≤t≤T

∣∣∣∣∣
∫ T

t

U(s, t) Z(s) dW (s)

∣∣∣∣∣
2
 <∞.

Proof. Since Y is given in the following form:

Y (t) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds

−
∫ T

t

U(s, t)Z(s) dW (s),

then we have a.s.

|Y (t)| =

∣∣∣∣∣ E [U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds | Ft ]

∣∣∣∣∣
≤ E

[
M |ξ|+M

∫ T

t

|f(s, Y (s), Z(s))| ds | Ft

]

≤ M E

[
|ξ|+

∫ T

0

|f(s, Y (s), Z(s))| ds | Ft

]
,
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for all t ∈ [0, T ]. The right hand side of this last inequality is a continuous martingale.
It follows by using Doob’s inequality for martingales that

E
[

sup
0≤t≤T

|Y (t)|2
]
≤

2 M2 E

[
sup

0≤t≤T

(
E [ |ξ|2 + T

∫ T

0

|f(s, Y (s), Z(s))|2 ds | Ft |

)]

≤ 8 M2

(
E [ |ξ|2 ] + T E

[∫ T

0

|f(s, Y (s), Z(s))|2 ds

])
.

But (H1), (H2) and Jensen’s inequality imply that

E

[∫ T

0

|f(s, Y (s), Z(s))|2 ds

]
≤ 2 c

(
E

[∫ T

0

|Y (s)|2 ds

])

+ 2 k E

[∫ T

0

|Z(s)|2 ds

]
+ 2 E

[∫ T

0

|f(s, 0, 0)|2 ds

]
<∞.

Thus we derive (4.3).
Finally since for all t ∈ [0, T ]∫ T

t

U(s, t) Z(s) dW (s) = U(T, t) ξ +
∫ T

t

U(s, t) f(s, Y (s), Z(s)) ds− Y (t),

then

E

 sup
0≤t≤T

∣∣∣∣∣
∫ T

t

U(s, t) Z(s) dW (s)

∣∣∣∣∣
2
 ≤

3M2 E [ |ξ|2 ] + 3T M2 E

[∫ T

0

|f(s)|2 ds

]
+ E

[
sup

0≤t≤T
|Y (t)|2

]
<∞.

The proof is complete.

Remark 4.1. In Proposition 4.2 we estimated only the second order moments
of the solution (Y, Z). However, as seen from its proof, one can easily obtain
the same result for higher order moments. In particular, for 2 < p < ∞ if
E [ |ξ|p] + E [

∫ T

0
|Y (s)|p ds] + E [

∫ T

0
|Z(s)|p ds] <∞, then

E
[

sup
0≤t≤T

|Y (t)|p
]
<∞,

and

E

[
sup

0≤t≤T

∣∣∣∣∣
∫ T

t

U(s, t) Z(s) dW (s)

∣∣∣∣∣
p]

<∞.
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[16] É. Pardoux and S.G. Peng, Adapted solution of a backward stochastic differential equation,

Systems Control Lett. 14(1)(1990), 55–61.
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[22] B.L. Rozovskĭı, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear

Filtering, Translated from the Russian by A. Yarkho, Mathematics and Its Applications (Soviet

Series), 35, Kluwer Academic Publishers Group, Dordrecht, 1990.
[23] D.W. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes, A Series of Com-

prehensive Studies in Mathematics, Vol. 233, Springer-Verlag, Germany, 1979.

[24] H. Tanabe, Equations of Evolution, Translated from the Japanese by N. Mugibayashi and H.
Haneda, Monographs and Studies in Mathematics, 6, Pitman (Advanced Publishing Program),

Boston, Mass. London, 1979.



Time-dependent Backward Stochastic Evolution Equations 183

[25] T. Yamada, and S. Watanabe, On the uniqueness of solutions of stochastic differential equa-

tions, J. Math. Kyoto Univ. 11(1971), 155–167.

[26] S. Watanabe and T. Yamada, On the uniqueness of solutions of stochastic differential equations
II, J. Math. Kyoto Univ. 11(1971), 553–563.


