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Abstract. A truncated version of the bivariate Cauchy distribution is intro-
duced. Explicit expressions for its moments and estimation procedures are

derived. Unlike the Cauchy distribution, this possesses finite moments of all

orders and could therefore be a better model for certain practical situations.
An application with real data is discussed to show one such situation.
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1. Introduction

The main weakness of Cauchy distributions is that they have no moments. Nadara-
jah and Kotz [3] suggested a truncated univariate Cauchy distribution that over-
comes this weakness. In this note, we study the corresponding bivariate version.
The bivariate Cauchy distribution is given by the joint probability density function
(pdf):

g(x, y) =
1
2π

(
1 + x2 + y2

)−3/2
(1.1)

for −∞ < x < ∞ and −∞ < y < ∞. Let G denote the corresponding joint
cumulative distribution function (cdf) given by:

G(x, y) =
1
4

+
1
2π

(
arctanx + arctan y + arctan

xy√
1 + x2 + y2

)
.(1.2)

Then the truncated version of (1.1) is given by the joint pdf:

f(x, y) =
1

2πΩ
(
1 + x2 + y2

)−3/2
(1.3)

for −∞ < B ≤ x ≤ A < ∞ and −∞ < D ≤ y ≤ C < ∞, where Ω = G(A,C) −
G(A,D)−G(B,C) + G(B,D). The cdf associated with (1.3) is:
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F (x, y) =
1
Ω
{G(x, y)−G(x,D)−G(B, y) + G(B,D)} .(1.4)

The corresponding marginal cdfs are:

FX(x) =
1
Ω
{G(x,C)−G(x,D)−G(B,C) + G(B,D)}

and

FY (y) =
1
Ω
{G(A, y)−G(A,D)−G(B, y) + G(B,D)} .

The corresponding marginal pdfs are:

fX(x) =



| C |
2Ωπ

(
1 + x2

)3/2

{
(2C∗ + 5)

√
C∗ + 1

8
+

3arcsinh
(√

C∗
)

8
√

C∗

− (2D∗ + 5)
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D∗ + 1
8

−
3arcsinh

(√
D∗
)

8
√
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}
, (D > 0),
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and

fY (y) =
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where A∗ = A2/(1 + y2), B∗ = B2/(1 + y2), C∗ = C2/(1 + x2), D∗ = D2/(1 + x2)
and 2F1 denotes the Gauss hypergeometric function defined by

2F1 (a, b; c;x) =
∞∑

k=0

(a)k (b)k

(c)k

xk

k!
,

where (e)k = e(e+1) · · · (e+k−1) denotes the ascending factorial, see Prudnikov et
al. [5] and Gradshteyn and Ryzhik [1]. We refer to (1.3) as the truncated bivariate
Cauchy distribution. Because (1.3) is defined over a finite interval, the truncated
bivariate Cauchy distribution has all it moments. Thus, (1.3) may prove to be a
better model for certain practical situations than one based on just the bivariate
Cauchy distribution, see Section 4.

The rest of this paper is organized as follows: explicit expressions for the moments
of (1.3) are derived in Section 2, estimation issues are discussed in Section 3, and an
application to consumer price indices data is illustrated in Section 4.

2. Moments

We derive three representations for the product moment E(XαY β). Theorems 2.1
and 2.2 provide general representations while Theorem 2.3 considers the particular
case that β is an odd integer.

Theorem 2.1. If (X, Y ) has the joint pdf (1.3) then

(2.1)

E
(
XαY β

)
=



H(A,C)−H(B,C)−H(A,D) + H(B,D),
if B > 0 and D > 0,

(−1)α {H(−B,C)−H(−A,C)−H(−B,D) + H(−A,D)} ,
if A < 0 and D > 0,

(−1)α+β {H(−B,−D)−H(−B,−C)−H(−A,−D)
+H(−A,−C)} , if A < 0 and C < 0,

(−1)β {H(A,−D)−H(A,−C)−H(B,−D) + H(−B,−C)} ,
if B > 0 and C < 0,

H(A,C) + (−1)αH(−B,C) + (−1)βH(A,−D)
+(−1)α+βH(−B,−D), if B < 0, A > 0, D < 0 and C > 0,

H(A,C)−H(A,D) + (−1)α {H(−B,C)−H(−B,D)} ,
if B < 0, A > 0 and D > 0,

H(A,C)−H(B,C) + (−1)β {H(A,−D)−H(B,−D)} ,
if B > 0, D < 0 and C > 0,

(−1)α {H(−B,C)−H(−A,C)}+ (−1)α+β {H(−B,−D)
−H(−A,−D)} , if A < 0, D < 0 and C > 0,

(−1)β {H(A,−D)−H(A,−C)}+ (−1)α+β {H(−B,−D)
−H(−B,−C)} , if B < 0, A > 0 and C < 0,

for α ≥ 1 and β ≥ 1, where

H(P,Q) =
1
2π

∫ P

0

∫ Q

0

xαyβ(
1 + x2 + y2

)3/2
dydx.(2.2)
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Proof. The result of the theorem is obvious. For example, if B > 0 then D > 0 one
can write

E
(
XαY β

)
=

1
2π

∫ A

B

∫ C

D

xαyβ
(
1 + x2 + y2

)−3/2
dydx

=
1
2π

{∫ A

0

∫ C

0

xαyβ
(
1 + x2 + y2

)−3/2
dydx

−
∫ A

0

∫ D

0

xαyβ
(
1 + x2 + y2

)−3/2
dydx

−
∫ B

0

∫ C

0

xαyβ
(
1 + x2 + y2

)−3/2
dydx

+
∫ B

0

∫ D

0

xαyβ
(
1 + x2 + y2

)−3/2
dydx

}
= H(A,C)−H(B,C)−H(A,D) + H(B,D).

The remaining cases can be established similarly.

Theorem 2.2. If (X, Y ) has the joint pdf (1.3) then (2.2) can be expressed in the
form

H(P,Q) =
Pα+1Q1+2β

2π(α + 1)(1 + 2β)

∞∑
k=0

(−1)k(β + 1/2)k(3/2)kQ2k

(β + 3/2)kk!

× 2F1

(
α + 1

2
,
3
2

+ k;
α + 3

2
;−P 2

)
.

Proof. Setting z = 1 + x2 + y2, (2.2) can be reexpressed as

H(P,Q) =
1
4π

∫ P

0

∫ 1+x2+Q2

1+x2
xα
(
z − 1− x2

)(β−1)/2
z−3/2dzdx.(2.3)

Now, an application of equation (2.2.6.1) in Prudnikov et al. [5] to calculate the inner
integral in (2.3) shows that

H(P,Q) =
Q1+2β

2π(1 + 2β)

∫ P

0

xα
(
1 + x2

)−3/2
2F1

(
β +

1
2
,
3
2
;β +

3
2
;− Q2

1 + x2

)
dx

=
Q1+2β

2π(1 + 2β)

∫ P

0

xα
(
1 + x2

)−3/2
∞∑

k=0

(β + 1/2)k(3/2)k

(β + 3/2)kk!

(
− Q2

1 + x2

)k

dx

=
Q1+2β

2π(1 + 2β)

∞∑
k=0

(β + 1/2)k(3/2)k(−1)kQ2k

(β + 3/2)kk!

∫ P

0

xα
(
1 + x2

)−3/2−k
dx,(2.4)

where we have used the definition of the Gauss hypergeometric function. The result
of the theorem follows by applying equation (2.2.6.1) in Prudnikov et al. [5] again to
calculate the integral in (2.4).
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Theorem 2.3. If (X, Y ) has the joint pdf (1.3) and if (β − 1)/2 ≥ 1 is an integer
then (2.2) can be expressed in the form

H(P,Q) =
1
4π

(β−1)/2∑
k=0

(
(β − 1)/2

k

)
(−1)(β−1)/2−k {S(k, Q)− S(k, 0)} ,

where

S(k, Q) =
(β−1)/2−k∑

l=0

(
(β − 1)/2− k

l

)
Pα+1+2l

(
1 + Q2

)k−1/2

(k − 1/2)(α + 1 + 2l)

× 2F1

(
α + 1

2
+ l,

1
2
− k;

α + 3
2

+ l;− P 2

1 + Q2

)
.

Proof. If β is an odd integer then one can write (2.3) as

H(P,Q) =
1
4π

∑
k = 0(β−1)/2

(
(β − 1)/2

k

)
×
∫ P

0

∫ 1+x2+Q2

1+x2
xα
(
−1− x2

)(β−1)/2−k
zk−3/2dzdx

=
1
4π

(β−1)/2∑
k=0

(
(β − 1)/2

k

)
(−1)(β−1)/2−k

∫ P

0

xα
(
1 + x2

)(β−1)/2−k

×

{(
1 + Q2 + x2

)k−1/2

k − 1/2
−
(
1 + x2

)k−1/2

k − 1/2

}
dx

=
1
4π

(β−1)/2∑
k=0

(
(β − 1)/2

k

)
{S(k,Q)− S(k, 0)} ,

where

S(k, Q) =
1

k − 1/2

∫ P

0

xα
(
1 + x2

)(β−1)/2−k (
1 + Q2 + x2

)k−1/2
dx.(2.5)

Note that (2.5) can be expanded as

(2.6)

S(k,Q) =
1

k − 1/2

(β−1)/2−k∑
l=0

(
(β − 1)/2− k

l

)∫ P

0

xα+2l
(
1 + Q2 + x2

)k−1/2
dx

=
1

2k − 1

(β−1)/2−k∑
l=0

(
(β − 1)/2− k

l

)∫ P 2

0

y(α−1)/2+l
(
1 + Q2 + y

)k−1/2
dy.

The result of the theorem follows by using equation (2.2.6.1) in Prudnikov et al. [5]
to calculate the integral in (2.6).
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3. Estimation

Here, we consider estimation by the method of maximum likelihood and the method
of moments. Suppose {(x1, y1), (x2, y2), . . . , (xn, yn)} is a random sample from (1.3).
It is easy to show that the maximum likelihood estimators of A, B, C and D are
Â = max xi, B̂ = minxi, Ĉ = max yi and D̂ = min yi, respectively. The method of
moments estimators can be determined by equating, say

E (XY ) =
1
n

n∑
i=1

xiyi,

E
(
X2Y

)
=

1
n

n∑
i=1

x2
i yi,

E
(
XY 2

)
=

1
n

n∑
i=1

xiy
2
i

and

E
(
X2Y 2

)
=

1
n

n∑
i=1

x2
i y

2
i ,

where the expectations can be calculated by using the results of Theorems 2.1 to
2.3.

4. Application

The bivariate Cauchy distribution has received applications in many areas, including
biological analyses, clinical trials, stochastic modelling of decreasing failure rate life
components, study of labour turnover, queueing theory, and reliability (see, for
example, Nayak [4] and Lee and Gross [2]). For data from these areas, there is no
reason to believe that empirical moments of any order should be infinite. Thus, the
choice of the bivariate Cauchy distribution as a model is unrealistic since its product
moments E(XαY β) are not finite for all α and β. The alternative given by (1.3) will
be a more appropriate model for the kind of data mentioned. The choice of the limits
A, B, C and D could be based on historical records or the methods discussed in
Section 3. As an example, consider modelling the dependence between the consumer
price indices of Australia and the United States. The data for the years from 1901 to
2005 extracted from the website www.globalfindata.com/ are shown in Table 1. We
fitted the models given by (1.1) and (1.3) to this data set. The method of maximum
likelihood was used. Prior to fitting, a probability integral transformation was used
to standardize the data to have Cauchy marginals. The two models yielded the
following maximized log likelihoods: -494.7993 and -446.8655. It follows by the
likelihood ratio test that the truncated model is a significant improvement. The
fitted joint densities for the two models are shown in Figures 1 and 2.
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Table 1. Consumer price index data for Australia
and the United States for the years 1901–2005.

Year OZ CPI US CPI Year OZ CPI US CPI Year OZ CPI US CPI
1901 2.4282 7.644 1936 3.9644 14 1971 19.2357 41.1
1902 2.5663 7.84 1937 4.059 14.4 1972 20.0812 42.5
1903 2.5088 7.84 1938 4.1583 14 1973 22.7587 46.2
1904 2.3707 7.938 1939 4.2577 14 1974 26.4226 51.9
1905 2.4858 8.134 1940 4.532 14.1 1975 30.157 55.5
1906 2.4858 8.526 1941 4.7355 15.5 1976 34.4551 58.2
1907 2.4743 8.82 1942 5.1518 16.9 1977 37.6963 62.1
1908 2.6239 8.82 1943 5.166 17.4 1978 40.5852 67.7
1909 2.6239 9.31 1944 5.1944 17.8 1979 44.6719 76.7
1910 2.6814 9.31 1945 5.2369 18.2 1980 48.829 86.3
1911 2.762 9.506 1946 5.6201 21.5 1981 54.3249 94
1912 3.1187 9.8 1947 5.9607 23.4 1982 60.3141 97.6
1913 3.0266 10 1948 6.5568 24.1 1983 65.5281 101.3
1914 3.1509 10.1 1949 7.1529 23.6 1984 67.2192 105.3
1915 3.6825 10.3 1950 8.0044 25 1985 72.7151 109.3
1916 3.5905 11.6 1951 10.001 26.5 1986 79.8316 110.5
1917 3.6825 13.7 1952 10.9504 26.7 1987 85.5389 115.4
1918 3.8322 16.5 1953 11.3302 26.9 1988 92.0212 120.5
1919 4.3846 18.9 1954 11.3935 26.7 1989 99.2082 126.1
1920 4.807 19.4 1955 11.8394 26.8 1990 106 133.8
1921 4.3326 17.3 1956 12.6457 27.6 1991 107.6 137.9
1922 4.4275 16.9 1957 12.9286 28.4 1992 107.9 141.9
1923 4.554 17.3 1958 13.169 28.9 1993 110 145.8
1924 4.4275 17.3 1959 13.3246 29.4 1994 112.8 149.7
1925 4.5856 17.9 1960 13.7914 29.8 1995 118.5 153.5
1926 4.6172 17.7 1961 14.0177 30 1996 120.3 158.6
1927 4.6488 17.3 1962 14.0885 30.4 1997 120 161.3
1928 4.6172 17.1 1963 14.1733 30.9 1998 121.9 163.9
1929 4.7121 17.2 1964 14.6118 31.2 1999 124.1 168.3
1930 4.2719 16.1 1965 15.0645 31.8 2000 131.3 174
1931 3.8981 14.6 1966 15.5454 32.9 2001 135.4 176.7
1932 3.7373 13.1 1967 15.9698 33.9 2002 139.5 180.9
1933 3.7136 13.2 1968 16.479 35.5 2003 142.8 184.3
1934 3.7799 13.4 1969 17.0306 37.7 2004 146.5 190.3
1935 3.8603 13.8 1970 17.8793 39.8 2005 150.6 196.8
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Australian Consumer Price Index
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Figure 1. Fitted joint density of (1) for the data on consumer price indices of
Australia and the United States
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Figure 2. Fitted joint density of (3) for the data on consumer price indices of
Australia and the United States
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